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Matrix Valued Orthogonal Polynomials on
the Unit Circle: Some Extensions of the
Classical Theory

L. Miranian

Abstract. In the work presented below the classical subject of orthogonal polynomials on the unit circle

is discussed in the matrix setting. An explicit matrix representation of the matrix valued orthogonal

polynomials in terms of the moments of the measure is presented. Classical recurrence relations are

revisited using the matrix representation of the polynomials. The matrix expressions for the kernel

polynomials and the Christoffel–Darboux formulas are presented for the first time.

1 Introduction

Since the fundamental work of Akhiezer [1], Szegö [32], and many others, orthogo-

nal polynomials have been very extensively used in analyzing many problems of ap-
plied mathematics, such as numerical quadrature, the moment problem, rational and

polynomial interpolation and approximation, and applications of these techniques

in engineering problems. The development of special and important examples goes
much further back; see for instance Lebedev [26]. Numerous applications of matrix

valued orthogonal polynomials supported on the unit circle include the inversion of

finite block Toeplitz matrices that appear in linear estimation theory, see [29]; ap-
plication in time series analysis related to the frequency estimation of a stationary

harmonic process, see [31]; the analysis of families of polynomials orthogonal with
respect to scalar measure supported on equipotential curves in the complex plane,

see [27] and many others.

Starting with the earlier work of M. G. Krein [24,25] as well as more recent works

[2, 6–11, 13, 15, 18, 19, 28, 31], there is a general theory of matrix valued orthogonal
polynomials. Many of the important results of the theory of scalar valued orthogonal

polynomials, such as Favard’s theorem and Markov’s theorem, have been adapted in

the matrix setting, see [6–9, 13, 14, 19], and many more still need to be investigated
in the new context of matrix valued orthogonal polynomials.

In this article we utilize the moments of the orthogonality measure to represent

matrix valued orthogonal polynomials on the unit circle as certain Schur comple-
ments. The idea of representing matrix valued orthogonal polynomials using Schur

complements has been discussed by several authors in various contexts. In particular,

Schur complements representation has been used in block-algorithms in numerical
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linear algebra, see [4, 16, 21] and many more. The current methodology of using or-
thogonality measure and Schur complements representation described in this article

allows one to obtain classical recursion relations in a simple way. Most importantly,
matrix versions of the kernel polynomials and Christoffel–Darboux formulas are pre-

sented for the first time.

This paper is organized as follows. In Section 2 notations are introduced and the

matrix analog of the determinant formula for the polynomials on the unit circle is
presented. Section 3 concerns orthogonality of the polynomials introduced in Sec-

tion 2. The recurrence relations in the matrix case are presented in Section 4. Section

5 concerns the matrix valued version of the kernel polynomials and the Christoffel–
Darboux formulas.

2 Orthogonal Polynomials and the Moments of Measure

In [6, 19] the subject of matrix valued orthogonal polynomials on the unit circle was

approached from the point of view of a minimization problem. Presented below is

an explicit matrix expression for the scalar/matrix valued orthogonal polynomials on
the unit circle in terms of the moments of the measure which is a natural extension

of the classical determinant definition discussed in numerous books and articles, for

example, see [5].

Given a measure µ(dθ) = W (θ)dθ with Hermitian weight function W (θ) ∈ Rk×k,
k ≥ 1, supported and integrable on [−π, π], introduce the following:

• The n-th moment of the measure µ(dθ) µn ∈ Ck×k, where

µn =
1

2π

∫ π

−π

einθµ(dθ) =
1

2π

∫ π

−π

einθW (θ)dθ; n = 0,±1,±2 . . .

Note that µ−n = µ∗

n . Throughout this section “ ∗ ” means transposition and com-

plex conjugation.
• The matrices Mr

n and Ml
n in Ck(n+1)×k(n+1), where I is k × k identity matrix, x =

eiθ ∈ C, θ ∈ [−π, π] and n ≥ 1,

Mr
n =















µ0 µ1 · · · µn−1 µn

µ−1 µ0 · · · µ−n+2 µn−1

...
...

. . .
...

...
µ−n+1 µ−n+2 · · · µ0 µ1

I xI · · · xn−1I xnI















,

Ml
n =















µ0 µ−1 · · · µ−n+1 I
µ1 µ0 · · · µ−n+2 xI
...

...
. . .

...
...

µn−1 µn−2 · · · µ0 xn−1I

µn µn−1 · · · µ1 xnI















.
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• Toeplitz matrices Tr
n and T l

n ∈ Ckn×kn for n ≥ 1

Tr
n =











µ0 µ1 · · · µn−1

µ−1 µ0 · · · µn−2

...
...

. . .
...

µ−n+1 µ−n+2 · · · µ0











and T l
n =











µ0 µ−1 · · · µ−n+1

µ1 µ0 · · · µ−n+2

...
...

. . .
...

µn−1 µn−2 · · · µ0











.

• The vectors νn and ξn for n ≥ 1,

νn =











µn

µn−1

...
µ1











and ξn =











µ−n

µ−n+1

...
µ−1











.

• In the matrices

Tr
n+1 =

(

Tr
n νn

ν∗

n µ0

)

and T l
n+1 =

(

T l
n ξn

ξ∗n µ0

)

denote the Schur complements of µ0

(1) Sr
n = µ0 − ν∗

n T−r
n νn, Sl

n = µ0 − ξ∗n T−l
n ξn, for n ≥ 1

with Sl
0 = Sr

0 = µ0. Here T−l
n and T−r

n denote (T l
n)−1 and (Tr

n)−1 correspondingly.

Using the notations above we introduce the following definition:

Definition 2.1 (Monic matrix valued polynomials on the unit circle) Define two

families of polynomials
{

Pr
n(x)

}∞

n=0
and

{

Pl
n(x)

}∞

n=0
as Schur complements of xnI

in the matrices Mr
n+1 and Ml

n+1 correspondingly, i.e.,

(2) Pr
n(x) = xnI −

[

I · · · xn−1I
]

T−r
n











µn

µn−1

...

µ1











and

(3) Pl
n(x) = xnI − [µn µn−1 · · · µ1]T−l

n











I

xI
...

xn−1I











,

with Pl
0(x) = Pr

0(x) = I, where “r” and “l” stand for the “right” and the “left” poly-
nomials.

Note 2.2 In the classical theory of scalar valued orthogonal polynomials on the unit

circle (see [32]), monic polynomials are defined as

pr
n(x) = pl

n(x) =
det(Mr

n)

det (Tr
n)

,

which is exactly what we obtain using definition (2) in the scalar case.
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3 Orthogonality via the Moments of the Measure

The following proposition shows that families of monic polynomials
{

Pr
n(x)

}∞

n=0

and
{

Pl
n(x)

}∞

n=0
as defined in (2) and (3) form sets of monic orthogonal polynomials

for any symmetric measure µ(dθ) = W (θ)dθ.

Proposition 3.1 Let
{

Pr
n(x), Pl

n(x)
}∞

n=0
be families of monic polynomials as defined

in (2) and (3); let Sr
n and Sl

n be defined as in (1). Define “right” and “left” inner products

on the unit circle as

〈P, Q〉r =

∫

P∗(eiθ)W (eiθ)Q(eiθ)dθ,

〈P, Q〉l =

∫

P(eiθ)W (eiθ)Q∗(eiθ)dθ.

Then for any k, j ≥ 0

〈Pr
k, Pr

j〉r =

∫ π

−π

Pr∗
k

(

eiθ
)

W (θ)Pr
j

(

eiθ
)

dθ = δk jS
r
k,

〈Pl
k, Pl

j〉l =

∫ π

−π

Pl
k

(

eiθ
)

W (θ)Pl∗
j

(

eiθ
)

dθ = δk jS
l
k.

Proof Let us consider the right norm. Observe first that for any 0 ≤ m ≤ n − 1

[

µ−m µ−m+1 µ−m+2 · · · µ−m+n−1

]

T−r
n νn = µ−m+n.

In order the prove that 〈Pr
m, Pr

n〉r = 0 for any m < n it is enough to show that Pr
n

(

eiθ
)

is orthogonal to all e−imθ for 0 ≤ m ≤ n − 1, i.e.,

∫ π

−π

e−imθW (θ)Pr
n(eiθ)dθ =

∫ π

−π

e−imθW (θ)
(

einθI −
[

I · · · ei(n−1)θI
]

T−r
n νn

)

dθ

= µn−m −
[

µ−m µ−m+1 . . . µ−m+n−1

]

T−r
n νn

= µn−m − µn−m = 0.

If m = n, then

∫

Pr∗
n (eiθ)W (θ)Pr

n(eiθ)dθ = µ0 −
[

µ−n µ−n+1 · · · µ−1

]

T−r
n νn

= µ0 − ν∗

n T−r
n νn = Sr

n.

The statement for the left norm is proved similarly.

Note 3.2 In the classical theory of scalar valued orthogonal polynomials on the unit
circle (for example, see [32]),

〈Pr
n, Pr

n〉r =
det (Tn+1)

det (Tn)
,

which is identical to our formula applied for the scalar case.
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4 The Recursion Relations

It is shown below that the right and the left orthogonal polynomials as defined in (2)
and (3) obey the classical recurrence relations discussed in numerous articles, see for

example [6, 19, 31] and many more.

Proposition 4.1 Let {Pr
n(x)}

∞

n=0 and
{

Pl
n(x)

}

∞

n=0
be families of monic matrix valued

orthogonal polynomials as defined in (2) and (3). Then they obey the following recursion

relations:

(i) Pr
n+1(x) = xPr

n(x) + P̂l
n(x)Pr

n+1(0);

(ii) P̂r
n+1(x) = P̂r

n(x) + xPr∗
n+1(0)Pl

n(x);

(iii) Pl
n+1(x) = xPl

n(x) + Pl
n+1(0)P̂r

n(x);

(iv) P̂l
n+1(x) = P̂l

n(x) + xPr
n(x)Pl∗

n+1(0);

(v) Pr
n+1(x) = xPr

n(x)(I − Pl∗
n+1(0)Pr

n+1(0)) + P̂l
n+1(x)Pr

n+1(0);

(vi) Pl
n+1(x) = x(I − Pl

n+1(0)Pr∗
n+1(0))Pl

n(x) + Pl
n+1(0)P̂r

n+1(x);

(vii) (I − Pl∗
n+1(0)Pr

n+1(0)) = S−r
n Sr

n+1;

(viii) (I − Pl
n+1(0)Pr∗

n+1(0)) = Sl
n+1S−l

n ;

(ix) Sl
nPr

n(0) = Pl
n(0)Sr

n;

where P̂r,l
n (x) = xn

(

Pr,l
n (x)

)

∗

.

Proof In order to prove the first recursion relation let us partition matrices Tr
n+1,

T−r
n+1 and νn+1 in the following way:

Tr
n+1 =

(

µ0 φ∗

φ Tr
n

)

; T−r
n+1 =

(

α γ∗

γ A

)

; νn+1 =

(

µn+1

νn

)

; φ =











µ−1

µ−2

...

µ−n











.

After some simple calculations one arrives at

α = (µ0 − φ∗T−r
n φ)−1, γ = −T−r

n φα,

A = T−r
n − T−r

n φγ∗, Pr
n+1(0) = −(αµn+1 + γ∗νn).

Using the fact that Tr
n = LT l

nL, for L =









0 · · · 0 I

0 · · · I 0
...

...
...

...
I 0 0 0









one can see that

P̂l
n(x) = xn

(

x−nI − [I x−1I · · · x−n+1I]T−l
n ξn

)

= I − [xnI xn−1I · · · I]T−l
n ξn

= I − [I xI · · · xnI]LT−l
n Lφ = I − [I xI · · · xnI]T−r

n φ,
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hence

Pr
n+1(x) − xPr

n(x) = −
[

I · · · xnI
]

T−r
n+1νn+1 +

[

xI · · · xnI
]

T−r
n νn

=
[

xI · · · xnI
]

T−r
n νn − αµn+1 − γ∗νn −

[

xI · · · xnI
]

(γµn+1 + Aνn)

=
[

xI · · · xnI
]

(

T−r
n φγ∗νn + T−r

n φαµn+1

)

+ Pr
n+1(0)

= −
[

xI · · · xnI
]

T−r
n φPr

n+1(0) + Pr
n+1(0) = P̂l

n(x)Pr
n+1(0),

which proves identity (i) of the proposition.
By applying the “ ˆ ” operator (introduced at the end of the proposition above)

to the identity (i), one obtains (ii). By partitioning the matrix T l
n+1 and applying

the same technique as above we obtain (iii) and (iv). Identity (v) is obtained by

expressing P̂l
n(x) from (iv) and substituting into (i). Identity (vi) is obtained similarly.

In order to prove (vii) let us rewrite identity (v) from the proposition in the fol-
lowing way:

Pr
n+1(x)

xn+1
=

Pr
n(x)

xn

(

I − Pl∗
n+1(0)Pr

n+1(0)
)

+ Pl∗
n+1(x)Pr

n+1(0).

After multiplying this expression by Pl
n(eiθ)W (θ) from the left, substituting x = eiθ,

integrating and using orthogonality, we arrive at (vii). Identities (viii) and (ix) are

proved similarly which concludes the proof of the proposition.

Note 4.2 Formulas similar to the ones in the proposition above are obtained in a
different way and presented in [6, 19, 31].

Note 4.3 In the classical scalar case k = 1 the expressions above are identical to

those obtained in the classical theory of orthogonal polynomials on the unit circle,
for example, see [20].

5 Kernel Polynomials and the Christoffel–Darboux Formulas

In this section a matrix valued “right” and “left” kernel polynomials are presented for
the first time, and the Christoffel–Darboux formula is revisited.

Along with monic orthogonal polynomials, one can introduce orthonormal ma-

trix valued polynomials on the unit circle.

Definition 5.1 Given families of monic matrix valued orthogonal polynomials de-

fined in (2) and (3), define families {Qr
n(x)}∞n=0 and {Ql

n(x)}∞n=0 by means of

(4) Qr
n(x) = Pr

n(x)S−r/2
n and Ql

n(x) = S−l/2
n Pl

n(x).

The orthonormality follows from

〈Qr,l
n , Qr,l

n 〉r,l = S−r,l/2
n 〈Pr,l

n , Pr,l
n 〉S

−r,l/2
n = S−r,l/2

n Sr,l
n S−r,l/2

n = I.
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In order to be able to define an orthonormal family in this fashion, the matrices Sn

have to be positive definite for all n, which is equivalent to the weight matrix W (x)

being positive definite.
In the lemma below the matrix valued kernel polynomials on the unit circle are

presented.

Lemma 5.2 Given two families of orthonormal polynomials on the unit circle as de-

fined in (4), denote the “right” and the “left” kernel polynomials of degree n to be

K r
n(x, y) =

n
∑

i=0

Qr
i (y)Qr∗

i (x) and K l
n(x, y) =

n
∑

i=0

Ql∗
i (y)Ql

i(x).

Then

K r
n(x, y) =

[

I · · · ynI
]

T−r
n+1











I
x−1I

...

x−nI











;

K l
n(x, y) =

[

I · · · y−nI
]

T−l
n+1











I
xI
...

xnI











;

(i)

(ii) the Christoffel–Darboux formula:

K r
n(x, y) =

Q̂l
n+1(x)Q̂l∗

n+1(y) − Qr
n+1(x)Qr∗

n+1(y)

1 − xȳ
;

K l
n(x, y) =

Q̂r∗
n+1(x)Q̂r

n+1(y) − Ql∗
n+1(x)Ql

n+1(y)

1 − xȳ
.

Proof In order to prove (i) or the right kernel polynomial let us partition Tr
n+1 and

T−r
n+1 in the following fashion:

Tr
n+1 =

(

Tr
n νn

ν∗

n µ0

)

and T−r
n+1 =

(

A γ
γ∗ α

)

,

where

A = T−r
n + T−r

n νnS−r
n ν∗

n T−r
n , γ = −T−r

n νnS−r
n , α = S−r

n .

To ease the notation, denote

Y =
[

I yI · · · yn−1I
]

and X =
[

I xI · · · xn−1I
]

.

For n = 0 we have K r
0(x, y) = Qr

0(y)Qr∗
0 (x) = µ−1

0 which agrees with formula (i) in

the proposition. To simplify the notation denote the right hand side of expression (i)

as RHS(n). For the inductive step (n − 1) → n use the partition above as well as

[

I zI · · · zn−1I
]

T−r
n νnS−r/2

n = znS−r/2
n − Qr

n(z)
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to rewrite RHS(n) as

RHS(n) = ynx−nα + ynγ∗X∗ + x−nYγ + YAX∗

= Y (T−r
n + T−r

n νnS−r
n ν∗

n T−r
n )X∗

− Y T−r
n νnS−r

n x−n − ynS−r
n ν∗

n T−r
n X∗

+ ynx−nS−r
n

= Y T−r
n X∗ +

(

ynS−r/2
n − Qr

n(y)
)(

x−nS−r/2
n − Q∗r

n (x)
)

− x−n
(

ynS−r/2
n − Qr

n(y)
)

S−r/2
n − ynS−r/2

n

(

x−nS−r/2
n − Q∗r

n (x)
)

+ ynx−nS−r
n = Y T−r

n X∗ + Qr
n(y)Qr∗

n (x)

= RHS(n − 1) + Qr
n(y)Qr∗

n (x),

which completes the proof by induction.

In order to derive the Christoffel–Darboux formula (ii) we write the following two
recursion relations for orthonormal polynomials:

Qr
n+1(t) = tQr

n(t)a + Q̂l
n(t)b; Q̂l

n+1(t) = Q̂l
n(t)c + tQr

n(t)d; with

a = Sr/2
n S

−r/2
n+1 , b = Sl/2

n Pr
n+1(0)S

−r/2
n+1 , c = Sl/2

n S
−l/2
n+1 and d = Sr/2

n Pl∗
n+1(0)S

−l/2
n+1 .

In matrix form this could be written as

Φn+1(t) = C(t)Φn(t), where Φn+1(t) = [Qr
n+1(t); Q̂l

n+1(t)] and C(t) =

(

ta td

b c

)

.

Define J = ( −I 0
0 I ), and by the identity (ix) in the proposition in the previous section

note that

dc∗ − ab∗ = Sr/2
n Pl∗

n+1(0)S
−l/2
n+1 S

−l/2
n+1 Sl/2

n − Sr/2
n S

−r/2
n+1 S

−r/2
n+1 Pr∗

n+1(0)Sl/2
n

= Sr/2
n

(

Pl∗
n+1(0)S−l

n+1 − S−r
n+1Pr∗

n+1(0)
)

Sl/2
n = 0;

dd∗ − aa∗ = Sr/2
n Pl∗

n+1(0)S
−l/2
n+1 S

−l/2
n+1 Pl

n+1(0)Sr/2
n − Sr/2

n S
−r/2
n+1 S

−r/2
n+1 Sr/2

n

= Sr/2
n

(

Pl∗
n+1(0)S−l

n+1Pl
n+1(0) − S−r

n+1

)

Sr/2
n = −I

cc∗ − bb∗ = Sl/2
n S

−l/2
n+1 S

−l/2
n+1 Sl/2

n − Sl/2
n Pr

n+1(0)S
−r/2
n+1 S

−r/2
n+1 Pr∗

n+1(0)Sl/2
n

= Sl/2
n

(

S−l
n+1 − Pr

n+1(0)S−r
n+1Pr∗

n+1(0)
)

Sl/2
n = I.

Hence

C(x) JC∗(y) =

(

xȳ(dd∗ − aa∗) x(dc∗ − ab∗)
ȳ(cd∗ − ba∗) cc∗ − bb∗

)

=

(

−xȳI 0
0 I

)

,
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which implies that

Φn+1(x) JΦ∗

n+1(y) = Q̂l
n+1(x)Q̂l∗

n+1(y) − Qr
n+1(x)Qr∗

n+1(y)

= Φn(x)C(x) JC∗(y)Φ∗

n(y) = Q̂l
n(x)Q̂l∗

n (y) − xȳQr
n(x)Qr∗

n (y).

Thus,
n

∑

k=0

Qr
k(x)Qr∗

k (y) =
Q̂l

n+1(x)Q̂l∗
n+1(y) − Qr

n+1(x)Qr∗
n+1(y)

1 − xȳ
.

The identity for the left polynomial is proved similarly.
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