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ON POLYNOMIALS WITH CURVED MAJORANTS

D. J. NEWMAN AND T. J. RIVLIN

A well-known result of Chebyshev is that if p, € P,, (P, is the set of
polynomials of degree at most #) and

(1) [pa@)] =1, -1=x=1
then a,(p,), the leading coefficient of p,, satisfies
(2)  au(pn)| = 271

with equality holding only for p, = &7, where T, is the Chebyshev
polynomial of degree #. (See [6, p. 57].) This is an example of an extremal
problem in which the norm of a given linear operator on P, is sought.
Another example is A. A. Markov’s result that (1) implies that

(3)  max_ig<i [P (x)] £ nk

There are also results for the linear functionals p,® (x¢), x¢ real, k& =

1,...,n—1(8).
Suppose ¢(x) = 0 on [—1, 1] and (1) is generalized to
Ipa(x)] < ¢(x), —1=x=1,

as suggested by Rahman [4] (polynomials with curved majorants), what
can then be said about the analogue of (3) or similar extremal problems?
Chebyshev himself established the analogue of (2) in the case that

ﬁo(x) = QM(x) > 0: dm € Pﬂh m = nm,
a result which was generalized by A. A. Markov (see [1]) to

o(x) = Vqi(x),

where ¢z € Py, ¢z > 0on [—1, 1] and 2 < 2n. According to Rahman [4],
Turdn proposed estimation of the derivative with the assumption
e(x) = (1 — x*)¥?, ie., when the graph of p,(x) is contained in the
closed unit disc. Important progress in Turdn's program was made by
Rahman [4], [5] and Pierre and Rahman [3]. We wish to present two
more results concerning polynomials with curved majorants.

1. Let K, denote the real polynomials, p(x), of degree at most #,
satisfying
lp(x)] = (1 —a®)2 —1=<x

lIA

1.
We prove
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THEOREM 1. If p € K, n = 2, then for —1 S x £ 1

5(1 — &) x| £ cos 5(—7[75_—1*)
1 — 2% |Up_z(x)], cos 57, < x| =

max [p(x)| =
PEKn
where Uy(x) is the Chebyshev polynomial of the second kind.

Theorem 1 is an immediate consequence of the following result. Let
C, denote the (real) polynomials of degree at most #n, P(x), satisfying

[Px)] = 1 —x2)~12, —1<x<1.
THEOREM 2. If P € C, then

—172
£ 0 £ x < cos

2(n+1)
<x =1

o
max P(x) =

Feen U,(x), cos —

2(n + n+ 1)
For if p € K,, n = 2 then p(x) = (1 — x?)P(x) for some P € C,_,.
Therefore, we turn to a proof of Theorem 2.

Proof. (i) Suppose

™

(4) cos 3 F 1)<x <1
Let
- (2j =D
gj_cos2(n+1)v v(n+1)

be the zeros of T,4+1(x), the Chebyshev polynomial (of the first kind) of
degree n + 1. The Lagrange interpolation formula for P € C, gives

= P(g)
Px) = n jl
@ = L) 2 )
Loua(x) \S PN (=)0 = )™
n+1 = x — & '
Note that (4) implies that each of the denominators in the last sum is
positive, as is T,4+1(x). Thus, since P € C, we obtain

T, <x> _ Tea®) Tan@) _ Tans®)
P@) =2 ,_le £t D) Tt = S A0

Finally, observe that U,(x) € C,.
(ii) Suppose

0 <x = cosz

2(n + -
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Let .Sy denote the sine polynomials of degree at most &, S(¢), satisfying

IS =1
for all ¢t. Note that if P € C, then (sin t)P(cost) = S(¢) € S,41. Thus, to
complete the proof of the theorem it suffices to show for £ = 2, 3, .. .,
=1 X <p< X
r&a}ng(G) 1’2k <6= 5 -

That is, we need only show that given 8 € [n/(2k), 7/2] there exists
S € Sy such that S(6) = 1, and, indeed, it is therefore enough to show
that given 6 € [x/(2k), w/(2(k — 1))] there is an S € S; such that
S() =1, for all k> 1, since S, C Sx, 7 =2,...,k— 1. To this end
we use the following result.

LEMMA. If & > 1 and N > O then T(t) = sin kt + \sin (k — 1)¢, attains
its maximum modulus in (0, w] at exactly one point which, furthermore, lies
in (n/(2k), m/2(k — 1)) and at which T(t) 1s positive.

Proof. Consider the derivative
T'(t) = kcoskt + N(k — 1) cos (k — 1)t.

It is positive at w/(2k) and negative at =/(2(k — 1)). Similarly, a sign
change occurs from (25 — 1)x/(2k) to (2 — L)x/(2(k — 1)), j =
2,3,...,k— 1.1f T7(¢) has 2 distinct zeros in (w/(2k), =/(2(k — 1)))
then it has 3 zeros (counting multiplicities) there and hence, at least
k 4 1 zeros in (0, v) which is impossible. Thus, we conclude that7”(¢)
has only one zero in (x/(2k), #(2(k — 1))). This point is clearly a local
maximum of 7°(¢) (the only such point in the interval), and the value
of T'(t) at this point is bigger than its endpoint values

™ ™ ™ ™
T(Zk) =14 kcosﬂ,T(z—(-———k — T)) = COSZ(k =) + A\
Next observe that 7°(t) is monotone increasing from zero to T'(w/2k)
for 0 £ ¢t £ »/(2k). Also that

z(m) <o,

(37
d (Qk) <0
hence, T/(¢t) must be negative throughout [n/(2k — 1)), (37)/(2k)] for

otherwise 7" has at least two zeros in that interval and at least & 4 1
zeros in (0, =) which is impossible. Thus T'(¢) decreases from T'(x/
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(2(k — 1))) to T((37)/(2k)). We can now conclude our proof of the
lemma by showing that

IT(t)| < max (T(i) ,T(g—@—’—i——l—))) ?2’—; <t

lT(t)I = llm (eikt + )\ei(k—l)t)| < |eikl + )\ei(k_l)ll

1/2
= 1+ N+ 2c0os)? < (1 + A+ 2a cos-32—7}£) )

Case I. 0 < N £ 1. We show that

1/2
2 3T k3
(1+)\ +2)\c052k> <1+)\c052k.

Namely,

2
(1 + )\cos%a) - (1 + )\2+2>\C05%)

_ .2 T o _ .2 T T _
= )\(sm Qk) (8005 5% )\) = )x(sm 2k) (8 cos 1> > 0.
Case II. A > 1. We show that

™

1/2
2 3T T
— —_ << —_—_——
(1—}-)\ =+ 2\ cos > < X + cos _)\+c052(k 0

2k k
Namely, consider
: 3 5
(5) ()\ + cos%) — (1 + N+ 2>\cos§%> = 4\ sinz—gsin;& — sinQ% .

(5) is positive if & =2, and if £ > 2 it is greater than the positive’
quantity

o T (4 A JE)
iny \4sin g7 —sin7 | .
The lemma is proved.
Now suppose 6 € (x/(2k), =/(2(k — 1))). Consider
(B — 1) cos (k — 1)0sin kt — kcos kfsin (k — 1)t
(B — 1) cos (k — 1)8sin k0 — k cos kfsin (k — 1)6

(B — 1) cos (k — 1)8
(B — 1) cos (E — 1)8sin k6 — k cos kfsin (k — 1)8

S@) =

k cos k8 .
&= 1) cos (k= 1yp 5 (k — 1)‘) :

X (sin kt —
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The lemma (applied with N = (—Fk cos k8)/((k — 1) cos (k — 1)8) im-
plies that, since S'(8) = 0,

1 = S(0) = maxos,=r |S(1)],

which establishes the theorem.

2. Schur [7, p. 285] proves a result which is easily seen to be equivalent
to the following:
If p € P, satisfies

1
lp(x)lém, 0< x| =1

then

n, n odd
n + 1, n even.

s i = |

—1=z=
This suggested to us the complex result that follows.
THEOREM 3. Suppose q(z) is a (complex) polynomial of degree at most n

which satisfies

®) O] Sy s

then
(1) maxj,zilg(z)| = (n + 1)/2.
Equality holds only for

e 1-— zn+1 i
20—z ~ ¢ q*(2),

a an arbitrary real number.

Proof. We begin by observing that when # = 0 the result is obvious.
Suppose henceforth that » = 1.

t(9) = lg(e)|?
is a trigonometric polynomial of degree at most # satisfying, for all 6,

1
8) 0=t ém.

The same is true of

)

o 1] 1 —iehe ‘2 11— cos (n+ 1)8
_ #1012 _ L — —_—
s(60) = lg*(e™)] —4‘ 1—e? 4 1—cosb
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which, additionally, satisfies
So,;‘: 2,4,...,2n,
jm R 1 . )
9) S(n-l—l) —l (1_ Os_j“ j,]— 1,3,...,2n 4+ 1.
1

_|_

We consider two cases.
(i) Suppose 6] = #/(n + 1) or

16] T

L} 2 ———
2 =2(mn+ 1)
which implies that

16 1

sm~§—>n+1

or, after squaring both sides,

1 — cos@ 1
2 T ¥ D

hence,

1 Lt 1)
2(1 — cos 68) 4

Thus, in this case,

(n+ 4— 1)

1HO) < ———
and so

(10)  max o) < %

1012(7) /n+1

(ii) Suppose 6] < 7w/(n + 1). We wish to show that in this case
t(9) = s(6). To this end we use the following.

LEMMA. If a (real) trigonometric polynomial of degree at most n, v(6),
satisfies

(=1)w(@,) =20, i=0,...,2n+1,
where

B < 61 < ... < Byppr < 0o+ 27
then v = 0.

Proof. There is no loss in generality in assuming that v(8,) # 0 (since
if v is zero at every 6, the lemma is trivial) and we do so. We now note
the following:
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1. If v(6;) # 0, then sgn v(8;) = (—1)°%

2. Ifv(0,) #£0,9(0441) = ... =9(0;4;-1) = 0,90, # 0thenvhasj
zeros (counting multiple zeros as many times as their multiplicities) in
(04, 0:4;). For, v has at least j — 1 zeros in (8, 6,;,,) and if j is even v(8,)
and v(8,,,) are of like sign, hence, v has an even number of zeros in
(@, 0:+;), so at least j of them, while if j is odd »(8;) and v(8:4;) differ
in sign, hence, v has an odd number of zeros in (8;, 8,), so at least j

zeros.
Suppose the non-zero v(8,;) occur for the indices7 = no(= 0), %1, ..., %n
(£ 2n + 1). Each interval (6,;, 6,;,,), 7 =0, ..., m — 1 contains at

least #;41 — n; zeros, as we have just shown. Thus, v has

m—1
Z (M1 — ny) = 1y
=0

zeros in (6o, 0,,). If n, = 2n 4+ 1 then v = 0. If %, < 2n + 1, the
interval (6,,, 02,+1] contains the zeros 6,,41, . . . , 02,41, 22 + 1 — 5, in
number, giving a total of 2% + 1 zeros in (o, 0s,+1], and again v = 0.
This establishes the lemma.

We claim next that for || < 7/(n + 1) we have t(8) < s(8). Let

L
Oj—n+1,] 1,...,2n 41

and suppose that there exists 6, |0o] < 7/(n + 1), such that
(A1)  ¢(80) > s(89).
In view of (8) and (9) we also have

£(61) = s(61)
t(02) % 5(02)

t(B2041) = s(O2n41)-

Consider v(0) = ¢t(8) — s(6). It satisfies the lemma, hence ¢ = s, con-
tradicting (11). This establishes our claim.
Now,

s() = (n +1)2/4
for all 6, with equality only for § = 0. Therefore,

RS

(12) 0) =, 10l = ;0

with equality possible only for § = 0. Recalling the maximum principle
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for analytic functions we see that (10) and (12) prove (7). Finally, if
t(0) = s(0) = (n 4+ 1)%/4, then the lemma yields { = s. Thus, every zero
of s is a zero of ¢ and ¢(z) = ¢¢*(z), which can only hold if |¢| = 1.
Theorem 3 is proved.

Remark. We have also shown that, if (6) holds then
(13) lg(e™)] = [g*(e®)]

when |0 < n/(n+1),0or 6 =6,,j=1,3,5, ..., 2n-+ 1. But (13)
certainly does not hold for § = 6;, 7 = 2,4, ..., 2n. Also, a result of [2]
implies that, for ¢ subject to (6)
[ - j|n+1
_ T >
max |g(0)| COSL)(n ey yn = 1.

The problem of maximizing the linear functional, ¢(z), (z arbitrary in
|z| £ 1), among ¢ satisfying (6) seems difficult.
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