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Abstract

Using the method of exponential dichotomies, we establish a new existence and uniqueness theorem for
almost automorphic solutions of differential equations with piecewise constant argument of the form

X' () = AOx(®) + BOx(lt]) + f(1), t€R,

where |-| denotes the greatest integer function, and A(¢), B(r) : R — R?9, f(r) : R — R? are all almost
automorphic.
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1. Introduction

Differential equations with piecewise constant argument describe hybrid dynamical
systems (a combination of continuous and discrete). These equations have the
structure of continuous dynamical systems within intervals of unit length and
continuous solution, and so combine properties of both differential and difference
equations. They have applications in certain biomedical models and are similar in
structure to those found in certain sequential continuous models of disease dynamics
as treated by Busenberg and Cooke since 1982 (see [3]). Therefore there are
many papers concerning differential equations with piecewise constant arguments
(see[1,7, 11,16, 17, 19]).

Almost periodicity and almost automorphy are attractive topics in the qualitative
theory of differential equations due to their significance and applications in physics,
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mathematical biology, control theory and other areas. Consequently, differential
equations, partial differential equations and functional differential equations with these
properties have been of great interest to many authors and there is a great deal of
literature on the subject (see [5, 6, 9, 18] and the references therein). It was only
in 2006 [12] that the almost automorphy of solutions of differential equations with
piecewise constant argument was considered. In [7, 12], by using spectral theory,
the authors gave some existence and uniqueness results on the almost automorphic
solutions of the two differential equations

X' (1) = Ax(|t]) + f(r), teR

and
X (@) =AMx(Lt]) + f(1), teR,

respectively, where f(¢) is an X-valued almost automorphic function, and X is a finite
dimensional Banach space.
In this paper, we consider the equation

xX'(t) = A()x(t) + BOx([t]) + f(£), teR, (1.1)

where A, B: R —» R4, f: R — RY, and || denotes the greatest integer function. This
equation was first considered by Cooke and Wiener [4] and Shah and Wiener [15].
Many papers have been devoted to various qualitative problems of quasiperiodic,
almost periodic or pseudo almost periodic solutions for (1.1) (see, for example, [I,
10, 16] and the references therein).

However, the almost automorphy of solutions of (1.1) has not yet been considered.
The main purpose of this work is to establish an existence and uniqueness theorem of
almost automorphic solutions of (1.1) when A(¢), B(¢), f(¢) are all almost automorphic.
To facilitate this, we use the definition of ‘almost automorphic sequences’, and give
some of their properties. Further, the theory of exponential dichotomy for difference
equations plays a central role in our work.

This paper is organised as follows. In Section 2 some notation and preliminary
results are presented. Our main result is first stated in Section 3.1. Then some results
on the corresponding difference equations are given in Section 3.2. Finally, the main
result is proved in Section 3.3.

2. Preliminaries

Throughout this paper, we denote by |- | the Euclidean norm when the argument
is a vector and the corresponding operator norm when the argument is a matrix. Let
BC(R, R?) be the space of bounded continuous functions u : R — R?. Equipped with
the sup norm defined by ||u|| = sup,p |u(#)l, BC(R,R?) is a Banach space. In the
following, we let |-| denote the greatest integer function and (¢) the fractional part
of t, thatis, (t) = — [¢].
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2.1. Almost automorphic functions.

Dermnition 2.1 [2]. A continuous function f:R—R? is said to be almost
automorphic if for any sequence of real numbers {s;}, there exists a subsequence
{sn} C {s;} such that

lim lim £t + s, — sp) = £(O) @.1)

m—00 n—00
for any 7 € R. Denote by AA(RY) the set of all such functions.

The limit in (2.1) means that
g(t) = lim f(t+ 5,)
is well defined for each f € R and
£ = lim g(t = s,)

for each r € R.

Remark 2.2. The function g is measurable and bounded, but not necessarily
continuous. It is also clear from the definition above that almost periodic functions are
almost automorphic. But an almost automorphic function may not be almost periodic.

For example, let
1
1) =si , teR.
f) =sin 2 4+ cos t + cos it

It is easy to see that f is almost automorphic, but not uniformly continuous. Therefore,
it is not almost periodic.

Some properties of almost automorphic functions are given in the following
proposition.

Prorosition 2.3 [8]. Let f, g € AA(RY) and | be an arbitrary real constant. Then the
following statements are true:

1) f*e If € AA(RY),

(i)  f(@):= f(-1) € AARY);

(i) fi(2) ;= f(t + 1) € AARY),

(iv) the range Ry of f is precompact, so f is bounded.

It is clear that AA(R?) c BC(R, RY), and AA(RY) is a Banach space with the norm
inherited from BC(R, RY).

2.2. Almost automorphic sequences. From now on we will denote by [*(RY) the
space of all bounded (two-sided) sequences in R? with sup norm, that is, if x = {x(n)} €
[*(RY), then

[lx]l = sup [x(n)] < co.
nez
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Dermnition 2.4 [13]. A sequence x € [(R?) is said to be almost automorphic if for any
sequence of integers {s;}, there exists a subsequence {s;} C {s;} such that

lim lim x(n + s; — 5,) = x(n) (2.2)

p—© k—oo

for any n € Z. Denote the set of all these sequences x by AAS (R?).

The limit in (2.2) means that
y(n) = ]}ggo x(n + i)
is well defined for each n € Z and
x(n) = lim y(n ~ s5)

for each n € Z.

It is clear that AAS (R?) forms a closed subspace of [*(R?), and we can show that
the range of an almost automorphic sequence is precompact.

By the definition of almost automorphic sequences, we can easily obtain the
following proposition.

Prorosition 2.5. (i) The sequence {x(n)} is almost automorphic if and only if for any
sequence of integers {s,}, there exists a subsequence s = {sy} C {s,} such that

T_Tsx=x foreachneZ,

where Tx(n) = limy_,o, x(n + s¢) for every n € Z.
(i) AAS (R?) is translation invariant. That is, for x € AAS (R?) and k € Z, we have
x(- — k) € AAS (RY).

ProposiTion 2.6. Let {x(n)} € AAS(RY), then there exists an almost automorphic
function f(t), such that f(n) = x(n), n € Z.

Proor. Let
f@=x(n)+(t—-n)(x(n+1)—-xn), te[nn+1l),neZ

It is clear that f(¢) is continuous with f(n) = x(n), n € Z. We now show that f(¥) is
almost automorphic. This requires two steps.

Step 1. Let {n),} be an arbitrary sequence of integers. Then there exist a subsequence
{np}C {n;,} and a sequence {v(n)} such that

lim x(n +n,)=v(n), limv(n-n,) =x(n), VneZ. (2.3)
p— p—

Define
g =vin)+ (@t -nvn+1)-v(n), te[nn+1), neZ
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We now show that lim,_. f(+n,)=g(). The case lim, . g(t —n,) = f(z) is
similar, and we omit the details. From (2.3),

Bim 1+ ) = g(0)] < Jim (2 -+ ) = v(o)
+ 113)10 |(t — m)(x(n +n, + 1) —v(n + 1))
+ pll_f){)lo |(z = n)(x(n + np) — v(n))l
=0 ’
foreacht€[n,n+ 1), n € Z. Thus lim,_,, f(t +n,) = g(?).

Step 2. We now consider the general case in which {s},} is an arbitrary real sequence.
Let s; = n’p + t;,, where n;, = Ls;,J and t;, = (s},), p € Z. From Step 1, we can choose a
subsequence {n,} C {n},} such that

lim f(t+ny,) =g, limgt-n,)=f@F), VieR,
p—o© p—ox©
and lim,,_,, #, = fp € [0, 1]. We just need to show that
lim f(t+1, +n,) = lim f(t+1 +n,) =g+ ).
p— p—

It is clear that
f@+t,+ny)— f(t+1y+n,)
=x(Lt +t,] +np) — x(|t + 1] + ny)
+ (E+ep)x(lt+ 1] +n, +1) = x(lt +1,] +np))
= [+ 1oLt + 0] + 1, + 1) = x(L + 10] + 1p)).

(2.4)

Firstly, we consider the case (f + fp) > 0. It is easy to see that [ +¢,] = [t + #] for
sufficiently large p. Thus from (2.4) and the boundedness of the sequence {x(n)}, we
know that

lim |f(t+¢, +ny) — f(t+1 +np)l
p—o0
= [}1_1)1(}0 |t + 1) =t + 1)) (x(Lt + o] + 1y + 1) — x(Lt + 9] + 1p))
< lim |t, — 1ol - [x(Lt + to] + np + 1) — x(Lt + fp] + 1)
p—o©
=0.

We now consider the case where (t + 1) =0. If t+¢, >t +1# + 0, then |t +1,] =
t + 1o for sufficiently large p, and (¢ +¢,) — 0, as p — co. From (2.4),

Lim [f(t+1t, +n,) — f(t+1t+np,)
I]—)OO
= lim [z +1,)(x(t + 1o + np + 1) — x(t + 19 + np))|
p—)OO

=0,
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since {x(n)} is bounded. If 7 + t, — 1 + ty — 0, then, for sufficiently large p, [t +¢,] =
t+1fy—1,and {t +t,) — 1 as p — co. Hence by the boundedness of {x(n)} and (2.4),
we know that
lim |f(t+1¢, + ny) — f(t + 19 + np)
p—)OO
= lim |x(t+ 1ty +n, — 1) — x(t + 1y + n,)
p—
+(t+tp)(x(t+ 19 +n,) —x(t+19—1+np,))l

= 1im (1 = (¢ + £ ) |x(t + fg +1p) = xX(1 + fg — 1 + )|
p—)OO

=0.

The proof is complete. O

3. Main result

In the following, we assume A(f), B(t) € AA(R9*?), that is, all entries of the matrices
A(t), B(t) are almost automorphic, and f(r) € AA(R?). Let M be a positive constant
such that max{|All, || BIl, [l /1[} < M.

3.1. Statement of our main result.

DeriniTion 3.1. We say that a function x : R — R? is an almost automorphic solution
of (1.1) if x € AA(R?), and the following two conditions are satisfied:

(1) the derivative x” of x exists on R except possibly at the point ¢t = n, n € Z, where
one-sided derivatives exist;
(i1) x satisfies (1.1) in the intervals (n,n + 1), n € Z.

By the variation of constants formula, we know that the solution of (1.1) is

x(H) = X)X ' (n)x(n) + X(©) f X' (w)B(u) dux(n) + X(1) f XY f(u) du, (3.1)
forn<t<n+1,neZ, where X(¢) is the fundamental matrix solution of
X' (1) = A()x(7) (3.2)
with X(0) = I. Define
G(t,s)=X(OX'(s), O0<t—s<l.

Then (3.1) can be rewritten as

x(t) = G(t, n)x(n) + f G(t, u)B(u) dux(n) + f G(t,u)f(u) du,

n

forn<t<n+1,nez.
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By the continuity of x(7),

n+1
x(n+1)=Gn+ 1, n)x(n) + f Gn+ 1, u)B(u) dux(n)

n+1 (3.3)
+ f Gn+1,u)f(u)du
for n € Z. Equation (3.3) can be rewritten as
x(n+ 1) = Hn)x(n) + h(n), (3.4
where
n+1
Hn)=Gn+1,n)+ f Gn+1,u)B(u) du,
and
n+1
h(n) = f Gn+ 1, u)f(u)du
for n € Z. The homogeneous equation of (3.4),
x(n+1)=Hm)x(n), nez, 3.5

is said to admit an exponential dichotomy on Z if there exist positive constants K and
@ and a projection P (P?> = P) such that

|Y(n)PY ™' (m)| < Ke~ @™ ifn>m,
[Y(n)(I — P)Y~'(m)| < Ke™®™™ if m>n,

where Y (n) is the fundamental matrix solution of (3.5) with Y(0) = 1.
We are now in a position to state our main result.

THEOREM 3.2. Assume that (3.5) admits an exponential dichotomy on Z with
parameters (P; K;a). Then there exists a unique almost automorphic solution

for(1.1).

RemMark 3.3. There are many almost automorphic functions A(¢), B(¢) such that (3.5)
admits an exponential dichotomy on Z. In fact, let

(A 0 (B 0
A(’)‘( 0 Az(t))’ B(t)‘( 0 Bz(t))’

where

1
2 + sin(a;1) + sin(a}t)’
n 1
2 + cos(Bit) + cos(Bir)’

Ai(t) = =3 + sin

Bi(t) =si
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and a;,5; € Q, @}, € R —Q, i = 1,2 (where Q denotes the set of rational numbers).
It is easy to verify that A(¢), B(t) € AA(R?), and

S :=sup|H(n)| < 1.

nez

From [1, Theorem 15], it is clear that (3.5) admits an exponential dichotomy on Z with
parameters (P; K; @) provided that § < 1, where

1
P=1d, K=1, azlog(g).

Therefore, (3.5) admits an exponential dichotomy on Z.

3.2. The almost automorphy of the difference equation. In the following, we
assume that H(n) is invertible for n € Z.

Lemmva 3.4 [14]. Suppose that (3.5) admits an exponential dichotomy on Z with
parameters (P; K; a), and {h(n)} is a bounded sequence. Then (3.4) has a unique
solution {x(n)} bounded on Z.

From [16, Proposition 8], we get that |G(z, s)| < e”. We now show some properties
of G(t, ).

Lemma 3.5. (i)  Let {s;} be an arbitrary real sequence. Then there exists a
subsequence {s;} C {s;}, such that

F(t, 5 = klim G(t + s, s + sp), (3.6)
G(t,s) = klim F(t— s, s — s3) (3.7

are well defined for each0 <t —s< 1.
(1) Suppose that limy_,, t; = ty. Then limy_,o, G(ty, s) = G(ty, ).

Proor. (i) Since X(f) is the fundamental matrix solution of (3.2), X~!(¢) is the
fundamental matrix solution of the equation

X () = —x(DAQ).

Then ,
Xl(t)—Xl(s):—f X 'wAw) du, t>s.

Thus .
G(t,s)=X(OX '(s)=1+ f G(t, w)A(u) du. (3.8)
Let {5, } be an arbitrary real sequence. Since A(?) is almost automorphic, there exists
a subsequence {s;} C {s,} such that

klim At + s) = C(1), klim C(t—s1) =A@, VteR
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By the Lebesgue dominated convergence theorem, we know that
!

klim |G(t + si, u+ 5p)| - |A(u + s) — C(u) du =0 3.9

N

for each 0 <t —s<1. Let Y(¢¥) be the fundamental matrix solution of the equation
y' (1) = C(t)y(1), and define F(¢, s) = Y(£)Y'(5s),0 <t — s < 1. Then

F(t,s):I+fF(t,u)C(u)du, O0<tr-s<1. (3.10)

Now, from (3.9) and (3.10),

I+ S

|G(t + s, s+ sp) — F(t, )| = ‘f G(t + sg, uA(u) du — f F(t, u)C(u) du

S+ 5k K

<f§‘
S

!
< f |G(t + s, u+ )| - |A(u + s) — C(u)| du

G(t+ s, u+ sp)A + sp) — F(t, u)C(u)| du

5
+ f |G(t + s, u+ s;) — F(t,u)| - |C(u)| du

for every 0 <t — s < 1. Then from (3.9) and Gronwall’s inequality, it follows that

klim |G(t + sk, s+ s1) — F(2, 9)=0.

Hence (3.6) is true. By a similar argument, we can show that (3.7) is true.
(i1) From (3.8), we know that

|G (., s) — G(to, $)| = fk G(tx, wA(u) du — fo G(to, wA(u) du

Ik
< f |Gt ) = G(to, W) - |A@w)| du + Me" |1 — 1.
Since limg_, # = 1y, by Gronwall’s inequality, it follows that
lm |G, 5) = Glto, $)] = 0.

The proof is complete. O

Remark 3.6. From Lemma 3.5(i), it is easy to see that the sequence {G(n + 1, n)} is
almost automorphic, and the function F(¢, s) is boundedon 0 < ¢ — s < 1.

Lemwma 3.7. The sequences {h(n)}, {H(n)} are almost automorphic.
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Proor. Let {n;} be an arbitrary sequence of integers. From Lemma 3.5(i), there exist a
subsequence {n} C {n;} and a function F(z, 5),0 <7 — s < 1, such that

Hm f(r+m)=g@), lim gt —m)=f(1n), VreR,
klim Gt +mn,s+mn)=F(,s), klim F(t —ng, s —m) =G(t, s), 3.11)

0<t—-s<1.

Define
n+1
n(n) = f Fin+1,u)g(u)du, neZ.

From (3.11) and by the Lebesgue dominated convergence theorem,
klim |h(n + ny) — W (n)|

n+1 n+1
:klimf G(n+1+nk,u+nk)f(u+nk)du—f Fn+1,u)g(u)du
nn+l !
Sklim IGn+ 1 +n,u+mn)—Fn+1,u)l-|f(u+n)du

n

n+1
+ lim IF(n+ 1, 0| - |f(u + ne) — g(w)| du

=0.

Similarly, it is easy to obtain that lim;_,. A'(n — ng) = h(n). Thus {h(n)} is almost
automorphic. From Remark 3.6, and by a similar argument for {h(n)}, we know that
{H(n)} is almost automorphic. The proof is complete. ]

THeEOREM 3.8. Assume that (3.5) admits an exponential dichotomy on Z with
parameters (P, K, ). Then there exists a unique almost automorphic solution for (3.4).

Proor. Since {h(n)} is bounded, from Lemma 3.4, we know that (3.4) has a unique
solution {x(72)} bounded on Z. We now show that {x(n)} is almost automorphic. Let
{s;} be an arbitrary sequence of integers. Since {H(n)}, {h(n)} are almost automorphic
sequences, from Proposition 2.5, we get that there exists a subsequence s = {si} C {s;}
such that

T_T,H=H, T_-;,Tsh=h pointwiseon Z,

and T_,Tx exists for each n € Z. It is easy to see that T_;T;x is the bounded solution
of

yin+1)=T_T;Hy(n) + T_;T h(n).

By Lemma 3.4, we obtain that T_;T;x = x for each n € Z. Thus from Proposition 2.5,
we know {x(n)} is almost automorphic, and the proof is complete. m|
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3.3. Proof of Theorem 3.2.

Proor. From Theorem 3.8, we know that there exists a unique almost automorphic
solution {x(n)} of (3.4). Thus by the variation of constants formula, the solution of
(1.1)is

x(t) = G(t, n)x(n) + f G(t, u)B(u) dux(n) + ft G(t,u)f(u) du (3.12)

forn<t<n+1,neZ. We now show it is almost automorphic. This requires two
steps.

4

Step 1. We first suppose that {n;} is an arbitrary sequence of integers. From
Lemma 3.5, we can deduce that there exist a subsequence {n;} C {n; }, a sequence {v(n)}
and a function F(z, 5), 0 <t — s < 1, such that

klim x(n + ng) = v(n), klim vin —n) = x(n), VYnez,

klim B(t + ny) = C(1), klim C(t—m)=B@), VteR;

]}im S +n) =g(), gim gt —m)=f@), VieR; (3.13)

klim Gt +ng, s+n)=F(t,s), klim F(t—ng, s —n) =G(t, s),

0<t-—s<1.

Define
V() = F(t, n)v(n) + f F(t, u)C(u) duv(n) + f F(t, w)g(u) du,

forn<t<n+1l,neZ.
We have

klim |x(t + ng) — V(1)

= lim ‘G(t + ng, n + np)x(n + ny) — F(t, n)v(n)

k— o0

+ f G(t + ng, u + n ) B(u + ny) dux(n + ny) — f F(t, u)C(u) duv(n)

+ f G(t+ ng, u+ng)f(u+ng) du — f F(t, u)g(u) du

< klim |G(t + ng, n+ny) — F(t,n)| - |x(n + ny)| + klim |F(t, n)| - |x(n + ng) — v(n)|

!
+ klim |G(t + nyg, u+ ny) — F(t, uw)| - |B(u + ny)| du|x(n + ny)|

n

!
+ klim f |F(t, u)| - |B(u+ ny) — C(uw)| dulx(n + ny)|
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8
+ klim |F(t, u)C(u)| dulx(n + ng) — v(n)|

!
+klim |G(t + ng, u+ny) — F(t,w) - | f(u+ ng)| du

n
!
+ lim f [F(t, )] - |f(u + nge) — g(u)] du.
From (3.13), and by the Lebesgue dominated convergence theorem, we deduce that
klim x(t+n)—V(@®|=0, Vte[nn+1), neZz.
Similarly, we can deduce that limy_,., V(¢ — 1) = x(¢).
Step 2. We now consider the general case in which {s;} is an arbitrary real sequence.

Let s, = n; + 1, where nj = |s; | and #; = (s;), k € Z. Then there exist a subsequence
{ni} C {n}} and a sequence {v(n)} such that

1<11_>I£10 x(n + ng) =v(n), kh—>n; vin—ny) =x(n), VYnezZ,
and lim_,, t; = fp € [0, 1]. We now show that
I}Lr?o x(t+t +my)= ler?O x(t + to + ng) = v(ty + 1).
Firstly, we consider the case (t+1)>0. It is clear that |t + ;] = |t + #p] for

sufficiently large k. From (3.12) and Lemma 3.5(i1), by the Lebesgue dominated
convergence theorem,

klim [x(t + 1 + ng) — x(t + 1o + ny)|
—00

< khm |G(Z + o+, L+ ]+ nk) - G(Z + 1o+ ny, [t + 1] + I’lk)| . Ix(Lt +1o] + l’lk)|

+ lim

k— o0

[ +1i+ny
f G(t + ty + ng, u)B(u) dux(|t + to] + ny)

L1+t J+nk

f+10+ny
- f G(t + to + ng, u)B(u) dux(|t + to] + ng)

Lt+t0 | +nk

1+ 1+10+11k
+ lim f G(t+ 1t +ng,u)f(u) du — f G(t+to + ng, u) f(u) du
k—co |_t+t0J+nk |_t+t0J+nk
[T+ 1y
< lim |G(t + t; + ng, u) — G(t + tg + ng, u)| - |B(w)| dulx(Lt + ty] + ne)|
k—co |_I+loJ+Vlk
1 +ny
+ lim f G(t + tg + ng, u)B(u) dul|x(Lt + to] + np)|
k—co t+1p+ng

t+1tng
+ lim f |G(t + ty + ng, u) — G(t + to + ng, w)| - | f(u)| du
L

k=co | pipy |y

+ lim

k— o0

[T +ny
f G(t+ 1ty +ng, u)f(u) du
t

+to+ny

=0.

https://doi.org/10.1017/5S0004972713001020 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713001020

[13]

Almost automorphic solutions 111

We now consider the case (t+ 1) =0. If t +t, > t+ 1y + 0, then [+ ;] = |t + 1]
for sufficiently large k. The proof is similar to the above case. If t + 1 =t + 1 — 0,
then, for sufficiently large k, [t + ;] = [t + #o] — 1, and (t + #;) — 1 as k — co. Hence,
by (3.3) and (3.12),

Lim |x(f + t, + ng) — x(t + ty + ny)|
k—oo

G+t +m,t+tg—1+n)xt+t9—1+n) —x(t+t9+n)

= lim
k—o0

[T+
+ f G(t + ty + ng, w)B(u) dux(t + tg — 1 + ny)
t

+to—1+ny

[T 1y
+ f G(t+ty + my, u)f(u) du
t

+to— 1+
sklim G+t +n,t+tg—14+n)—GE+1tg+ng, t+1—1+n)
—00
X |x(t+ 19— 1+ ny)|

+ lim

k— o0

I+t+ng
f G(t+ t + ng, u)B(u) dux(t +tg — 1 + ny)
I3

+to—1+ny

+1o+ny
- f G(t+ ty + ni, u)B(u) dux(t +ty — 1 + ny)
I3

+to—1+ny

+ lim

k—o0

I+t +ng 110+
f G(t+ ty + ny, u) f(u) du—f G(t + ty + ng, w) f(u) dul.
t

+to—14+ny t+to—1+ny;

Then by a similar argument to the above case, we know that limy_,q, |x(¢ + #; + ng) —
x(t + to + ni)| = 0. The proof is complete. O
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