MOTIONS OF MATRIX RINGS
ROY F. KELLER
Introduction. Metric spaces in which the distances are not real numbers

have been studied by several people (2, 3, 4, 7, 9). Any ring R together with
a mapping, X — ¢(X), of R into a lattice 4 with 0 and 1 satisfying

(1) ¢ (X) = ¢(0) if and only if X =0,
(2) (X + V) Co(X)Ue(Y),

and

(3) d(X-Y) = ¢(X) N¢(Y),

is called a “lattice-valued ring,” where the operations union, \U, and inter-
section, M), are the usual lattice operations. The mapping ¢ is called a ‘‘valua-
tion’ and 4 is a “‘valuation lattice.” If R is a lattice-valued ring and a mapping
d is defined by

dX,Y) =¢X - T1),

which maps R X R into 4, then d is called a distance function on R. It is
easily seen that d satisfies

4) d(X,Y) = ¢(0) if and only if X =7,
) dX,Y) =d(Y, X),

and

(6) dX,V)VUd(Y,2) DdX,Z).

The ring R together with mapping ¢ and distance function d is called a “lat-
tice metric space.”

If we take a ring R with identity together with a mapping X — ¢(X) of
R into a lattice L, which satisfies (1) and (2) above but instead of (3) the
following:

3 o(—X) = ¢(X),

we then call R a “weak lattice-valued ring,”’ and L a “weak valuation lattice.”
If d is defined by

AdX,Y) =¢(X — Y)

X, Y € R, then d is a distance function satisfying (4), (5), and (6) which
maps R X R into L. The ring R together with the mapping ¢ and distance
function d is again called a ‘“lattice metric space.”
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In this paper we determine the motions of the ring of all linear transforma-
tions on an arbitrary vector space over a division ring. Since the ring of row-
finite matrices with elements from a division ring is isomorphic to the ring
of all linear transformations over the division ring, we can consider motions
of the ring of row-finite matrices.

Let R be a division ring, R’ the ring of row-finite matrices with elements
from R, and L the lattice of right ideals of R’. R satisfies (1), (2), and (3)
and if we define

dX,Y) =X - 7)

X, Y € R, then d is a distance function satisfying (4), (5), and (6) which
maps R X R into L. The principal result is the following theorem.

TarOREM 1. If R s a diviston ring and R’ the ring of row-finite infinite
matrices over R, the mapping X — F(X), X € R’, is a motion of R’ with respect
to the distance function d if and only if F(X) = XA + B, where A and B are
fixed elements of R’ and A 1is non-singular.

1. Definitions. Consider an arbitrary ring R and I the lattice of right
ideals of R.

DEFINITION 1. Let ¢ be a mapping from R into I such that if A € R, ¢(A4)
1S the principal right ideal in 15 generated by A. (We shall denote ¢(A4) by [4],.)

It is easily shown that the mapping ¢ satisfies (1), (2), and (3’) above and
clearly I'p contains a first, the null ideal, and a last, the whole ring, element;
thus R with the mapping ¢ and ‘“‘distance function’ d is a lattice metric space.

DEFINITION 2. A one-to-one mapping of R onto R which preserves distances is
a motion of R relative to the distance function d. Thus, if 4, B € R and fis a
motion of R, then

f(4) — fB)]; = [4 — Bl..

2. Row-finite infinite matrices. Let V be a left vector space of infinite
dimension over a division ring R. The ring L of linear transformations on V
is isomorphic to the ring R’ of row-finite matrices with elements from R. (See
5, Chap. IX.) To determine the group of motions of L it is sufficient to study
the motions of R'.

DEFINITION 3. Any infinite matrix A is ‘row-finite” provided each row of A
has only a finite number of non-zero elements.

Remark. For A € R,
[A], = (Y : YV = AX, for all X € R').

Proof. Any element of [4], is in the form AX + #n4, X € R', n € N, where
N is the ring of integers. R’ contains an identity I; thus
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AX 4+ nd = AX + Anl = A(X + »nl).

Let E,j, 1, j any ordinal numbers, be the matrix with 1 in the sth row and
jth column and zeros elsewhere and consider any motion f which sends zero
into zero. For any ordinal j

[Eyl: = [f(Ew]
and hence f(F;;) has non-zero elements only in the first row. Let
f(Eyy) = (aﬂ @iz O Tin - - > ,  jany ordinal,

and define a matrix A4 such that the jth row of A is identical with the first
row of f(£q;). Thus

air Q12 « .. A1y . ..

A=|au s ... QGpu ...

and it is clear that f(E:;) = E.;4, j any ordinal. In any row of 4 there are
only a finite number of non-zero elements; hence 4 € R’.

LEMMA 1. For f, f(E:;) = E A, © and j being any ordinal numbers.

Proof. Let f(E;;) = (xxs). Since f(E,;) is a right multiple of E,; it is clear
that x;; = 0 for & # 2. Now f is a motion; hence

[f(Ei) — f(Ei)]r = [Ey — Euly,
[(xs) — EAl = [Eiy — Eyjls,

so there exists a T € R’ such that
(x3s) — Ey;4d = (Eyy — EqpT.

In matrix (E;; — Ei;)T the sth row is the negative of the first row; hence
the same is true in xx; — E;;4. Thus

Xis = Qjs for any ordinal s,
and hence
F(Eiy) = EyA.
CoroLLARY 1. For any a € R,

f(C(Eij) = aF ijA = af(E ij) 'i, j any ordinals.
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Proof. Let (x5) = f(aE;). Then using the same procedure as in the proof
of Lemma 1 we obtain

Xis = Q@ for any ordinal s,

and hence
f(aE”) == aE”A = af(E”)

Let I; + Epiwi + Ewsws + - .« + Eypiw:, where wy, we, ..., w, is any f[inite
set of ordinal numbers. Thus, I; is a matrix with 7 1’s arbitrarily down the
diagonal and zeros elsewhere.

LeEmMMA 2. For f, f(I;) = 1,4, with 1 =1,2,...,n.

Proof. I = Ey; hence f(I,) = 4. We complete the proof by finite
induction. Suppose

fa) =14
and consider I,y Let f(I,41) = (%s). Then
) = [Buwivw )]s = i1 = Ewsreeale = [L5,
and hence there exists a 7' € R’ such that
1) = Euwrsrwend = I.T.
Therefore

Xip1s = Qu s, $ any ordinal.

Also,

L) = fUI] = Hur — Ldr = [Ewawealre
Hence there exists a T € R’ such that

(k) — 1A = Eupy vz i L -

Therefore,

Xps = Qrs k= wi, ws, ..., w, sany ordinal,
and with x,, = 0 for 2 > ¢+ 1 we have

flyr) = 1144,

which completes the induction.
Let auyy, oty - - -, ap; be a finite set of arbitrary but fixed elements of R
for any finite 7, and define

Ni(awu Qapgy « o o ,am) = ameml + By + ...+ awiEwiwir

where w1, ws, . .., w; is any finite set of ordinal numbers.

Lemma 3. For f, f(N) = N A, for i =1,2,...,n, with n finite.
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Proof. N1 = a1Eyu; hence for I = 1, f(N,;) = N;4. Suppose the lemma is
valid for 7 = ¢, that is
f(N) = N4,
and let
F(V 1) = (wis)-
Now, [[(N ;1) — f(N)], = [Ny1 — Nl so there exists a T € R’ such that
(k) = N A = (N1 — N)T.
Thus xs = agays, for B = wy, ws, ..., w,; and s any ordinal. Also
(V1) — flow aBw e ) lr = [Nerr = cwor aBor o alre
Hence there exists a T € R’ such that
(%es) = w1 Bt e = (N )T

Thus, x.; = aia,, for B = w,;; and s any ordinal. This combined with x,,=0
for £ >t 4 1 gives

f(Nz-H) = NH—lAy

which completes the induction. Hence f(N;) = N4 for 71 =1,2,...,n.
Again let @y, ay,, - . ., ay; be an arbitrary but fixed finite set of elements
of R and define for any ordinal w,

M, = amew] + aszwwz + ...+ awiEwu'iy

where wy, ws, . .., w; is any finite set of ordinal numbers. Note that A, has
ay; in the wth row and w;th column while N; has «,; in the w;th row and
w;th column. Thus, if we look at the sum of the non-zero elements (there
are only a finite number) of each column of M, — N, it is always zero. Also,
the only columns with non-zero elements are wy, ws, ..., w;.

LemMA 4. For f, f(M,) = M4, for any ordinal w.
Proof. Let [(M,) = (xs); then
[(rs) = F(ND)]r = My — N,
so there exists a 7" € R’ such that
(xgs) — Nyd = (M, — N)T.

But the sum of the non-zero elements of each column of (M, — N,)T is zero;
hence we have

i
Xps = Z Qs for k = w, s any ordinal.
=1

This, with the fact that x;; = 0 for k& ## w, establishes that
f(M,) = M,A.
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Let S = (ay;) be an arbitrary but fixed matrix in R’, and denote by M,
the matrix whose wth row is identical with the wth row of .S, the remaining
rows consisting entirely of zeros.

LEMMA 5. For f, f(S) = S4.

Proof. Let f(S) = (xzs). Since f is a motion we know that f(S) is a right
multiple of S. Thus, any particular row in f(S) is obtained by multiplying
the corresponding row vector of S by a row-finite matrix. Now

[f(S) —f(Mw)]r = [S - -Zl[w]r-
Hence there exists a 7" € R’ such that
(ps) — M4 = (S — M,)T.
The wth row of (S — M,)T has all elements zero; hence the wth row of (x;)

is identical with the wth row of M,A. Thus, the wth row of f(S) is the wth
row of .S times 4. Since this is true for any w, it follows that f(S) = S4.

The preceding lemmas establish that for any motion f of R’ which sends
zero into zero there exists a matrix 4 € R’ such that

f(X) = 84, for all X € R/,

where A is determined as indicated from f(E)), j =1,2,... . A matrix M
is a unit in R’ provided M has an inverse. The matrix A is unique and a unit,
for assuming otherwise leads immediately to a contradiction of the fact that
fis a motion. It is clear that for any unit matrix 4 € R’, the mapping X — X4
is a motion of R'.

Proof of Theorem 1. Let A, B be fixed elements of R’ with 4 a unit, and
consider the mapping F such that F(X) = X4 4+ B, X € R’. Suppose for
X,V e R that F(X) = F(Y); then

XA +B=Y4+B and XA = YA,

which implies that X = V. Thus, F is a one-to-one mapping.
Consider any Y € R, and let X = (¥ — B)A~!; then

F(X) = (Y — B)A-'4 + B = Y.

Hence F maps R’ onto R'.
Let X, Y be arbitrary elements of R’.

[FX) — F(M],=[X4+B— (Y4 + B)],=[X4 —YA],=[(X — V)A4],;
therefore

[F(X) — F(Y)], C[X — Y.
Now, let Z € [X — Y],; that is, there exists some 7 € R’ such that
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Z=(X—-YV)T. Also, Z = (X — YYAA-'T, which is clearly an element of
[(X — V)4], = [F(X) — F(Y)];; hence

[F(X) = F(Y)], D [X — Y.
Therefore [F(X) — F(Y)], = [X — Y], and we have established that F is a

motion of R’.
Next, let F be any motion of R’ and define a mapping f such that

f(X) = F(X) — F(0), XECR.

Clearly, f maps zero into zero, so there exists a unique unit matrix 4 € R’
such that F(X) = XA4. Hence

XA = F(X) — FO) or F(X)=XA4 + F(0).
Let B = F(0) and we have
F(X) = X4 + B,

where 4, B are fixed elements of R’ and 4 is a unit.
It is worth noting that any motion of R’ can be thought of as a rotation
followed by a translation.
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