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Introduction. Metric spaces in which the distances are not real numbers 
have been studied by several people (2, 3, 4, 7, 9). Any ring R together with 
a mapping, X —-» <t>(X)f of R into a lattice A with 0 and 1 satisfying 

(1) 4>(X) = 0(0) if and only if X = 0, 

(2) 4>(X+ F) C * ( X ) U 0 ( 7 ) , 
and 

(3) 4>(X-F) = * f f l n * ( F ) , 

is called a "lattice-valued ring," where the operations union, W, and inter­
section, P\, are the usual lattice operations. The mapping <j> is called a "valua­
tion" and A is a 'Valuation lattice." If i^ is a lattice-valued ring and a mapping 
d is defined by 

d{X, Y) = <p(X - Y), 

which maps R X R into A, then d is called a distance function on i?. It is 
easily seen that d satisfies 

(4) d(X, Y) = 0(0) if and only if X = F, 

(5) d(X, F) = <Z(F,X), 
and 

(6) d(X, F) U d(F, Z) D d(X, Z). 

The ring i^ together with mapping 0 and distance function d is called a "lat­
tice metric space." 

If we take a ring R with identity together with a mapping X —» <£(X) of 
R into a lattice L, which satisfies (1) and (2) above but instead of (3) the 
following : 

(30 <K-X) = 4>(X), 

we then call R a "weak lattice-valued ring''' and L a "weak valuation lattice" 
If d is defined by 

d(X, F) = 4>(X - Y) 

X> Y £ R, then d is a distance function satisfying (4), (5), and (6) which 
maps R X R into L. The ring R together with the mapping <£ and distance 
function d is again called a "lattice metric space." 
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In this paper we determine the motions of the ring of all linear transforma­
tions on an arbitrary vector space over a division ring. Since the ring of row-
finite matrices with elements from a division ring is isomorphic to the ring 
of all linear transformations over the division ring, we can consider motions 
of the ring of row-finite matrices. 

Let R be a division ring, Rf the ring of row-finite matrices with elements 
from R, and L the lattice of right ideals of Rf. R satisfies (1), (2), and (3') 
and if we define 

d(X, Y) = 4>(X - F) 

X, Y G R', then d is a distance function satisfying (4), (5), and (6) which 
maps R X R into L. The principal result is the following theorem. 

THEOREM 1. If R is a division ring and R' the ring of row-finite infinite 
matrices over R, the mapping X —> F{X)y X Ç R', is a motion of Rr with respect 
to the distance function d if and only if F(X) = XA + B, where A and B are 
fixed elements of R' and A is non-singular. 

1. Definitions. Consider an arbitrary ring R and IR the lattice of right 
ideals of R. 

DEFINITION 1. Let <j> be a mapping from R into IR such that if A Ç R, (f>(A) 
is the principal right ideal in IR generated by A. (We shall denote 4>{A) by [A]r.) 

It is easily shown that the mapping $ satisfies (1), (2), and (3') above and 
clearly IR contains a first, the null ideal, and a last, the whole ring, element; 
thus R with the mapping <j> and * 'distance function" d is a lattice metric space. 

DEFINITION 2. A one-to-one mapping of R onto R which preserves distances is 
a motion of R relative to the distance function d. Thus, if A, B Ç R and / is a 
motion of R, then 

U(A) -f(B)]r= [A -B]T. 

2. Row-finite infinite matrices. Let F be a left vector space of infinite 
dimension over a division ring R. The ring L of linear transformations on V 
is isomorphic to the ring R' of row-finite matrices with elements from R. (See 
5, Chap. IX.) To determine the group of motions of L it is sufficient to study 
the motions of R'. 

DEFINITION 3. Any infinite matrix A is urow-finite" provided each row of A 
has only a finite number of non-zero elements. 

Remark. For A Ç R', 

[A]r = (Y:Y = AX, for all X G R'). 

Proof. Any element of [A]r is in the form AX + nA, X Ç R\ n € iV, where 
N is the ring of integers. Rf contains an identity I; thus 
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AX + nA = AX + AnI = A (X + ni). 

Let Eij, i,j any ordinal numbers, be the matrix with 1 in the ith row and 
j th column and zeros elsewhere and consider any motion / which sends zero 
into zero. For any ordinal j 

[ElAr = lf(Ev)]r 

and hence f(Eu) has non-zero elements only in the first row. Let 

/ ( £ „ ) = ( a n a ' 2 • ^ ain ••), j any ordinal, 

and define a matrix A such that the jth row of A is identical with the first 
row of f(Eij). Thus 

I an a 12 . . . ain . . . \ 

A = Q>n\ an2 

\ ) 

and it is clear that f(E-Lj) = EijA, j any ordinal. In any row of A there are 
only a finite number of non-zero elements; hence A G Rf. 

LEMMA 1. For / , / ( E 0 ) = EijA, i and j being any ordinal numbers. 

Proof. Let f (Eij) = (xks). Since f{EtJ) is a right multiple of Etj it is clear 
that xks = 0 for k ^ i. Now / is a motion; hence 

[f(Eij) — f(Eij)]r = [Eij — Eij]r, 

[(Xks) - EijA]r = [Eij - Elj]r, 

so there exists a T Ç Rr such that 

(xk8) - EijA = (Eij - Eij)T. 

In matrix (Eij — Eij)T the ith row is the negative of the first row; hence 
the same is true in xks — E\jA. Thus 

%is = ajs for any ordinal s, 

and hence 
f(Eij) = E^A. 

COROLLARY 1. For any a G R, 

f(aEij) = aEijA = af(Eij) i,j any ordinals. 
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Proof. Let (xks) = f(aEtj). Then using the same procedure as in the proof 
of Lemma 1 we obtain 

xis = aajs for any ordinal s, 

and hence 
ffaEij) = aEijA = af(EtJ). 

Let It + Emm + Emm + . . . + Ewiwi, where wh w2, . . . , wt is any finite 
set of ordinal numbers. Thus, It is a matrix with i l 's arbitrarily down the 
diagonal and zeros elsewhere. 

LEMMA 2. For f, / ( / , ) = I%A, with i = 1, 2, . . . , n. 

Proof. Ii = Emwi; hence f(Ii) = I\A. We complete the proof by finite 
induction. Suppose 

/(/<) = hA 

and consider It+i. Let f(It+i) = fes). Then 

[ / U n - ] ) ~ / f t < + l w t + l ) ] r — Uti-l — Ewt+iwt+i]r — [^*]n 

and hence there exists a T (z R' such that 

\Xjcs) -t^wt +iwt +1-A- == -L t-L • 

Therefore 

x ^ i s = flw+1.,, .9 any ordinal. 

Also, 

L/X^Zfj) ~~ / ( ^ * ) ] r = [It±l — 1i]r = [Ewt+iwt+i]r-

Hence there exists a T Ç Rf such that 

\%ks) J- 1+*- = -L-swi +iwt +\J- • 

Therefore, 

Xks = aies, k = wh w2, . . . , wu s any ordinal, 

and with xJcs = 0 for k > t + 1 we have 

/ ( / , + 1 ) = ImA, 

which completes the induction. 
Let am, aW2, . . . , awi be a finite set of arbitrary but fixed elements of R 

for any finite i, and define 

where Wj, 7£>2, . . . , wt is any finite set of ordinal numbers. 

LEMMA 3. For f, f(Nt) = NtA, for i = 1, 2, . . . , n, with n finite. 
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Proof. Ni = aiEmm; hence for I = l,/(iV*) = NtA. Suppose the lemma is 
valid for i — t, that is 

f(Nt) = NtA, 

and let 

f(Nt+1) = (**,)• 

Now, [/"(A7
zfi) - f(Nt)]r = [iVi+i - Nt]r, so there exists a. T £ R' such that 

(**,) - . ¥ , . 4 = (Nt^- Nt)T. 

Thus tf^ = a/ca/cs, for k = wh Wo, . . . ,wt, and s any ordinal. Also 

[J \l* t+l) J\awt +i^wt +iwt +l)\r == [™ t-\-l awt+i^wt+iwt+i\r-

Hence there exists a T Ç i£' such that 

V^fts) G^j +i-ËLwt +iwt +1 = \™ t) * • 

Thus, x/c,s = â afcs for £ = wt±\ and s any ordinal. This combined with X/cS = 0 
for k > t + 1 gives 

which completes the induction. Hence /(A7*) = A^/l for i = 1, 2, . . . , n. 
Again let awl, aW2, . . . , awi be an arbitrary but fixed finite set of elements 

of R and define for any ordinal w, 

•Lv-Lw = Ot-wi-L^wwi i (X-w2-£-Jww2 ~T~ • • • "T~ &wi-E-jwwn 

where Wi, w2, . • • , wt is any finite set of ordinal numbers. Note that Mw has 
awi in the wth row and With column while A7* has awi in the wtth row and 
^ t h column. Thus, if we look at the sum of the non-zero elements (there 
are only a finite number) of each column of Mw — N u it is always zero. Also, 
the only columns with non-zero elements are W\, w-2, . . . , Wi. 

LEMMA 4. For f, f(Mw) = MWA, for any ordinal w. 

Proof. Let f(Mw) = (xks) ; then 

[(**.) -f(Nt)]r= [Mw- Nt]r, 

so there exists a T Ç Rf such that 

(**,) - NtA = (Mw - Nt)T. 

But the sum of the non-zero elements of each column of (Mw — Nf)T is zero; 
hence we have 

t 
xks = ]C awflwjs> îovk = w, s any ordinal. 

This, with the fact that xks = 0 for k ^ w, establishes that 

f(Mw) = MWA. 
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Let S — (oLij) be an arbitrary but fixed matrix in R\ and denote by Mw 

the matrix whose wth row is identical with the wth row of S, the remaining 
rows consisting entirely of zeros. 

LEMMA 5. For f, f(S) = SA. 

Proof. Let f(S) = (xks). Since / is a motion we know that f(S) is a right 
multiple of S. Thus, any particular row in f(S) is obtained by multiplying 
the corresponding row vector of S by a row-finite matrix. Now 

|/(5) - / ( i l f w ) ] r = [ S - J l ^ . 

Hence there exists s, T £ R such that 

(a*.) - M ^ = ( 5 - MW)T. 

The wth row of (5 — MW)T has all elements zero; hence the wth row of (xks) 
is identical with the wth row of MWA. Thus, the wth row of f(S) is the wth 
row of S times .4. Since this is true for any w, it follows that f(S) = SA. 

The preceding lemmas establish that for any motion / of Rr which sends 
zero into zero there exists a matrix A £ Rr such that 

f(X) = SA, for all X G R', 

where A is determined as indicated from / (E i y ) , j = 1, 2, . . . . A matrix M" 
is a unit in i^ provided M has an inverse. The matrix A is unique and a unit, 
for assuming otherwise leads immediately to a contradiction of the fact that 
/ i s a motion. It is clear that for any unit matrix A Ç Rf, the mapping X —» X^4 
is a motion of i?'. 

Proof of Theorem 1. Let i , 5 be fixed elements of i?' with 4̂ a unit, and 
consider the mapping F such that F(X) = XA + B, X £ R'. Suppose for 
X,Y £ R' that F(X) = F(Y); then 

XA + B = YA + B and XA = YA, 

which implies that X = Y. Thus, F is a one-to-one mapping. 
Consider any Y G R', and let X = (Y - B)A~1; then 

F(X) = (Y - B)A~lA + B = Y. 

Hence F maps R' onto i^. 
Let X, Y be arbitrary elements of R'. 

[F(X) - F(Y)]r =[XA+B- (YA + B)]r = [X^ - K4] r = [(X - Y)A]r; 

therefore 

[F(X) - F(Y)]rC[X- Y}r. 

Now, let Z £ [X — Y]r; that is, there exists some T £ R such that 

https://doi.org/10.4153/CJM-1964-016-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-016-7


MOTIONS OF MATRIX RINGS 165 

Z = (X - Y)T. Also, Z = (X - Y)AA~1T, which is clearly an element of 
[(X - Y)A]r = [F(X) - F(Y)]r; hence 

[F(X)-F(Y)]rD[X- Y]r. 

Therefore [F(X) — F(Y)]r = [X — Y]r and we have established that F is a 
motion of Rr. 

Next, let F be any motion of R' and define a mapping / such that 

f{X) = F{X) - F(0), X e Rr. 

Clearly, / maps zero into zero, so there exists a unique unit matrix A Ç R' 
such that F(X) = XA. Hence 

XA = F(X) - F(0) or F(X) = XA + F(0). 

Let B = F(0) and we have 

F(X) - XA + B, 

where A, B are fixed elements of Rf and yl is a unit. 
It is worth noting that any motion of R' can be thought of as a rotation 

followed by a translation. 
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