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Abstract

Knowledge of weed seeds present in the soil seedbank is important for understanding
population dynamics and forecasting future weed infestations. Quantification of the weed
seedbank has historically been laborious, and few studies have attempted to quantify
seedbanks on the scale required to make management decisions. An accurate, efficient, and
ideally automated method to identify weed seeds in field samples is needed. To achieve
sufficient precision, we leveraged YOLOVS, a machine learning object detection to accurately
identify and count weed seeds obtained from the soil seedbank and weed seed collection. The
YOLOvV8 model, trained and evaluated using high-quality images captured with a digital
microscope, achieved an overall accuracy and precision exceeding 80% confidence in
distinguishing various weed seed species in both images and real-time videos. Despite the
challenges associated with species having similar seed morphology, the application of YOLOv8
will facilitate rapid and accurate identification of weed seeds for the assessment of future weed
management strategies.

Introduction

The soil weed seedbank is a repository of viable weed seeds within the soil profile that usually
encompasses a diversity of weed species at various depths and densities (Teo-Sherrel et al. 1996).
The weed seedbank is composed of recently shed seeds, as well as older seeds dating back several
years (Buhler et al. 1997; Mahé et al. 2020). Common practices such as tilling can effectively
shuffle the soil seedbank, depositing recently added seeds deeper into the soil profile, while at the
same time lifting to the surface older, dormant seeds, that may have been there for many years
(Feledyn-Szewcyzk et al. 2020). The presence of viable seeds in the soil can vary greatly; it is
difficult and time-consuming to quantify and remains a significant challenge for both
researchers and growers (Buhler et al. 1997; Mahé et al. 2020). Understanding the composition
of the weed seedbank could be a critical component in management decisions if such
information could be timely and accurately collected (Ambrosio et al. 2004; Creech et al. 2008;
Luo et al. 2021; Mahé et al. 2020).

Identification of weed seeds at the species level presents challenges due to seed size and
the often-inconspicuous appearance of seeds. Some species may require the germination of
seeds or the use of molecular markers for accurate identification (Hussain et al. 2017). The
challenge is further complicated by the presence of large volumes of diverse seeds that may be
present in the soil seedbank - therefore, a single sample often consumes considerable
processing time and requires specialized experience (Karlik and Poschlod 2014; Morgensen
et al. 2005).

Developing an accurate and efficient identification method is essential for overcoming the
challenges associated with weed seed identification and seedbank quantification. Automated
solutions that can handle diverse weed species with complex morphology and structures across
different regions and environmental conditions would substantially increase the throughput,
facilitating the processing of a far greater number of samples. The incorporation of advanced
technologies such as the use of artificial intelligence for object detection in agriculture has
opened avenues for addressing challenges more efficiently (Eli-Chukwu 2019; Xu et al. 2021).
Object detection models offer a valuable alternative to traditional methods such as germination
assays or manual seed counting for the task of quantifying seedbanks.

Object detection with machine learning is increasingly used in crop research due to its ability
to learn distinct features for precise identification and localization of objects in an image or video
frame (Wosner et al. 2021; Wu et al. 2019; Zhang et al. 2022). Such models have been
successfully deployed to detect and identify diseases, pests, and weeds and for crop monitoring
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and growth analysis (Alfonso et al. 2020; Khalid et al. 2023; Pérez-
Porras et al. 2023; Verma et al. 2021; Yao et al. 2024). Object
detection models use convolutional neural networks (CNNs), a
class of deep-learning algorithms, to detect various objects in
images. CNN architecture, inspired by the human brain, works by
employing convolutional layers to learn the hierarchical features of
input images (Alzubaidi et al. 2021). The series of layers in a CNN
use kernels or filters to scan the input data to detect features of an
image (Alzubaidi et al. 2021). Image classification models, such as
GoogLeNet and AlexNet, have been deployed to identify seeds with
high accuracy; however, these image classification methods were
based on either a single seed or single species at a time (Gulzar et al.
2020; Luo et al. 2021).

You Only Look Once (YOLO), a popular object detection
model, incorporates CNNs to predict bounding boxes and class
probabilities all in one forward pass, facilitating rapid and efficient
detection with high accuracy (Jocher et al. 2023). Several versions
of YOLO have been released, with each model building upon
addressing the limitations of its predecessor (Jiang et al. 2022).
Different object detection models can be evaluated for their
accuracy of prediction using mean average precision (mAP). mAP
facilitates an evaluation of the accuracy and recall, offering the
average precision (AP) of the method (Zhao et al. 2019). The most
recent version, YOLOVS, demonstrates an improved mAP of 53.9%
on the Microsoft Common Objects in Context dataset (Lin et al.
2014), a widely used benchmark dataset in computer vision
research, surpassing the AP of YOLOv5, which achieved 50.7%
(Lee and You 2024). Recently, YOLO models have been highly
successful in identifying weed plants within cornfields (Hasan
et al. 2024).

In this study, we employ a YOLOV8 model to streamline and
accelerate the identification process of weed seeds. The objective of
this study is to assess the efficacy of a deep-learning approach in
accurately detecting weed seeds, thereby establishing a robust
identification workflow. As proof of concept, we conducted
comprehensive training and testing of the model using seed data
from 19 distinct weed species, ensuring thorough validation of its
performance across diverse samples. Through our research, we aim
to develop a solution that allows for efficient assessments of large
weed seedbank samples, significantly reducing the time required
compared with conventional methods.

Material and Methods
Dataset Preparation

The red-green-blue (RGB) images for the weed seedbank dataset
were obtained using an IVESTA3 digital microscope (Leica
Microsystems, 10 Parkway N, Suite 300, Deerfield, IL 60015) with
an external light source. The microscope was stationed on a stable
platform with a constant working distance for all seed types. The
image processing was optimized by using 0.61X object lens for
precise focus. A total of 485 images were captured at a resolution of
4,000 by 3,000 with a pixel size of 1.55 pm by 1.55 pm using a high-
resolution camera integrated in the microscope body. The image
dataset included 19 weed species, that are common in eastern
Washington, elutriated from soil samples from field experiments
conducted in the region (Table 1). All the seeds analyzed in these
experiments were obtained and cleaned from elutriated samples
and weed seed collection; thus, no seeds were added to the soil. By
imaging real samples collected in-field, this project demonstrates
the direct utility of the methods presented here for finding and
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identifying seeds from weeds in realistic datasets. The dataset
included weed seeds of different sizes, shapes, and colors,
accounting for the wide spectrum of weed species encountered
in eastern Washington dryland cropping systems. Images present
in the dataset were separated into two categories. The first category
consisted of images containing seeds of single weed species to carry
out a focused training for individual species, while the images in
the second category featured the coexistence of multiple weed
species within single frame to train the model to identify and
differentiate various weed species together.

Data Labeling

The images in this project were labeled manually using labellmg
(Tzuta 2015) to create ground-truth data. The approach facilitated
identification of weed seed in images by drawing bounding boxes
around the individual seeds in the image. The output of the
annotation was saved a text format. The output generated from this
exercise represents annotated information for a specific bounding
box. The format includes class ID indicating the numeric identifier
for the specific weed species and bounding box coordinates
(x_center, y_center, width, height), providing the position and
dimensions of the bounding box relative to the image dimensions
(Table 2; Figure 1). The annotated dataset generated using
labellmg was crucial in teaching the model to effectively identify
and classify different weed species.

Model Training and Validation

The annotated dataset generated through the labeling process in
the previous step was utilized to train the YOLOv8 model. This
dataset, consisting of images of various weed instances and their
corresponding bounding box annotations, served as the training
ground truth. To facilitate the training and cross-validation
process, the annotated dataset was split into two subsets: a training
and validation set, with 80% of data allocated to the training set.
The remaining 20% of data was allocated to the validation set to
assess model performance in a 20% hold-out cross-validation
scheme. The validation set of the hold-out data scheme is data set
aside and not used for training the model, so the model can be
assessed on images that were not used to train it, ensuring that the
reported accuracy of the model is not due to overfitting. The
training process was set to 100 epochs with an image size of 640
pixels (width and height). YOLOV8 utilizes an image size of 640 by
640 pixels to optimize computational efficiency and speed during
object detection. The fixed input size enables faster processing and
inference times compared with larger image sizes. However, the
reduction in resolution may affect the model’s ability to accurately
detect and localize objects, particularly smaller ones or those
requiring finer details. During the training process, YOLOV8
leveraged a transfer learning strategy by initializing its weights with
pretrained values from Common Objects in Context (Lin et al.
2014), which contains 200,000 images for object detection.
Transfer learning, also known as weight transfer, is a technique
commonly used in deep learning, where knowledge gained from
training on one task or dataset is transferred to another related
task or dataset. Abstract data features learned by CNNs for
classification problems often can be applied to other classification
problems, but learning these abstract features can initially require
hundreds of thousands of training images. Thus, using pretrained
networks can lead to CNNs with high accuracy without requiring
hundreds of thousands of training images. Transfer learning will be
essential for weed scientists to use for deploying deep-learning
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Table 1. List of species with instances used in a study to develop a machine learning program for weed seed identification.
Species
Common name Scientific name EPPO code Instances
Italian ryegrass Lolium perenne L. ssp. multiflorum (Lam.) Husnot LOLMU 80
Wild mustard Sinapis arvensis (L.) Andrz. Ex Besser SINAR 23
Catchweed bedstraw Galium aparine L. GALAP 15
Flixweed-tumble mustard Descurainia sophia (L.) Webb ex Prantl/ DESSO-SSYAL 33
Sisymbrium altissimum L.
Common lambsquarters Chenopodium album L. CHEAL 58
Mayweed chamomile Anthemis cotula L. ANTCO 467
Kochia Bassia scoparia (L.) A.J. Scott KCHSC 55
Prickly lettuce Lactuca serriola L. LACSE 14
Prickly lettuce-annual sowthistle Lactuca serriola L./ LACSE-SONOL 48
Sonchus oleraceus L.
Pigweed Amaranthus spp. AMARE 415
Rattail fescue Vulpia myuros (L.) C.C. Gmel. VLPMY 61
Cheatgrass Bromus tectorum L. BROTE 47
Russian thistle Salsola tragus (L.) Scop. SASKT 25
Brassicas Brassica spp. 296
Wheat Triticum aestivum L. TRZAX 5
Henbit Lamium spp. LAMAM 7
Nightshade species Solanum spp. SOLDU 30
Bull thistle Cirsium vulgare (Savi) Ten. CIRVU 4
Table 2. Example of bounding box data from.txt output generated by labelimg during labeling process.
Bounding box center
Species code Class index x coordinate y coordinate Width Height
LAMAM? 15 0.874625 0.323167 0.06525 0.108333
AMAREP 9 0.6725 0.023667 0.056 0.044
AMARE 9 0.51925 0.248 0.0515 0.063333
AMARE 9 0.3765 0.572167 0.053 0.061667
AMARE 9 0.29775 0.600167 0.0385 0.062333
AMARE 9 0.600125 0.782667 0.04075 0.053333
AMARE 9 0.788875 0.595833 0.03775 0.059667
AMARE 9 0.808125 0.911333 0.04425 0.044
2Henbit (Lamium spp.).
bPigweed (Amaranthus spp.).
models, because weed scientists will seldom have hundreds of Recall — True positives 2]

thousands of images for training models, but using previous model
weights classification models can be developed using much smaller
image collections. The training process used here involved further
fine-tuning of these weights using the weed seed dataset. The
model was trained to minimize focal loss function for the bounding
boxes, and the stochastic gradient descent loss function was used
for the classification, thus refining the model’s ability to differ-
entiate between weed species.

Performance Metrics

The model performance was assessed by using precision, recall, F1
score, and the mAP. Precision is calculated as the ratio of true
positive predictions to the total number of actual positives
(Equation 1):

True positives

(1]

Precision =

True positives + False positives

Recall represents the ability of model to capture all positive
instances. It is calculated as the ratio of true positive predictions to
the total number of actual positives (Equation 2:
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True positives + False negatives

F1 score provides a measure of model performance on both
precision and recall by calculating the harmonic mean of precision
and recall (Equation 3):

Precision * Recall

(3]

F1 score = 2% —
Precision + Recall

mAP compares detected box with the ground-truth bounding box to
return a score. A higher mAP value denotes the accuracy of the model
detection. The first step in the mAP calculation requires the
estimation of AP of each class. The mean of these APs for all classes is
used to produce mAP. The equation to calculate mAP is (Equation 4):

1 n
mAP == " AP [4]
n
k=1

These performance metrics play a crucial role in evaluating the
effectiveness of the model in detecting and classifying objects, in
this case, weed seeds. Precision measures the proportion of
correctly identified positive cases out of all cases identified as
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Figure 1. labelimg-generated bounding boxes drawn around weed seeds belonging to different classes. Each colored box and number corresponds to a distinct class of weeds.
Bounding boxes aid in identifying and localizing weed seeds within images, assisting in the accurate classification and detection of various weed species. Understanding the
representation of bounding boxes is fundamental for interpreting object detection results.

positive, providing insight into the ability of model to avoid false
positives. Recall, on the other hand, assesses the model
capability to capture all positive instances, indicating its
sensitivity to true positives. The F1 score balances precision
and recall, providing a single metric to gauge overall model
performance.

AP and mAP extend this assessment to object detection tasks
by evaluating the accuracy of bounding box predictions. AP
calculates the precision-recall curve for each class, while mAP
aggregates AP values across all classes to provide a compre-
hensive measure of detection accuracy. Together, these metrics
offer a detailed understanding of the model’s strengths and
weaknesses, enabling researchers to fine-tune algorithms for
improved performance.

Additionally, a normalized confusion matrix was used to
examine the levels of misclassification between species. A
confusion matrix is a matrix with output (predicted) classes along
the y axis and the target (true) classes along the x axis, with each cell
containing the number of misclassifications between classes. The
confusion matrix was then normalized by dividing the value in
each column by the total number of incidences of the class for
which the column represents the true values. In our study, the
normalized confusion matrix is used to examine patterns of
misclassification between the seeds of weed species.
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Results and Discussion
Image Acquisition

Images obtained from the microscope played a pivotal role in
enhancing the accuracy of seed labeling, particularly for small
seeds. The microscopic images provided clear and discernible
details, enabling the differentiation of even small and dark-colored
seeds. Importantly, the use of a microscope ensured that images
were sufficiently large during labeling, eliminating the need to
zoom in to locate specific seed types and draw labels around them.
The aspect is critical, as zooming in during manual labeling may
result in inaccuracies that can affect the performance of the
detection model during inference. Therefore, the availability of
high-quality images from the microscope not only facilitated
straightforward labeling but also contributed to ensuring the
robustness and accuracy of the subsequent detection process. It is
also important to recognize that YOLOVS typically resizes input
images to a smaller size, usually 640 by 640 pixels. Resizing can lead
to a loss of information, especially for small objects in images. In
some cases, the downsized images may make small objects
undetectable to the model, presenting a challenge for accurate
detection. Images from a microscope for small weed seeds ensure
that they appear larger, so that when the model resizes them, they
remain sufficiently detailed for detection.
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Figure 2. The precision-recall curve generated during evaluation of weed species detection model. The x axis represents the recall, which measures the proportion of true
positive detections out of all actual positive instances. The y axis represents precision, indicating the proportion of true positive detections out of all predicted positive instances.
Each point on the curve corresponds to a different threshold used for classification, with the curve representing the trade-off between precision and recall. A higher area under the
curve (AUC) indicates improving model performance in distinguishing between weed species. Abbreviations: LOLMU, Lolium perenne L. ssp. multiflorum (Lam.) Husnot; SINAR,
Sinapis arvensis (L.) Andrz. ex Besser; GALAP, Galium aparine L.; DESSO-SSYAL, Descurainia sophia (L.) Webb ex Prantl/Sisymbrium altissimum L.; CHEAL, Chenopodium album L.;
ANTCO, Anthemis cotula L.; KCHSC, Bassia scoparia (L.) A.J. Scott; LACSE, Lactuca serriola L.; AMARE, Amaranthus spp.; VLPMY, Vulpia myuros (L.) C.C. Gmel.; BROTE, Bromus
tectorum L.; SASKT, Salsola tragus (L.) Scop.; Brassica spp.; TRZAX, Triticum aestivum L.; LAMAM, Lamium spp.

Species Classification Metrics

The performance of the YOLOv8 model was evaluated through
classification matrices, precision recall curve, precision, recall, and
mAP. The precision recall curve and area under the precision recall
curve (AUC) for all classes of weed species in the dataset is used to
assess weed seed identification performance, where a higher AUC
indicates greater performance (Figure 2). We observed variability in
the AUC values across weed species, indicating varying levels of
classification performance. For instance, cheatgrass (Bromus tectorum
L.) exhibited a higher AUC (0.995) compared with kochia [Bassia
scoparia (L.) A.J. Scott] (0.658), suggesting that the model achieved
better discrimination for B. tectorum. The lower AUC for B. scoparia
compared with B. tectorum indicates a comparatively lower level of
discriminative ability of the model, suggesting that it had reduced
capability in distinguishing B. scoparia from other weed species in the
dataset compared with B. tectorum.

Despite having a larger number of training images for B. scoparia
compared with B. tectorum, the lower ability of the model to
accurately identify and discriminate B. scoparia seeds (as indicated by
an AUC of 0.66) can be attributed to several factors, including the
inherent characteristics of the weed species and the challenges they
pose for object detection models. Bassia scoparia seed, being smaller in
size and lacking distinct shape features compared with B. tectorum,
presents a greater difficulty for the model in accurately recognizing
and delineating its boundaries. The limited visual cues and variations
in appearance may hinder the model’s ability to differentiate B.
scoparia from other weed species present in the dataset. Additionally,
the smaller size of B. scoparia seeds may result in less prominent
features, making them harder to detect amid cluttered backgrounds or
similar-looking objects.
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In contrast, B. tectorum, with its larger size and more
pronounced shape characteristics, provides clearer visual cues
for the model to identify and distinguish (AUC of 0.995). The
distinctiveness of B. tectorum seeds facilitates better recognition
and classification, despite the smaller number of training images
available. The larger size and more-defined shape of B. tectorum
seeds likely contribute to higher accuracy in detection compared
with B. scoparia. It is essential to consider the complexity of the
training process and the representation of different classes within
the dataset. While the number of training images is important, the
quality and diversity of these images also play a crucial role in
model performance. The presence of diverse examples and
variations within the B. tectorum training set may have enabled
the model to learn more robust features for accurate detection,
despite the smaller quantity of data.

Precision measures the proportion of correctly identified
positive cases out of all cases identified as positive, providing
insight into the ability of model to avoid false positives (Figure 3).
The precision of the model for bounding box prediction improved
considerably from 0.43 at epoch 1 to 0.82 at epoch 100. The
increased precision value indicates the model’s ability to make
accurate predictions with minimum false positives. Recall, unlike
precision, gauges the model’s ability to identify all positive
instances, reflecting its sensitivity to true positives. For instance, a
recall value of 0.76 signifies the model’s effectiveness in capturing
true positives. The mean mAP at 50% intersection over union
(IoU) (mAP50), a crucial metric for object detection, increased
consistently with each training iteration, reaching a value of 0.82 by
epoch 100. mAP50 evaluates the AP of the model across different
object classes when there is at least a 50% IoU between predicted
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Figure 3. Evolution of performance metric precision, recall, mean average precision calculated at an intersection over union threshold of 0.50 (mAP50), and the average of the
mean average precision calculated at varying intersection over union thresholds, ranging from 0.50 to 0.95 (mAP50-95) over the course of training epochs from 0 to 100. The x axis
represents each epoch, indicating the progress of the model during training. The y axis showcases the improvement in performance metrics with each epoch, providing insights
into how the model’s accuracy, recall rate, and mean average precision vary throughout the training process. Understanding these metrics is crucial for assessing the effectiveness

and progress of the object detection model.

bounding boxes and ground-truth boxes (precise location and class
of object), indicating how well the model detects objects with a
moderate level of overlap with the ground truth. Additionally,
mAP50-95, which considers mAP at various IoU thresholds from
50% to 95%, improved from 0.22 to 0.51 over the course of training,
highlighting the learning capacity of the model over different
rounds of training (Figure 3). The improvement in these values is
important to handle variation present between weed species. In
addition to the accuracy, the YOLOv8 model also displayed an
impressive speed in processing both images and real-time videos,
making it suitable for large-scale applications and for extension
functions where real-time identification would be useful for
training and demonstration.

The progressive increase in the precision signifies the ability of
the model to distinguish between different species, contributing to
minimizing false positives. Adaptability along with processing
speed is crucial for real-world field application in handling large
datasets. However, despite these advancements, it is important to
acknowledge potential challenges associated with the model’s
performance. For instance, different weed species exhibit varying
precision scores based on factors such as size and color, with lower
precision for small seeds.

Detection Performance

The YOLOv8 model performed remarkably well in detecting,
counting, differentiating, and classifying seeds from cleaned field
samples using both still images and real-time videos for the
majority of weed species. Challenges did arise in cases of increased
similarity between seed morphology and color, such as between
flixweed [Descurainia sophia (L.) Webb ex Prantl] and tumble
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mustard (Sisymbrium altissimum L.) (Figure 4). The constraint,
however, was limited to seed pairs that were within the same
taxonomic family, such as S. altissimum and D. sophia or annual
sowthistle (Sonchus oleraceus L.) and prickly lettuce (Lactuca
serriola L.) We anticipate that similar constraints will be identified
with Amaranthus spp. seed.

The normalized confusion matrix (Figure 5) depicts a clear
pattern where species with similar seeds in size are frequently
confused with one another. While common lambsquarters
(Chenopodium album L.), a small-seeded Chenopodiaceae
species, was never identified as another species, other small-
seeded species were frequently misidentified as C. album. In the
hold-out validation, 32% of B. scoparia, 11% of background
material, 5% of S. oleraceus, 3% of mayweed chamomile
(Anthemis cotula L.), and 3% of Amaranthus spp. were
misclassified as C. album (Figure 5). Interestingly, B. scoparia
represented the direct opposite of C. album. Misclassification in
B. scoparia was high, with 50% of samples being misidentified in
the hold-out validation, as 32% was identified as C. album, 4% as
A. cotula, and 14% as background material (Figure 5).
Additionally, there was a high rate of background material
misclassified as weed seeds. None of the background material was
classified as background material, with 54% classified as A. cotula,
11% as C. album, 9% as Lamium spp., 8% as Amaranthus spp., 5%
as Italian ryegrass (Lolium multiflorum Lam.), 4% as both
catchweed bedstraw (Galium aparine L.) and S. altissimum, 3% as
Brassica spp., 2% as B. scoparia, and 1% as both rattail fescue
[Vulpia myuros (L.) C.C. Gmel.] and Solanum spp., indicating
that the model is overly sensitive to false positives when
encountering background material (Figure 5). However, the
model was able to identify large-seeded weeds with nearly 100%
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Figure 4. Example detection results generated by the model, with bounding boxes drawn around different weed seeds. Each bounding box indicates the location and size of a
detected seed with a confidence score. The confidence score is a measure of the model’s certainty in its prediction, ranging from 0 to 1, with 1 indicating complete certainty. In this
case, for example, a score of 0.95 suggests a very high level of confidence in the accuracy of the detection and identification.
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Figure 5. Normalized confusion matrix of seed classification. Rows represent predictions of species while columns represent the true species. Total incidences of miss
classification are divided by the number of incidences of each class. Abbreviations: LOLMU, Lolium perenne L. ssp. multiflorum (Lam.) Husnot; SINAR, Sinapis arvensis (L.) Andrz. ex
Besser; GALAP, Galium aparine L.; DESSO-SSYAL, Descurainia sophia (L.) Webb ex Prantl/Sisymbrium altissimum L.; CHEAL, Chenopodium album L.; ANTCO, Anthemis cotula L.;
KCHSC, Bassia scoparia (L.) A.J. Scott; LACSE, Lactuca serriola L.; LACSE-SONOL, Lactuca serriola L./Sonchus oleraceus L.; AMARE, Amaranthus spp.; VLPMY, Vulpia myuros (L.) C.C.
Gmel.; BROTE, Bromus tectorum L.; SASKT, Salsola tragus (L.) Scop.; Brassica spp.; TRZAX, Triticum aestivum L.; LAMAM, Lamium spp.; SOLDU, Solanum spp.; CIRVU Cirsium vulgare
(Savi) Ten.
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accuracy (Figure 5). While the model is useful for classifying and
counting seeds from larger-seeded grass species, caution should
be taken when using the model for smaller-seeded weeds when
there is non-seed material present.

The ability of the model to precisely identify different species
differed based on the size and the color of the seed. For example,
the model performed with increased precision on larger seeds with
distinguishing features than on smaller seeds with similar color
spectra. Because we only used 19 weed species to evaluate
performance, the risk of misclassification escalates as the number
of weed species to be identified increases, especially if the model
encounters challenges in distinguishing between morphologically
similar species, or when morphology varies significantly within
species. Addressing these challenges requires continued research
and refinement of the model, potentially incorporating additional
features or training strategies to improve performance across a
broader range of weed species. Furthermore, ongoing efforts to
expand the diversity of the training dataset can enhance the
model’s ability to generalize to novel weed species, mitigating the
risk of misclassification in practical agricultural scenarios. While
the YOLOv8 model demonstrates considerable promise in weed
seed detection, ongoing optimization and adaptation are necessary
to address the inherent complexities of real-world weed
management applications.

Application

Rapid and accurate quantification of the weed seedbank is a critical
capability gap in weed science. Utilizing high-throughput systems,
including automated weed seed identification, renders many of the
research needs on weed seedbank dynamics that have been
proposed for decades potentially feasible (Buhler et al. 1997; Khan
et al. 2021). Spatially explicit quantification of weed seedbanks,
obtained by collecting soil samples across a landscape and using
YOLOVS to classify and count weed seeds in images, could be
utilized to understand the relationship between the seedbank and
final weed populations, the emergence dynamics of weed species,
the effects of management practices on weed seed dynamics, and
the empirical effect of management inputs on weed seedbank and
weed densities. The use of such systems could also be grower
targeted—with just a few samples of soil at the time of planting or
tilling, growers could make critical management decisions earlier,
enhancing their integrated weed management programs or
increasing the impact of decision support systems. Because
YOLOV8 is compatible with any three-band images such as
RGB images, it will be applicable to identifying seeds with any RGB
camera that has adequate resolution, but likely will require a
microscope.

Although the YOLOv8 model is adequate for many tasks in
weed seedbank assessment, it has critical limitations. First,
YOLOV8 cannot identify bounding boxes of overlapping objects.
If many seeds are overlapping in an image, the YOLOv8 model
likely would not be able to accurately count the number of seeds of
each species. This limitation can be overcome by splitting dense
samples into multiple images and lightly shaking the paper to
spread the seeds adequately, so they are not overlapping.

Second, many of the smaller weed seeds appear as specks in
images, making it difficult for the classifier to distinguish them
from background material. Another challenge with samples from
elutriators is the presence of soil coating on the objects, giving them
a similar color and making it difficult for the model to make
accurate predictions. While it is unlikely that elutriators will ever be
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able to remove all background material from samples, a second
washing along with higher-resolution images and a specific
classifier that separates small seeds from background material
could alleviate the misclassification between small seeds and
background material.

The integration of high-resolution microscopy images was
pivotal in carrying out the object detection analysis for small weed
seeds and enhancing the overall robustness of the detection
process. While handheld devices such as phones or scanners offer a
faster alternative for image acquisition, the small size of the seeds
led to inaccuracies in labeling and detection. Images from a
microscope provided consistent and precise magnification,
eliminating the need for additional programming to adjust for
scale variations. This ensures accurate and reliable measurements,
which are often a challenge with smartphone images due to
variable camera settings and distances. Evaluation of metrics
further highlighted the inherent challenges associated with small
and similarly colored seeds, emphasizing the importance of dataset
quality and diversity in model training. While the YOLOv8 model
demonstrated high accuracy in detection and classification tasks,
challenges persist in accurately distinguishing between morpho-
logically similar species and addressing variations in seed size and
color, particularly in seedbank samples with substantial soil
particles obtained directly after the elutriation step. Incorporating
images of seedbank samples taken post-elutriation into the dataset
would likely improve detection accuracy. This limitation could not
be addressed in the current study due to time constraints and the
unavailability of sufficiently diverse elutriated seedbank images for
training. Addressing these challenges will require continued
research, refinement of the model, and expansion of the diversity
of the training dataset. Despite these limitations, this work presents
proof of concept that the integration of automated weed seed
identification systems holds great promise for driving innovation
and improving integrated weed management systems.
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