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Presented here is a novel formulation of the mean-field dynamo as a modulational insta-
bility of magnetohydrodynamic (MHD) turbulence. This formulation, termed mean-field
wave kinetics (MFWK), is based on the Weyl symbol calculus and allows describing
the interaction between the mean fields (magnetic field and fluid velocity) and turbu-
lence without requiring scale separation that is commonly assumed in the literature. The
turbulence is described by the Wigner–Moyal equation for the spectrum of the two-point
correlation matrix (Wigner matrix) of magnetic-field and velocity fluctuations and depicts
the turbulence as an effective plasma of quantum-like particles that interact via the mean
fields. Eddy–eddy interactions, which serve as ‘collisions’ in this effective plasma, are
modelled within the standard minimal tau approximation to aid comparison with existing
theories. Using MFWK, the non-local electromotive force is calculated for generic tur-
bulence from first principles, modulo the limitations of MFWK. This result is then used
to study, both analytically and numerically, the modulational modes of MHD turbulence,
which appear as linear instabilities of the said effective quantum-like plasma of fluctua-
tions. The standard α2-dynamo and other known results are reproduced as special cases.
A new dynamo effect is predicted that is driven by correlations between the turbulent
flow velocity and the turbulent current.
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1. Introduction
1.1. Background

The universe abounds with turbulent magnetised plasma (Schekochihin & Cowley
2007). It is now widely accepted that the observed (or inferred) strength of the
magnetic fields that thread these astrophysical systems cannot be explained without
invoking some kind of turbulent-dynamo process, in which the kinetic energy of the
turbulent plasma flows is converted into magnetic energy (Văınshtĕın & Zeldovich
1972; Brandenburg & Subramanian 2005; Federrath 2016; Subramanian 2019).

†A classic example is our own Sun, which exhibits a large-scale dipolar magnetic field that reverses polarity on
a curious 11-year cycle (Charbonneau 2014; Jones et al. 2010).

https://doi.org/10.1017/S0022377825100561 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0022377825100561
https://orcid.org/0000-0001-7972-7226
https://orcid.org/0000-0003-0243-6257
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377825100561&domain=pdf
https://doi.org/10.1017/S0022377825100561


2 S. Jin and I.Y. Dodin

These magnetic fields are often correlated on scales that are large compared with
those of the underlying turbulence, and it is well established that the dynamics
of these orderly fields are inextricably linked with the underlying plasma turbu-
lence (Tobias 2021; Brandenburg et al. 2023).1 Still, many aspects of this so-called
‘large-scale’ turbulent dynamo remain to be understood (Rädler 2014; Hughes 2018).

One of the mainstream tools for studying the large-scale turbulent dynamo has
been mean-field electrodynamics (Krause & Rädler 1980; Roberts & Soward 1975;
Moffatt 1978; Shukurov & Subramanian 2021). In this approach, the magnetohydro-
dynamic (MHD) model of interest is decomposed into a system of coupled equations
for both the turbulent and mean-field components, and, ultimately, a closed equation
is obtained that describes the evolution of the mean magnetic field in response to
correlations of the turbulent fluctuations. Mean-field electrodynamics has now pro-
foundly shaped much of our understanding of cosmical dynamos (Hughes 2018), and
there have been many refinements to this basic framework over the years (Rädler
2014; Brandenburg 2018). However, two key aspects of the turbulent dynamo
continue to pose substantial challenges for the mean-field approach.

The first of these challenges arises from the so-called small-scale dynamo.
Historically, the mean-field dynamo problem was one of coherent magnetic fields
emerging from a state of hydrodynamic turbulence. This original understanding of
the problem justified the kinematic approximation, in which one takes the flows to
be prescribed, as the magnetic fields of interest would be too weak to substantially
modify these flows, at least in the initial linear growth stage. Within this approxi-
mation, one need not consider the full MHD system and can instead focus on the
much simpler task of solving the induction equation for a given flow. However, it
is now understood that in the astrophysically interesting regime of large magnetic
Reynolds number (Rm), the small-scale dynamo generates substantial turbulent mag-
netic fields on time scales much shorter than those of the large-scale dynamo modes
predicted by kinematic mean-field theory (Rincon 2019). It has therefore been sug-
gested that a better-posed mean-field problem is one in which mean fields grow from
the MHD turbulence aftermath of a saturated small-scale dynamo (Rincon 2019;
Tobias 2021). As will be discussed extensively throughout this paper, for MHD tur-
bulence, the mean magnetic and velocity fields can be dynamically coupled, such that
the solution of the full MHD mean-field problem requires a self-consistent mean-field
treatment for both the velocity and magnetic fields. Although the importance of such
an approach has been recognised (Rincon 2019; Tobias 2021), and some progress
has been made – analytically for simple cases as in Courvoisier et al. (2010a,b),
and numerically with direct statistical simulations (Mondal & Bhat 2023) – the basic
theory of mean-field modes for generic MHD turbulence has been lacking.

Another significant limitation of existing mean-field theories is that most of them
rely on the assumption that mean fields vary on much longer scales than the tur-
bulent fields. This assumed separation of scales is used to simplify the problem
by enabling a local closure in which the turbulent electromotive force (EMF) at a
given point in spacetime is expressed only in terms of the mean fields and their
low-order derivatives at that same point in spacetime. However, the assumption of
scale separation is often unjustified, and there has been a growing interest in under-
standing the impact of so-called non-local effects on mean-field dynamics (Hubbard
& Brandenburg 2009; Rheinhardt & Brandenburg 2012; Rheinhardt et al. 2014;

1A classic example is our own sun, which exhibits a large-scale dipolar magnetic field that reverses polarity on
a curious 11-year cycle (Jones, Thompson & Tobias 2010; Charbonneau 2014).
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Bendre & Subramanian 2022; Pipin 2023; Brandenburg et al., 2008; Gressel &
Elstner 2020). But thus far, these effects have been studied mostly numerically, and,
although some analytical calculations do exist (Rüdiger & Urpin 2001), they have
been largely intractable for generic turbulence.

1.2. Mean-field wave kinetics
In this paper, we propose a novel approach to the dynamo problem, mean-field

wave kinetics (MFWK), that is able to overcome the aforementioned limitations.
The MFWK retains the dynamical independence of the turbulent correlations and
treats them within the wave-kinetics framework.

To introduce the general idea of wave kinetics, let us first consider a simplified
problem where the characteristic wavelength of the turbulent fluctuations is much
less than the inhomogeneity scale,

l/L� 1. (1.1)

In this ‘geometrical-optics’ (GO) limit, waves are much like particles in the sense that
they can be described by Hamilton’s ray equations (Tracy et al. 2014; Dodin 2022),

ẋ = ∂kω, k̇=−∂xω. (1.2)

Here, x is the ray position, k is the local wavevector (which is proportional to
the ray’s canonical momentum) and ω is the local frequency and serves as the
Hamiltonian ray. Wave kinetics therefore refers to the kinetic theory that describes
the phase-space dynamics of these quasiparticles.

Turbulence can be viewed as an ensemble of such quasiparticles, with a distri-
bution function in phase space evolving due to wave-wave collisions (‘eddy-eddy’
interactions) and collective effects (mean fields),

∂t f = C[ f ] + {H, f }. (1.3)

The situation when the collision term C[ f ] dominates over {H, f } corresponds to
homogeneous turbulence, where the classic subject of interest is turbulent spectra
(Vedenov 1967; Nazarenko 2011). Here, though, we focus on the opposite limit,
when C[ f ] is negligible compared with the collective interactions determined by
{H, f }. This corresponds to the regime where turbulence effectively acts as a col-
lisionless plasma. In this sense, our formulation can be viewed as ‘plasma physics
of turbulence’ (Tsiolis, Zhou & Dodin 2020), and the resulting mean-field theory
can be understood as a theory of collective effects in MHD turbulence. Although
this approach has been widely used in the past (for an overview and references, see,
for example Mendonca (2000), Ruiz (2017) and Zhu & Dodin (2021)), its appli-
cation to MHD turbulence has been limited on the account of being technically
challenging.

In particular, note that the GO approximation is typically not satisfied when
the mean-field scales themselves are formed through modulational instabilities (MI)
(Zakharov & Ostrovsky 2009; Tsiolis et al. 2020; Zhu & Dodin 2021).2 This means
that (1.3) must be replaced with a more general model that does not rely on

2Additional background on MI is given in Appendix A.
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scale separation. Furthermore, MHD fluctuations are inherently electromagnetic.
This means that a proper quantum analogy for them is vector particles (parti-
cles with spin) and thus their distribution is a matrix rather than a scalar. The
corresponding generalisation of (1.3) can be constructed using the Weyl symbol cal-
culus (Appendix B), or more specifically, the Wigner–Moyal formalism (Weyl 1950),
which will be explained in detail in § 2. This formalism provides access to regimes
outside the traditional domain of the mean-field theories, yet remains analytically
tractable. It depicts turbulence self-organization as a collective instability of an effec-
tive quantum-like plasma of turbulent fluctuations, in which mean fields serve as a
collective field through which the fluctuations interact. The Wigner–Moyal formal-
ism is also advantageous in that it maintains a clear connection with the GO model
(1.3), namely, subsumes it as a limit.

1.3. Outline
This paper aims to systematically develop MFWK for MHD turbulence (§§ 2

and 3) and use this theory to study basic physics of dynamo by considering several
illustrative examples (§§ 4 and 5). Rather than modelling a specific astrophysical sys-
tem in detail (a pursuit that does not lack participants), we focus on developing the
theoretical framework and exploring its broader implications. We find that even for
the simple examples considered here, MFWK predicts qualitatively distinct features
compared with previous mean-field theories.

In our first application of MFWK, we derive, from first principles, the non-local
response kernel of the turbulent EMF for weak mean fields and generic MHD turbu-
lence. We then evaluate this expression for the special cases of (i) hydrodynamic and
(ii) isotropic MHD turbulence. For hydrodynamic turbulence, we find that MFWK
theoretically predicts the same generic form of the non-local EMF that has been com-
monly assumed in the literature based on simulations (Brandenburg et al. 2023). For
isotropic MHD turbulence, the scale-separated limit of MFWK largely reproduces
the predictions of existing mean-field theories with the important exception of the
dependence of the EMF on the mean flow. However, we report a qualitatively dif-
ferent dependence of the EMF on the mean flow compared with the only other (to
our knowledge) existing calculation of this effect (Rädler & Brandenburg 2010).

In the second application of MFWK, we identify the mean-field effects associ-
ated with various statistical properties of homogeneous isotropic MHD turbulence.
To do this, we first derive the general dispersion relation of modulational modes
of generic MHD turbulence. We then solve the dispersion relation for the specific
case of ideal isotropic MHD turbulence. Beyond the well-known α2-dynamo driven
by kinetic helicity, we predict a new dynamo effect that is driven by correlations
between the fluctuating flow and current, 〈̃v · j̃〉. We also predict sound-like ‘cor-
relation waves’ that propagate (and, depending on the properties of turbulence,
possibly grow) through plasma at speeds determined by the statistical properties of
the turbulent fluctuations.

This paper is organised as follows. In § 2, we derive the main equations of MFWK.
In § 3, we linearise the MFWK equations around generic turbulent equilibria and for-
mulate mean-field effects in terms of modulational (in)stability. In § 4, we apply the
MFWK to derive the non-local turbulent EMF and analyse its properties. In § 5, we
derive and solve the dispersion relation of modulational modes for MHD turbulence,
and we also characterise the 〈̃v · j̃〉-dynamo. The main results are summarised in § 6.
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2. Derivation of mean-field wave-kinetics
2.1. Base model: incompressible resistive MHD

As a base model, we assume incompressible resistive MHD with homogeneous
mass density ρ = const,

∂tv + (v · ∇)v = (b · ∇)b−∇P + ν∇2v, (2.1a)

∂t b=∇× (v× b)+ η∇2b, (2.1b)

∇ · v = 0, ∇ · b= 0. (2.1c)

Here, v represents the fluid velocity, b
.= B/
√

4πρ is the local Alfvén velocity, and
the normalised total pressure is defined as P

.= (Pkin + B2/8π)/ρ, with Pkin being the
kinetic pressure (the symbol .= denotes definitions). The viscosity, ν, and resistivity,
η, are assumed to be constant. To express (2.1) in a more symmetric form, let us
rewrite them in terms of the two Elsässer fields z± (Elsasser 1950), which are also
solenoidal,

z± .= v ± b, ∇ · z± = 0. (2.2)

This leads to two coupled equations for z±,

∂t z± =−(z∓ · ∇)z± −∇P + ν+∇2z± + ν−∇2z∓, (2.3)

where ν+
.= (ν + η)/2 and ν−

.= (ν − η)/2. The normalised total pressure P can be
found as follows. By taking the divergence of (2.1a) and using (2.2), one obtains

∇2 P =−∇ · [(z∓ · ∇)z±]. (2.4)

Let us introduce the wavevector operator k̂
.=−i∇, so k̂2 .= k̂

2 =−∇2. Let us also
assume some appropriate (say, periodic) boundary conditions. Then, (2.4) yields

P =−k̂−2 k̂ · [(z∓ · k̂)z±] + const, (2.5)

whence ∇P in (2.3) can be expressed through z±.
Alternatively, ∇P can be eliminated from (2.3) by taking the curl of this

equation,

∂tw
± =−∇× [(z∓ · ∇)z±] + ν+∇2w± + ν−∇2w∓, (2.6)

where the Elsässer vorticities w± are defined as

w± .=∇× z±. (2.7)

Indeed, due to (2.2), one can express z± using a vector potential a± such that z± =
∇× a±. Let us assume the gauge such that ∇ · a± = 0. Then,

w± =∇× (∇× a±)=−∇2a± ≡ k̂2a±, (2.8)

whence

z± = ik̂−2(k̂×w±). (2.9)
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(Here, we assume that z± and their first spatial derivatives have zero spatial average,
so k̂2 is invertible.) Then, (2.3) can be expressed through w± alone,

∂tw
± =−k̂× {[(k̂× k̂−2w∓) · k̂](k̂× k̂−2w±)} − k̂2(ν+w± + ν−w∓). (2.10)

Writing the Elsässer equations in this form has the benefit that the nonlinear term
is now expressed as a product of inverse operators that act only on the Elsässer
vorticities themselves, rather than an inverse operator that acts on the product of
the Elsässer fields as in (2.5). As we will see shortly, this property makes (2.10) more
convenient than (2.3) for the eventual formulation of MFWK. Note also that (2.10)
is equivalent to (2.6) with the assumption that z± and their first spatial derivatives
have zero spatial average.

2.2. Mean fields versus fluctuations
As in the usual mean-field approach (Krause & Rädler 1980; Moffatt 1978), we

decompose our Elsässer fields into mean and fluctuating parts,

z± = z± + z̃±, w± =w± + w̃±. (2.11)

Inserting (2.11) into (2.6) and averaging yields the following equation for the mean
fields:

∂tw
± =−∇× [(z∓ · ∇)z±] + ν+∇2w± + ν−∇2w∓ − 〈∇× [(̃z∓ · ∇)̃z±]〉. (2.12)

(Note that this is similar to (2.6), but has an additional source term due to the
fluctuating fields.) Subtracting (2.12) from (2.6) yields the following equation for the
fluctuations:

∂tw̃
± =−∇× [(z∓ · ∇)̃z± + (̃z∓ · ∇)z±] + ν+∇2w̃± + ν−∇2w̃∓ + F±NL, (2.13)

where the nonlinear term

F±NL
.= 〈∇× [(̃z∓ · ∇)̃z±]〉 −∇× [(̃z∓ · ∇)̃z±] (2.14)

corresponds to eddy–eddy interactions.
Within the quasilinear approximation (QLA) (i.e. the collisionless-wave approx-

imation of § 1.2), F±NL is neglected. Although nonlinear effects are, of course,
important for understanding the full picture, our present focus is on understanding
mean-field formation, many aspects of which can be studied within the QLA (Tsiolis
et al. 2020; Zhu & Dodin 2021). As discussed in the previous section, this can also
be understood as retaining collective effects while neglecting pairwise interactions of
the turbulent fluctuations. Deviations from the QLA are discussed extensively by Jin
& Dodin (2025).

Although we will proceed with the derivation of MFWK under the QLA, in § 2.5
we will also consider a modified version of the final equations that includes a simple
minimal tau approximation (MTA)-like damping term to model the effect of eddy–
eddy interactions, F±NL.3

3One can also go beyond the QLA within the Wigner–Moyal approach in a more systematic way, as done for
drift-wave turbulence by Ruiz, Glinsky & Dodin (2019).
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2.3. Wigner–Moyal equation for the fluctuations

2.3.1. Basic notation
Let us first introduce the state ket vectors,

|̃z〉 .=
(|̃z+〉
|̃z−〉

)
, |w̃〉 .=

(|w̃+〉
|w̃−〉

)
. (2.15)

The usual fields over spacetime can be understood as the spatial projections of these
kets, i.e. 〈x |̃z±〉 = z̃±(x). The fluctuation equation can then be written as a vector
Schrödinger equation for |w̃〉,

i∂t |w̃〉 = Ĥ
′|w̃〉, (2.16)

with the (generally non-Hermitian) Hamiltonian,

Ĥ
′ .=

(
Ĥ
′++

Ĥ
′+−

Ĥ
′−+

Ĥ
′−−

)
, (2.17)

where we have introduced

Ĥ
′±±
i j = δi j

(
z∓l k̂l − i z∓l,m

k̂l k̂m

k̂2
− iν+k̂2

)
+ i z∓l,m

k̂l k̂m

k̂2
, (2.18a)

Ĥ
′±∓
i j = δi j

(
i z±l,m

k̂l k̂m

k̂2
+ z±l,mm

k̂l

k̂2
− iν−k̂2

)

+ i

(
z±j,i − z±j,l

k̂i k̂l

k̂2

)
+ (z±j,il − z±l,i j

) k̂l

k̂2
− z±j,ll

k̂i

k̂2
. (2.18b)

From (2.9) and (2.7), we have

|̃z〉 = ik̂−2 k̂∧|w̃〉, |w̃〉 = ik̂∧|̃z〉, (2.19)

where

k̂∧
.=
(

k̂∧ 0

0 k̂∧

)
, k̂∧

.=

⎛⎜⎜⎝
0 −k̂z k̂y

k̂z 0 −k̂x

−k̂y k̂x 0

⎞⎟⎟⎠ . (2.20)

Using (2.19) and (2.13), (2.16) can then be put in a simpler form for the state vector
|z〉, with Hamiltonian Ĥ

.= ik̂−2 k̂∧ Ĥ
′
k̂∧. Specifically, (2.16) becomes

i∂t |̃z〉 = Ĥ |̃z〉, (2.21)

where Ĥ is a matrix operator given by

Ĥ =
(

Ĥ
++

Ĥ
+−

Ĥ
−+

Ĥ
−−

)
, (2.22)
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and we have also introduced

Ĥ±±i j = δi j

(
z∓l k̂l − iν+k̂2

)+ i
k̂i

k̂2
z∓l, j k̂l, (2.23a)

Ĥ±∓i j =−δi j iν−k̂2 − iz±i, j + i
k̂i

k̂2
z±l, j k̂l . (2.23b)

Note that the Hamiltonian Ĥ is generally not Hermitian (even in the ideal-MHD
limit) and is highly non-trivial. Also, because |z〉 is a multicomponent vector, one
can think of the quasiparticles as quantum-like particles with spin, and the ‘spin-up’
and ‘spin-down’ components are strongly coupled in the presence of inhomogeneous
mean fields.

For homogeneous z± and vanishing ν±, the Hamiltonian (2.22) is diagonal, so
| z̃±〉 decouple. In principle, it can also be diagonalised for two-dimensional (2-D)
dynamics when |b| � |v| (Appendix D), such that the corresponding dynamics can
be understood in terms of the resulting phase-space trajectories available to quasi-
particles. A more detailed investigation of the properties of the Hamiltonian (2.22)
may be of interest for future work and may reveal ways to make greater use of the
quasiparticle analogy.4 However, such an exploration is beyond the scope of this
paper. Also, for three-dimensional dynamics that is of interest in the context of the
dynamo problem, a diagonalisation of Ĥ does not seem possible.

2.3.2. Wigner–Moyal equation
Right-multiplying (2.16) by 〈̃z| and subtracting the adjoint of the resulting equation
yields the von Neumann equation for the density operator of Alfvénic fluctuations,
Ŵ

.= |̃z〉〈̃z|,
i∂t Ŵ = ĤŴ − Ŵ Ĥ

†
. (2.24)

Applying the Wigner–Weyl transform (Appendix B) to (2.24) yields the Wigner–
Moyal equation (WME), which governs the dynamics of Alfvénic fluctuations in the
phase space (x, k),

i∂t W = H 
W −W 
 H†. (2.25)

Here, H is the symbol of the Hamiltonian Ĥ ,

H =
(

H++ H+−

H−+ H−−

)
, (2.26)

and the individual components are given by

H±±i j = δi j

(
z∓l 
 kl − iν+k2

)+ i
ki

k2

 z∓l, j 
 kl, (2.27a)

H±∓i j =−δi j iν−k2 − iz±i, j + i
ki

k2

 z∓l, j 
 kl, (2.27b)

4For example, the topology of phase-space trajectories available to drift-wave quasiparticles has been used to
explain the nonlinear saturation dynamics of zonal flows by Zhu, Zhou & Dodin (2019).
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the Moyal star product 
 (B.8) is defined in Appendix B, and W is the symbol of
Ŵ , also known as the Wigner matrix. The latter can be expressed as

W =
(

W++ W+−

W−+ W−−

)
, (2.28)

where

W σ1σ2
i j =

∫
ds e−ik·s z̃σ1

i (x + s/2)̃zσ2
j (x − s/2). (2.29)

Note that the Wigner matrix W is Hermitian, i.e.

W σ1σ2
i j (t, x, k)=W σ2σ1∗

j i (t, x, k). (2.30)

Additionally, since the Elsässer fields are real, we also have that

W σ1σ2
i j (t, x, k)=W σ2σ1

j i (t, x,−k). (2.31)

2.3.3. Average Wigner matrix and the GO expansion
By averaging (2.25) with the same averaging operation used to define the mean
fields, we obtain the averaged WME,

i∂t W = H 
W −W 
 H†. (2.32)

Here, H = H , since H is independent of the fluctuating fields, and the averaged
Wigner matrix is the average of W ,

W ≡ 〈W〉 =
(

W++ W+−

W−+ W−−

)
, (2.33)

where

W σ1σ2
i j =

∫
ds e−ik·s 〈̃zσ1

i (x + s/2)̃zσ2
j (x − s/2)

〉
. (2.34)

Notice that the average Wigner matrix (2.33) can be understood as the Fourier
transform of the symmetrised two-point correlation tensor of the Elsässer fields.

Below, the original Wigner matrix (2.28) will not be needed, so we will call (2.33)
‘the’ Wigner matrix and omit the bar in W to simplify notation. The properties
(2.30) and (2.31) hold for this averaged matrix as well. Also, the trace of W , to some
extent,5 can be interpreted as the phase-space density of turbulent quasiparticles. In
this sense, the WME can be considered as a generalisation of the Liouville equation.
Its interpretation as a quantum extension of kinetic theory becomes clearer when we
consider the series expansion of the Moyal star,

i∂t W = HeiL̂/2W −WeiL̂/2 H†

= H(1+ iL̂/2+ · · · )W −W(1+ iL̂/2+ · · · )H†,
(2.35)

where the Janus operator L̂ (B.9) is defined in Appendix B, and, basically, stands
for the canonical Poisson bracket in the (x, k) space, AL̂B = {A, B}. Note that

5As discussed in § 2.3.1, the quasiparticle analogy for MHD in the absence of a strong guide field has its
limitations due to the lack of a general diagonalisation for Ĥ .
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L̂ effectively scales as the GO parameter l/L , so the higher-order terms (denoted
‘. . .’ in (2.35)) can be omitted. Furthermore, this equation can be further simplified
when W and H are scalar functions (as can be the case, for example, in drift-wave
turbulence (Zhu & Dodin 2021)). In this case, (2.35) becomes the familiar ‘classical’
wave kinetic equation when l/L→ 0 ,

∂t W ≈ {HH,W } + 2HAW, (2.36)

where HH and HA are the real (Hermitian) and the imaginary (anti-Hermitian) parts
of the Hamiltonian. However, keep in mind that, for MHD turbulence, W and H
are non-commuting matrices. Furthermore, when L is determined by MI, it is often
the case that l ∼ L , so the GO approximation of the WME is inapplicable.

2.4. Turbulent source term for the mean field
As with any quadratic functional of the fluctuating field (Dodin 2022), the

turbulent source term for the mean field,

S± .=−〈∇× [(̃z∓ · ∇)̃z±]〉, (2.37)

can be expressed through the Wigner matrix W ,

S±i =−
〈
εi jk∂ j

(̃
z∓l ∂l̃ z

±
k

)〉
=− εi jk

〈(〈
x|ik̂ j |̃z∓l

〉〈
x|ik̂l |̃z±k

〉− 〈x |̃z∓l 〉〈x|k̂ j k̂l |̃z±k
〉)〉

=− εi jk

〈(〈
x|k̂ j |̃z∓l

〉〈̃
z±k |k̂l |x

〉− 〈x |̃z∓l 〉〈̃z±k |k̂ j k̂l |x
〉)〉

= εi jk

∫
dk
(2π)3

(
klk j 
W±∓

kl − kl 
W±∓
kl 
 k j

)
, (2.38)

where εi jk is the Levi–Civita symbol and the transition from the third line to the
fourth line uses (B.4).

Note that the source term involves only the off-diagonal blocks of the Wigner
matrix, W±∓, i.e. mean fields are generated only by correlations between z̃+ and
z̃−. This can also be expected from the original Elsässer equations (2.3), where the
nonlinear term vanishes if either z+ or z− is zero.

2.5. Summary of the main equations
In summary, our mean-field wave-kinetics model is as follows:

∂tw
± =−k̂×

{[(
k̂

k̂2
×w∓

)
· k̂

](
k̂

k̂2
×w±

)}
− k̂2(ν+w± + ν−w∓)+ S±,

(2.39a)

i∂t W = H 
W −W 
 H†, (2.39b)

where

S±i = εi jk

∫
dk
(2π)3

(
klk j 
W±∓

kl − kl 
W±∓
kl 
 k j

)
, (2.40)
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and the matrix

H =
(

H++ H+−

H−+ H−−

)
(2.41)

consists of

H±±i j = δi j

(
z∓l 
 kl − iν+k2

)+ i
ki

k2

 z∓l, j 
 kl, (2.42a)

H±∓i j =−δi j iν−k2 − iz±i, j + i
ki

k2

 z±l, j 
 kl . (2.42b)

Note that (2.39) are equivalent to the original MHD system within the QLA and
do not assume scale separation between the fluctuations and mean fields, which is
typically done in the literature (Brandenburg 2018; Hughes 2018). As we show in
Appendix C, (2.39) conserve the total energy and cross-helicity, while allowing for
the transfer of these invariants between the mean and fluctuating fields.

To aid comparisons with existing theories, we will also often work with the
following ad hoc modification of (2.39b):

i∂t W = H 
W −W 
 H† − iτ−1
c W + T , (2.43)

where τc is the correlation time that determines the damping of fluctuations through
wave–wave collisions. Such a damping term is used in the popular MTA closure
(Blackman & Field 2002; Brandenburg & Subramanian 2005). The forcing term
T , which is yet to specified, is added to allow for turbulent equilibria at non-zero
dissipation (§ 3).

3. Linear modulational dynamics within MFWK

Let us now consider small mean-field perturbations to an otherwise homogeneous
turbulent background.6 This corresponds to

W = (2π)3[F(k)+ f (t, x, k)], (3.1)

where F(k) is the Wigner matrix of the homogeneous turbulent equilibrium, and
f (t, x, k) is the first-order response of the turbulence to the mean fields. (The factor
(2π)3 is introduced to shorten notation in some formulae below.) Similarly, the
Hamiltonian will be of the form

H = H0(k)+ h(t, x, k), (3.2)

where H0 captures viscous dissipation and resistivity, and h is the perturbed
Hamiltonian due to the mean fields.

6While we assume a homogeneous background at this stage (and we will also generally assume isotropy for
explicit examples presented later) for simplicity, note that the approach here could in principle be extended to
inhomogeneous and anisotropic backgrounds (e.g. in the case of background shear that is of interest for α −Ω
dynamos (Krause & Rädler, 1980), the magnetic shear-current effect (Squire & Bhattacharjee 2016) and the shear–
driven α-effect (Ebrahimi & Blackman 2019)). Such inhomogeneities would be most conveniently incorporated by
assuming a sinusoidal profile for the background fields, such that the MI of the corresponding Floquet modes can
be treated with the Wigner–Moyal formalism presented here.
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3.1. Properties of statistically homogeneous turbulent equilibria

3.1.1. Equilibrium condition
In the absence of zeroth-order mean fields, (2.39) give the following equations for
the equilibrium:

0= S±0 , (3.3a)

0= (2π)3(H0 F − F H†
0 − iτ−1

c F
)+ T , (3.3b)

S±0i = εi jk

∫
dk
(
klk j 
 F±∓kl − kl 
 F±∓kl 
 k j

)
, (3.3c)

H±±0 =−iν+k213, H±∓0 =−iν−k213, (3.3d)

where 13 is the 3× 3 identity matrix. Thus, for a given F, the matrix T must satisfy

T σ1σ2 = i(2π)3
[(

2ν+k2 + τ−1
c

)
Fσ1σ2 + ν−k2

(
Fσ1σ2 + Fσ1σ2

)]
, (3.4)

where σ1/2 =+/− and σ .=−σ .
Note that in the absence of dissipation (τ−1

c = 0 and ν± = 0), (3.4) gives T = 0; i.e.
any such homogeneous turbulent background is quasilinearly self-consistent without
external driving. Also note that the consistency of the mean-field equation, S0 = 0,
follows directly from the background homogeneity, F(x, k)= F(k),

S±0i = εi jk

∫
dk

(
klk j 
 F±∓kl − kl 
 F±∓kl 
 k j

)
= εi jk

∫
dk (klk j − klk j)F

±∓
kl

= 0. (3.5)

3.1.2. Wigner matrix of isotropic MHD turbulence
For a homogeneous turbulent background, we have

Fσ1σ2
i j (k)= 1

(2π)3

∫
ds e−ik·s

〈̃
zσ1

i

(
x + s

2

)
z̃σ2

j

(
x − s

2

)〉
= Rσ1σ2

i j (−k), (3.6)

where Rσ1σ2(k) is the Fourier transform of the two-point correlation tensor,

Rσ1σ2
i j (r)= 〈̃zσ1

i (x − r/2)̃zσ2
j (x + r/2)

〉
. (3.7)

If we further assume that the turbulence is isotropic (Oughton, Rädler &
Matthaeus 1997), then

Rσ1σ2
i j (k)=

(
δi j − ki k j

k2

)
Eσ1σ2(k)

4πk2
+ iεi jk

kk

k2

H σ1σ2(k)

8πk2
, (3.8)

where Rσ1σ2 = Rσ2σ1 , k
.= |k| and the H σ1σ2 are zero for non-helical turbulence. Note

that Eσ1σ2(k) and H σ1σ2(k) are the spectra of energy-like and helicity-like quantities,
respectively, in the following sense:〈

zσ1 · zσ2
〉= 2

∫
dk Eσ1σ2(k),

〈
zσ1 · (∇× zσ2

)〉= ∫ dk H σ1σ2(k). (3.9)
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In other words, isotropic MHD turbulence corresponds to

F =
(

F+ FC

FC F−

)
,

Fχ

i j (k)=
(
δi j − ki k j

k2

)
Eχ(k)

4πk2
− iεi jk

kk

k2

Hχ(k)

8πk2
(3.10)

with χ =+, −, C . It will also be convenient to work with the symmetric and anti-
symmetric combinations FS .= (F+ + F−)/2 and F A .= (F+ − F−)/2, and we also
extend this notation to E and H . Then,∫ ∞

0
dk E S(k)= 1

2
〈̃v · ṽ + b̃ · b̃〉,∫ ∞

0
dk EC(k)= 1

2
〈̃v · ṽ − b̃ · b̃〉,∫ ∞

0
dk E A(k)= 〈̃v · b̃〉,∫ ∞

0
dk H S(k)= 〈̃v · w̃+ b̃ · j̃〉,∫ ∞

0
dk H C(k)= 〈̃v · w̃− b̃ · j̃〉,∫ ∞

0
dk H A(k)= 2〈̃v · j̃〉 = 2〈w̃ · b̃〉, (3.11)

where w̃ .=∇× ṽ and j̃
.=∇× b̃.

3.2. Linear modulational dynamics

3.2.1. Linearised equations
The perturbed quantities are governed by the following linearised MFWK
equations:

∂tw
± =−k̂2(ν+w± + ν−w∓)+ s±, (3.12a)

i∂t f = H0 
 f − f 
 H0
† + h 
 F − F 
 h† − iτ−1

c f , (3.12b)

s±i = εi jk

∫
dk

(
klk j 
 f ±∓kl − kl 
 f ±∓kl 
 k j

)
, (3.12c)

h±±i j = δi j

(
z∓l 
 kl

)+ i
ki

k2

 z∓l, j 
 kl,

h±∓i j =−iz±i, j + i
ki

k2

 z±l, j 
 kl . (3.12d)

Note that this model is fundamentally different from the commonly used kinematic
approximation (Krause & Rädler 1980). The kinematic approximation assumes that
all magnetic fields (that is, both turbulent and mean components) are sufficiently
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weak such that the flow (again, both mean and turbulent parts) can be taken as pre-
scribed. The momentum equation is then never invoked, and the resulting mean-field
theory is built on the induction equation alone. It has already been pointed out in
the literature (Courvoisier et al. 2010a,b) that such an approach, which artificially
privileges the magnetic field over the flow, is fundamentally inconsistent in the pres-
ence of substantial magnetic field fluctuations (which are to be expected in MHD
turbulence), but the general theory for this case has been lacking. Our approach fixes
this problem in that it is formulated in terms of the Elsässer fields and thus treats
velocity and magnetic fields on the same footing.

3.2.2. Eikonal perturbations
Let us now look for the linear eigenmodes of (3.12). For that, let us consider
perturbed quantities of the following form:

z± =Re
(
z±ei�

)
, (3.13a)

w± =Re
(
w±ei�

)
, (3.13b)

f = ( f (k)ei�
)

H
, (3.13c)

h= 1
2

(
h(+)(k)ei� + h†

(−)(k)e
−i�∗), (3.13d)

with
�=−Ωt + K · x, (3.14)

where Ω and K are the modulational frequency and wavevector, respectively, and
w± = iK × z±. (The index H denotes the Hermitian part.) We will use the convention
that the modulational wavevector K is real, while the modulational frequencyΩ may
be complex. Note that the mean-field polarisations, z± and w±, are constants, while
h(±) and f are functions of k. We also use the convention that the argument of a
function will only be explicitly written when it is first defined, not obvious from the
context, or judged to provide helpful information.

3.2.3. Equations for the polarisations
Using (B.11), we can write the following equations for the polarisations z± and f :

Ω z± =−iK 2(ν+z± + ν−z∓)− K
K 2
× s±, (3.15)

Ω ′ f − H0(k+) f + f H†
0(k−)= h(+)F(k−)− F(k+)h(−), (3.16)

where

−
(

K
K 2
× s±

)
i

=
∫

dk
(

Knf±∓in −
Ki Km Kn

K 2
f±∓mn

)
, (3.17)

and

h(±) =
(

h++(±) h+−(±)
h−+(±) h−−(±)

)
, (3.18)
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where

h±±(+)i j = (z∓ · k)
(
δi j − k+i K j

k2+

)
, (3.19a)

h±∓(+)i j = z∓i K j − (z∓ · k)
k+i K j

k2+
, (3.19b)

h±±(−)i j = (z∓ · k)
(
δi j + Ki k− j

k2−

)
, (3.19c)

h±∓(−)i j =−z±j Ki + (z± · k)
Ki k− j

k2−
. (3.19d)

Also, Ω ′ .=Ω + iτ−1
c , k±

.= k± K/2 and k±i refers to the i th element of k±. We
study applications of these equations in § 4 and § 5.

4. Non-local turbulent EMF

Much of mean-field dynamo theory is concerned with the calculation of the tur-
bulent EMF (Rogachevskii & Kleeorin 2003; Rädler 2007; Rädler & Brandenburg,
2010; Squire & Bhattacharjee 2015; Yokoi 2018). One of the primary limitations of
traditional mean-field theories is that they assume scale separation, i.e. the existing
analytical closures are local in the sense that the EMF at a given point in spacetime
is expressed purely in terms of the magnetic field and its low-order derivatives at
that same point.

Scale separation is often unjustified, and non-locality may play an important role
in astrophysical systems of interest (Käpylä et al. 2006; Brandenburg 2018). In such
cases, the local formulation of the EMF must be replaced with the non-local response
kernel,

E(t, x)=
∫

dt ′
∫

dx ′ G(t, x; t ′, x ′) b(t ′, x ′). (4.1)

When considering small mean-field based departures from an otherwise homoge-
neous turbulent equilibrium, such that G(t, x; t ′, x ′)= G(t − t ′, x − x ′), this leads
to a simple formula for the corresponding Fourier images,

E(Ω, K )= G(Ω, K )b(Ω, K ). (4.2)

Note that we only explicitly included the dependence of the EMF on the mean
magnetic field in the discussion above, as this is the case that has been considered
in the literature. As we shall see shortly, neglecting contributions from the mean
velocity field is valid only for purely hydrodynamic turbulent backgrounds.

Determining G(Ω, K ) is the key to incorporating non-locality in mean-field mod-
els and is the subject of ongoing research (Brandenburg et al. 2008; Hubbard
& Brandenburg 2009; Rheinhardt & Brandenburg 2012; Rheinhardt et al. 2014;
Gressel & Elstner 2020; Bendre & Subramanian 2022; Pipin 2023).7 Current efforts
to probe non-locality typically use the ‘test-field method’ (Schrinner et al. 2005,

7The Green’s function approach in the context of the two-scale direct interaction approximation is a powerful
analytical approach to incorporating non-locality into mean-field models, but does not provide explicit expressions
for the response kernels (Yoshizawa 1984, 1990; Yokoi 2013, 2023).
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2007), in which various test mean fields are imposed on some turbulent background,
and the induction equation for the fluctuating magnetic field is solved, allowing
for transport coefficients to be inferred numerically. Such efforts have deduced the
following approximate form for the non-local response kernel:

Gi j(Ω, K )≈ α + iεi jk Kkβ

1− iτΩ + l2K 2
, (4.3)

where
α =−τc

3
〈̃v · ∇× ṽ〉, β = τc

3
〈̃v · ṽ〉 (4.4)

are the local turbulent transport coefficients corresponding to the α-effect and tur-
bulent diffusivity, respectively. The coefficients τ and l are fitting parameters that
represent the degree of non-locality, and while τ is consistently found to be of the
order of the eddy-turnover time, there is less, if any, agreement in the literature on
how to understand and model l (Rheinhardt & Brandenburg 2012; Brandenburg
2018). Advancing our understanding of this non-locality requires an analytical pre-
diction for the non-local response kernel, which is not possible with the traditional
local mean-field formalism.

The MFWK enables an analytic calculation of the non-local response kernel from
first principles (within the QLA), and in the weakly inhomogeneous limit. This result
serves as a first step in providing physical motivation for the form of the non-
local response kernel. By comparisons with test-field methods (Schrinner et al. 2005;
Rheinhardt & Brandenburg 2012), it can help isolate which aspects of non-locality
can be fully described within mean-field effects, and which are fundamentally non-
linear. In the remainder of this section, we outline the calculation and highlight main
results.

4.1. Derivation
The generic non-local linear response of the turbulent EMF E to the mean fields

b and v can be written as follows:

E(t, x)=
∫

dt ′
∫

dx ′
(
G(b)(t, x; t ′, x ′) b(t ′, x ′)+ G(v)(t, x; t ′, x ′) v(t ′, x ′)

)
. (4.5)

Note that we are allowing for a possible dependence on the mean flow, which is
often neglected. (Since the mean flow is generally inhomogeneous, for example, as
in (3.13a), it cannot be removed by a Galilean transformation.) For the remainder of
our calculation of the turbulent EMF, we will also work with the traditional velocity
and magnetic fields, as opposed to the Elsässer fields, in order to aid comparisons
with existing theories.

We now assume weakly inhomogeneous turbulence, such that z± and w± are
perturbations to an otherwise homogeneous turbulent background. In this case, we
can take G(b,v)(t, x; t ′, x ′)= G(b,v)(t − t ′, x − x ′) such that in Fourier space we have

E(Ω, K )= G(b)(Ω, K )b(Ω, K )+ G(v)(Ω, K )v(Ω, K ). (4.6)

(For the remainder of our calculation of the turbulent EMF, we will also work with
the traditional velocity and magnetic fields, as opposed to the Elsässer fields, in
order to aid comparisons with existing theories.) An expression relating the Fourier
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coefficients of E , b and v at frequency Ω and wavenumber K therefore yields the
non-local response kernel G(Ω, K ).

To do this, we first note that the EMF can be directly written in terms of our
Wigner matrix as follows:

Ei =−1
2
〈̃z+ × z̃−〉i

=−1
2

∫
dk
(2π)3

εi jk W+−
jk . (4.7)

Curiously, (4.7) can be expressed even more concisely as

E =�
∫

dk
(2π)3

W−+, (4.8)

where � is the Hodge star, (�A)i
.= εi jk A jk/2. The desired expression can therefore

be obtained with the modulational mode analysis described in § 3, by solving the
WME to obtain the Wigner matrix in terms of the mean fields (which enter the
WME through H).

We can immediately see that there may, in principle, be some contribution to the
turbulent EMF from F, which has nothing to do with the mean fields,

E0i =− εi jk

2

∫
dk F+−jk

=− εi jk

4

∫
dk

(
F+−jk + F−+k j

)
=− εi jk

4

∫
dk

(
F+−jk − F−+jk

)
. (4.9)

It can be easily shown that such a background EMF E0 vanishes for a broad class
of turbulent backgrounds. For example, isotropy is a sufficient but not necessary
condition for F+− = F−+. We henceforth understand E to refer to the mean-field
contribution alone and will not discuss E0 further.

The mean-field contribution to the turbulent EMF is captured by the perturbed
Wigner matrix,

Ei =−εi jk

∫
dk f +−jk . (4.10)

As in § 3, we now take our perturbed quantities to be of the following form:

v± =Re
(
v±ei�

)
, b± =Re

(
b±ei�

)
, E =Re

(
Eei�

)
,

f = ( f (k)ei�
)

H
, h= 1

2

(
h+(k)ei� + h†

−(k)e
−i�∗), (4.11)

with �=−Ωt + K · x, where Ω and K are the modulational frequency and
wavevector, respectively. In terms of the notation of (4.6), one has

E(Ω, K )=E, b(Ω, K )= b, v(Ω, K )= v. (4.12)

Therefore, our relevant equations are

Ei =−1
2

∫
dk εi jkf+−jk , (4.13)
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along with (3.16), v = (z+ + z−)/2 and b= (z+ − z−)/2.
Solving (3.16) for the off-diagonal blocks of the perturbed Wigner matrix yields

f ±∓ = C1(k)
C(k)

[
h±+(+)F

+∓(k−)+ h±−(+)F
−∓(k−)− F±+(k+)h

+∓
(−) − F±−(k+)h

−∓
(−)
]

+ C2(k)
C(k)

[
h∓+(+)F

+±(k−)+ h∓−(+)F
−±(k−)− F∓+(k+)h

+±
(−) − F∓−(k+)h

−±
(−)
]

+ C3(k)
C(k)

[
h∓+(+)F

+∓(k−)+ h∓−(+)F
−∓(k−)− F∓+(k+)h

+∓
(−) − F∓−(k+)h

−∓
(−)
]

+ C4(k)
C(k)

[
h±+(+)F

+±(k−)+ h±−(+)F
−±(k−)− F±+(k+)h

+±
(−) − F±−(k+)h

−±
(−)
]
,

(4.14)
where

C(k)= [W2(Ω, K , k)+ ν2
−(k

4
+ + k4

−)]2 − 4ν4
−k4
+k4
−,

C1(k)=W(Ω, K , k)[W2(Ω, K , k)+ ν2
−(k

4
+ + k4

−)],
C2(k)=−2ν2

−k2
+k2
−W(Ω, K , k),

C3(k)=−iν−k2
+[W2(Ω, K , k)+ ν2

−(k
4
+ + k4

−)] + 2iν3
−k4
−k2
+,

C4(k)=−iν−k2
−[W2(Ω, K , k)+ ν2

−(k
4
+ + k4

−)] + 2iν3
−k4
+k2
−,

W(Ω,K , k)
.=Ω ′ + iν+

(
k2
+ + k2

−
)
, (4.15)

and, as before, k± = k± K/2. Noting that

D1(k)
.= C1(k+)

C(k+)
= C1(−k+)

C(−k+)
, D2(k)

.= C2(k+)
C(k+)

= C2(−k+)
C(−k+)

,

D3(k)
.= C3(k+)

C(k+)
= C4(−k+)

C(−k+)
, D4(k)

.= C4(k+)
C(k+)

= C3(−k+)
C(−k+)

, (4.16)

let us define
h(k)

.= h(+)(k+)=−hᵀ
(−)(−k+), (4.17)

where ᵀ denotes transposition and

h±±i j (k)= (z∓ · k)
[
δi j − (ki + Ki)K j

(k+ K )2

]
,

h±∓i j (k)= z∓i K j − (z∓ · k)
(ki + Ki)K j

(k+ K )2
. (4.18)

Substituting (4.14) into (4.13) yields

Ei =−1
2

∫
dk εi jk

{− [Δ1(k)h−+jl (k)+Δ2(k)h++jl (k)
]
F++lk (k)

+ [Δ1(k)h+−jl (k)+Δ2(k)h−−jl (k)
]
F−−lk (k)

+ [Δ1(k)h++jl (k)+Δ2(k)h−+jl (k)
]
F+−lk (k)

− [Δ1(k)h−−jl (k)+Δ2(k)h+−jl (k)
]
F−+lk (k)

}
, (4.19)
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where

Δ1(k)= D1 − D2 = V(Ω, K , k)
V2(Ω, K , k)+ ν2−κ4(K , k)

,

Δ2(k)= D3 − D4 =− iν−κ2

V2(Ω, K , k)+ ν2−κ4(K , k)
,

V(Ω, K , k)
.=Ω ′ + iν+[k2 + (k+ K )2],

κ2(K , k)
.= (k+ K )2 − k2. (4.20)

Finally, noting that

h±±i j (k)= Mi jk(k)z∓k , h±∓i j (k)= Ni jk(k)z∓k , (4.21)

where

Mi jk =
(
δi j − (ki + Ki)K j

(k+ K )2

)
kk, Ni jk = δik K j − (ki + Ki)K j

(k+ K )2
kk, (4.22)

we have

G(v)
i j (Ω, K )= εimn

2

∫
dk
{

Mml j

[
Δ1

(
F−+ln − F+−ln

)+Δ2

(
F++ln − F−−ln

)]
+ Nml j

[
Δ1

(
F++ln − F−−ln

)+Δ2

(
F−+ln − F+−ln

)]}
, (4.23)

G(b)
i j (Ω, K )= εimn

2

∫
dk
{

Mml j

[
Δ1

(
F−+ln + F+−ln

)−Δ2

(
F++ln + F−−ln

)]
+ Nml j

[
Δ1

(
F++ln + F−−ln

)−Δ2

(
F−+ln + F+−ln

)]}
. (4.24)

Equations (4.23) and (4.24) are the exact (within the QLA) forms of the linear
non-local response kernel of the turbulent EMF to mean velocity and magnetic
fields, respectively. We emphasise that, in deriving them, we have made no addi-
tional approximations, such as scale separation or any particular symmetries of the
turbulence (e.g. isotropy). It is immediately evident from (4.23) that the contribution
to the EMF from the mean flow vanishes if F++ = F−− and F+− = F−+, that is, if
z̃+ and z̃− have the same two-point correlations. This condition is somewhat trivially
satisfied by hydrodynamic turbulence (in which b̃= 0 such that z̃+ = z̃−) but can
also be satisfied by more general MHD turbulence, as will be discussed shortly.

In the remainder of this section, we examine (4.23) and (4.24) for specific turbulent
backgrounds. We also compare them with traditional mean-field theories and the
numerically inferred form of the non-local response kernel G(b) used in the literature.

4.2. Hydrodynamic turbulence
Consider homogeneous hydrodynamic turbulence, where z̃+ = z̃− and thus F

.=
F±± = F±∓. Then (4.19) becomes simply

Ei = εi jk

∫
dk�(k)[(b · k)δ jl − b j Kl]Flk, (4.25)
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where

�(k)
.=Δ1(k)−Δ2(k)= 1

Ω ′ + iνk2 + iη(k+ K )2
. (4.26)

This is the generic answer for hydrodynamic turbulence for general F(k). Notably,
the EMF is entirely independent of v in this case.

If we further assume that the turbulent flow is isotropic (3.10), we have

Flp(k)=
(
δlp − klkp

k2

)
E(k)

4πk2
− iεlpq

kq

k2

H(k)

8πk2
, (4.27)

where E(k) and H(k) are the energy and helicity spectra, respectively,

1
2
〈v2〉 =

∫ ∞
0

dk E(k), 〈v · (∇× v)〉 =
∫ ∞

0
dk H(k). (4.28)

We now assume sufficiently weak dissipation, such that τcν±k2� 1 and
τcν±kK � 1 over the range where E(k) and H(k) substantially contribute to the
integrals over k. In this case, we can use the following approximation for Δ:

�(k)≈ 1
Ω ′ + iηK 2

(
1− 2i(ν+k2 + ηk · K )

Ω ′ + iηK 2

)
. (4.29)

Note that we have assumed dissipation to be weak, so that the terms ν+k2 and
ηk · K could be taken out of the denominator of Δ. (The ηK 2 terms are retained
for reasons that will become evident shortly.) With (4.29), the integration over k in
(4.25) can be performed without assuming any particular form of the spectra E(k)
and H(k), and one obtains the relatively familiar form

E=A(Ω, K )b−B(Ω, K )(iK × b), (4.30a)

A(Ω, K )= α

N (Ω, K )
+ 2

3
ν+τ 2

c 〈w̃ · ∇× w̃〉
N 2(Ω, K )

, (4.30b)

B(Ω, K )= β

N (Ω, K )
− 2

3
ν+τ 2

c 〈̃v · ∇× w̃〉
N 2(Ω, K )

, (4.30c)

where
N (Ω, K )

.= 1− iτcΩ + τcηK 2, (4.31)

α and β are the local transport coefficients defined in (4.4),

〈w̃ · ∇× w̃〉 =
∫ ∞

0
dk k2 H(k), 〈̃v · ∇× w̃〉 =

∫ ∞
0

dk k2 E(k), (4.32)

and the corresponding response kernel is given by

G(b)
i j (Ω, K )=A(Ω, K )δi j + iB(Ω, K )εi jk Kk . (4.33)

The first terms in the expressions for A and B are exactly the empirical non-local
response kernel (4.3), with τ = τc and

l2 = τcη. (4.34)
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The second terms are viscous and resistive corrections. In particular, note that in
the ideal limit (ν± → 0) and for short correlation times (τcΩ� 1), we recover the
original local statement of the α-effect, that is, A→ α and B→ β.

These results are consistent with reports of the non-locality parameter τ being
of the order of the turnover time across multiple simulations with different val-
ues of the magnetic Reynolds number. In contrast, the inferred value of l varies
more widely in the literature (Rheinhardt & Brandenburg 2012; Brandenburg 2018),
and (4.34) can be considered the first actual calculation of l from first principles
(modulo the fact that we rely on the QLA and introduce τc in (2.43) ad hoc, as
usual).

4.3. Isotropic MHD turbulence
The non-local turbulent EMF for isotropic MHD turbulence (3.10) can be written

as follows:

E=A(Ω, K )b−B(Ω, K )(iK × b)+ C(Ω, K )v −D(Ω, K )(iK × v), (4.35)

where

A(Ω, K )= i
∫

dk
k2

b

k2

[
k · K + K 2

(k+ K )2
(Δ1 +Δ2)

(
H C(k)

8πk2
− H S(k)

8πk2

)

+2
(
Δ2

H S(k)

8πk2
−Δ1

H C(k)

8πk2

)]
, (4.36a)

B(Ω, K )= i
∫

dk
[

k2
b

k2

k2 + k · K
(k+ K )2

(Δ1 +Δ2)

(
EC(k)

4πk2
− E S(k)

4πk2

)
+k2 − k2

K

k2

(
Δ1

E S(k)

4πk2
−Δ2

EC(k)

4πk2

)]
, (4.36b)

C(Ω, K )= i
∫

dk
k2
v

k2

[
k · K + K 2

(k+ K )2
(Δ1 +Δ2)− 2Δ2

]
H A(k)

8πk2
, (4.36c)

D(Ω, K )= i
∫

dk

[
k2
v

k2

k2 + k · K
(k+ K )2

(Δ1 −Δ2)+ k2
K − k2

k2
Δ1

]
E A(k)

4πk2
, (4.36d)

kξ
.= (k · ξ)/ξ denotes the component of k along a given vector ξ and the func-

tions Eχ(k) and Hχ(k) are defined in (3.11). In particular, for ideal MHD in the
commonly assumed GO limit, the above coefficients acquire a more familiar form,

A(Ω, K )≈− i
3Ω ′
〈̃v · ∇× ṽ − b̃ · ∇× b̃〉, (4.37a)

B(Ω, K )≈ i
3Ω ′
〈̃v · ṽ〉, (4.37b)

C(Ω, K )≈ 0, (4.37c)

D(Ω, K )= i
3Ω ′
〈̃v · b̃〉. (4.37d)
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Let us now discuss each of these contributions to the non-local EMF and their rela-
tionship to the results of local mean-field theories. As established in the previous
discussion for hydrodynamic turbulence (§ 4.2), the transport coefficients A and B
correspond to the usual α-effect driven by kinetic helicity and turbulent diffusiv-
ity, respectively. Note that for MHD turbulence, the MFWK framework captures
the cancellation of kinetic helicity by current helicity, i.e. the magnetic α-effect,
also known as the Pouquet effect (Pouquet, Frisch & Léorat 1976). The coefficient
A is therefore qualitatively in agreement with previous theories, up to non-local
corrections (the difference between (4.36a) and (4.37a)). Notably, it is commonly
stated that the magnetic α-effect is captured only beyond the QLA, as done in the
eddy-damped quasinormal Markovian (Orszag 1970) or MTA (Blackman & Field
2002) closures. However, as can be seen from our calculation, this is not the case.
Although we included an MTA-like ad hoc damping term in (2.43), this modification
to the QLA is inessential for capturing the magnetic α-effect in (4.37a), and taking
τc→∞ results only in replacing Ω ′ with Ω. The coefficient B also agrees with the
vast majority of previous mean-field theories in that it contains no contribution to
the turbulent diffusivity from magnetic fluctuations (Vainshtein & Kichatinov 1983;
Rädler et al. 2002; Squire & Bhattacharjee 2015), although such a contribution was
found with the two-scale direct interaction approximation in Yoshizawa (1990).

The contribution to the turbulent EMF proportional to the mean-flow vorticity, as
determined by D, is known as the Yoshizawa effect (Yoshizawa 1990; Yokoi 2013)
and is related to the cross-helicity 〈̃v · b̃〉. As with the α-effect term, the coefficient
D agrees exactly with previous mean-field theories in the GO limit (l K � 1) and for
short correlation times (τcΩ� 1).

In contrast, the effect of C predicted by the MFWK framework is qualitatively
new. The term in the EMF that is proportional to the mean flow has received
limited attention in the literature. Typically, Galilean invariance is invoked to argue
that any term proportional to the mean flow should vanish. This is, of course, true
if the flow is homogeneous, and, indeed, the contribution from v vanishes in the
limit of negligible K ; i.e. C→ 0 as K → 0. However, the contribution of v at non-
negligible K is non-zero. To the best of our knowledge, the only other work where
this subject is discussed is Rädler & Brandenburg (2010). Using our notation, the
result of Rädler & Brandenburg (2010) can be expressed as follows:

E = . . .+Cv, (4.38a)

C = 1
3

∫
dτ

∫
dξ [G(ν)(τ, ξ)− G(η)(τ, ξ)]〈̃v(t, x) · j̃(t − τ, x − ξ)〉, (4.38b)

G(γ )(τ, ξ) .=
{
(4πγ τ)−3/2 exp(−ξ 2/4γ τ), τ > 0,
0, τ � 0.

(4.38c)

The ellipsis indicates the additional contributions to the EMF that are not relevant
to the present discussion.

Although (4.38) and (4.36c) are in agreement in that the basic effect is driven by
flow–current alignment 〈̃v · j̃〉, they differ in several significant ways beyond what
can be attributed to non-local corrections. Firstly, (4.38) predicts a finite contribution
to the non-local EMF even for constant mean flows. In Rädler & Brandenburg
(2010), it is argued that this does not violate Galilean invariance because the frame
of reference is fixed by the assumption of isotropic turbulence, i.e. that shifting from
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a frame with a constant mean flow and isotropic turbulence to the frame where the
mean flow is zero would render the turbulence anisotropic. However, because the
constant shift to the total velocity v = v + ṽ that would be introduced by a change in
reference frame would be absorbed by the mean flow v and not contribute to the
fluctuating fields ṽ that comprise the turbulence. In contrast, (4.36c) has the correct
limiting behaviour for constant mean flows, as the transport coefficient C vanishes
as K → 0.

Although the violation of Galilean invariance alone indicates that (4.38) is unphys-
ical, let us also mention other ways in which it disagrees with our theory. Equation
(4.38) predicts that the mean-flow contribution to the EMF vanishes when ν = η,
and, in particular, in the ideal limit ν± → 0. In contrast, (4.36c) at ν = η (i.e. ν− = 0)
predicts non-zero C ,

C(Ω, K )= i
∫

dk
k2
v

k2

k · K + K 2

(k+ K )2[Ω ′ + iν+(k2 + (k+ K )2]
H A(k)

8πk2
, (4.39)

or, in the ideal limit,

C(Ω, K )= i
Ω ′

∫
dk

k2
v

k2

k · K + K 2

(k+ K )2
H A(k)

8πk2
, (4.40)

both of which are generally non-zero. These discrepancies may be related to the
treatment of the mean flow as an externally prescribed field, as opposed to a self-
consistent field.

Note that flow–current correlations have also been found to produce additional
contributions to the α-effect in the case of non-stationary and (or) inhomogeneous
turbulence, or when the correlation time scales of the magnetic and velocity fluctu-
ations are not equal (Mizerski, Yokoi & Brandenburg 2023; Yokoi 2023; Hughes,
Mason & Proctor 2024). However, that effect is different from the one we discuss
here. In our case, the flow–current effect manifests as a contribution to the EMF
proportional to the mean flow rather than the mean magnetic field, is found for
stationary and homogeneous turbulent backgrounds, and does not depend on the
correlation times of the turbulent fields.

In the following section, we will see that this little-known contribution to the EMF
couples the mean magnetic fields and flows in such a way that enables a previously
unknown 〈̃v · j̃〉-driven dynamo effect.

5. Modulational modes of MHD turbulence

Perhaps some of the most basic questions that can be asked regarding mean-field
generation from turbulence are as follows: What properties of turbulence make it sus-
ceptible to spontaneously generating mean fields, what do these unstable mean fields
look like and how fast do they grow? These questions lie within the purview of the
modulational-mode analysis presented in this section, which therefore encapsulates
some of the most fundamental predictions of MFWK as a theoretical framework.
We will also compare and contrast the predictions of MFWK with those of existing
mean-field theories.

5.1. Derivation
The dispersion relation of modulational modes follows directly from the linearised

MFWK equations written in terms of the polarisations of the perturbed quantities
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(3.15) and (3.16). Let us first rewrite (3.15) in a form that aids the eventual
dispersion matrix formulation,(

(iΩ − ν+K 2)13 −ν−K 213

−ν−K 213 (iΩ − ν+K 2)13

)
z= i

(S+
S−

)
, (5.1)

where z
.= (z+, z−)ᵀ and

S±i =
∫

dk Kn

(
f±∓in −

Ki Km

K 2
f±∓mn

)
= Kn

(
δim − Ki Km

K 2

) ∫
dk f±∓mn . (5.2)

To find the dispersion matrix, we must express S in terms of the mean fields z±.
To do this, the integral of the perturbed Wigner matrix (4.14) can be simplified by
shifting and flipping integration variables as done in § 4.1,∫

dk f±∓mn =
[ ∫

dk Mmpj

(
D2 F∓±pn + D3 F∓∓pn

)+ Nmpj

(
D2 F±±pn + D3 F±∓pn

)
+ Mnpj

(
D1 F∓±pm + D4 F∓∓pm

)+ Nnpj

(
D1 F±±pm + D4 F±∓pm

)]
z±j

+
[ ∫

dk Mmpj

(
D1 F±∓pn + D4 F±±pn

)+ Nmpj

(
D1 F∓∓pn + D4 F∓±pn

)
+ Mnpj

(
D2 F±∓pm + D3 F±±pm

)+ Nnpj

(
D2 F∓∓pm + D3 F∓±pm

)]
z∓j , (5.3)

where the matrices Mi jk and Ni jk are defined in (4.22) and the functions Dn are
defined as follows:

D1 = W(W2 + ν2
−κ

4
1

)(W2 + ν2−κ
4
1

)2 − 4ν4−κ
8
2

,

D2 = −2ν2
−κ

4
2W(W2 + ν2−κ

4
1

)2 − 4ν4−κ
8
2

,

D3 = −iν−(k+ K )2
(W2 + ν2

−κ
4
1

)+ 2iν3
−k2κ4

2(W2 + ν2−κ
4
1

)2 − 4ν4−κ
8
2

,

D4 = −iν−k2
(W2 + ν2

−κ
4
1

)+ 2iν3
−(k+ K )2κ4

2(W2 + ν2−κ
4
1

)2 − 4ν4−κ
8
2

, (5.4)

and W .=Ω ′ + iν+κ2
0 , κ2

0
.= k2 + (k+ K )2, κ4

1
.= k4 + (k+ K )4 and κ4

2
.= k2(k+ K )2.

After extensive but straightforward calculation, one can rewrite this as follows:

iS± = P±z± + Q±z∓, (5.5)
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where the matrices P± and Q± are given by

P±i j = iKn

∫
dk

[
K p

K 2
F∓∓pn Mi j(D12, D1, D34, D13)− F∓∓in D3k j

+ K p

K 2
F∓±pn Mi j(D34, D4, D12, D24)− F∓±in D2k j

− F∓∓ni N j(D2, D4, D24)− F∓±ni N j(D3, D1, D13)

]
, (5.6a)

Q±i j = iKn

∫
dk

[
K p

K 2
F±±pn Mi j(D12, D2, D34, D24)− F±±in D4k j

+ K p

K 2
F±∓pn Mi j(D34, D3, D12, D13)− F±∓in D1k j

− F±±ni N j(D1, D3, D13)− F±∓ni N j(D4, D2, D24)

]
, (5.6b)

where

Mi j( f1, f2, f3, f4)
.= f1Ki K j − f2K 2δi j +

(
f3 − D

K · (k+ K )
(k+ K )2

)
Ki k j

+ f4
K 2

(k+ K )2
(ki + Ki)K j , (5.7)

N j( f1, f2, f3)
.= f1K j +

(
f2 − f3

K · (k+ K )
(k+ K )2

)
k j , (5.8)

and we use the shorthand D
.= D1 + D2 + D3 + D4 and Dmn

.= Dm + Dn.

5.2. Dispersion relation
The general dispersion relation and polarisations for the modulational modes of

MHD turbulence are given by

det�= 0, �z= 0, (5.9)

where z
.= (z+, z−)ᵀ, z± = z± exp (−iΩt + iK · x) and the dispersion matrix � is

given by

�=
(
�++ �+−

�−+ �−−

)
, (5.10)

where

�±± = (iΩ − ν+K 2)13 − P±, (5.11a)

�±∓ =−ν−K 213 − Q±, (5.11b)

and P± and Q± are defined in (5.6a) and (5.6b), respectively. Equation (5.9) is the
general dispersion relation of modulational modes of generic incompressible resistive
MHD turbulence within the MTA closure (which reduces to the QLA in the limit
τc→∞). We emphasise that no particular properties of the turbulence, e.g. isotropy
or scale-separation, have been assumed to derive these equations.
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5.3. Examples
Although (5.9) is powerful in its generality, the intricate dependence of the inte-

grands in (5.6a) and (5.6b) on Ω and K means that obtaining the solutions to
(5.9) is challenging in its own right. In the remainder of this section, we make
a series of simplifying assumptions to obtain explicit solutions of (5.9) that allow
us to compare the predictions of MFWK with those of traditional mean-field
theories.

5.3.1. Isotropic turbulence
For isotropic turbulent backgrounds (3.10), we can, without loss of generality, let the
modulational wavevector K lie along ez (K = K ez). By incompressibility, we then
have z±z = 0, so we may consider the following reduced system:

�z= 0, det�= 0, (5.12)

where z
.= (z+x , z+y , z−x , z−y ) and the dispersion matrix � can be written as

�
.=

⎛⎜⎜⎝
MS + MA mS +m A NS + NA nS + n A

−mS −m A MS + MA −nS − n A NS + NA

NS − NA nS − n A MS − MA mS −m A

−nS + n A NS − NA −mS +m A MS − MA

⎞⎟⎟⎠ . (5.13)

Here,

MS
.= iΩ − ν+K 2 + iK

∫
dk

k2
x

k2

[
ES

4πk2
M(D1, D13, D34, D24)

+ EC

4πk2
M(D4, D24, D12, D13)

]
, (5.14a)

NS
.=−ν−K 2 + iK

∫
dk

k2
x

k2

[
ES

4πk2
M(D2, D24, D34, D13)

+ EC

4πk2
M(D3, D13, D12, D24)

]
, (5.14b)

MA
.=−iK

∫
dk

E A

4πk2

k2
x

k2
M(D1, D13, D34, D24), (5.14c)

NA
.= iK

∫
dk

E A

4πk2

k2
x

k2
M(D2, D24, D34, D13), (5.14d)

mS
.= K

∫
dk

k2
x

k2

[
HS

8πk2
N (D3, D4, D24)+ HC

8πk2
N (D2, D1, D13)

]
, (5.14e)

nS
.= K

∫
dk

k2
x

k2

[
HS

8πk2
N (D4, D3, D13)+ HC

8πk2
N (D1, D2, D24)

]
, (5.14f )
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m A
.=−K

∫
dk

k2
x

k2

HA

8πk2
N (D3, D4, D24), (5.14g)

n A
.= K

∫
dk

k2
x

k2

HA

8πk2
N (D4, D3, D13), (5.14h)

where

M( f1, f2, f3, f4)
.= 2K

(
− f1 + f2

k2
x

(k+ K )2

)
+ kz

(
f3 − f4

K (kz + K )

(k+ K )2

)
, (5.15)

N ( f1, f2, f3)
.= f1 −

(
f2 − f3

K (kz + K )

(k+ K )2

)
. (5.16)

The dispersion relation can then be factored as follows:

det�= (a + ib)(a − ib),

a
.= M2

S − M2
A − N 2

S + N 2
A −m2

S +m2
A + n2

S − n2
A,

b
.= 2(Msms − Nsns − MAm A + NAn A). (5.17)

In the remainder of the section, we focus on solving (5.17) for isotropic backgrounds
as an example.

5.3.2. Ideal limit
The dispersion matrix (5.13) takes a particularly simple form in the ideal limit ν± →
0. In this limit, one has D1→ 1/Ω ′ and all of the Dn �=1 are zero, so the modulational
frequency Ω can be pulled outside of the integrals in (5.14a). Then, we have

MS = iΩ + iK
Ω ′

∫
dk

{
ES

4πk2

k2
x

k2

[
2K

(
−1+ k2

x

(k+ K )2

)]

− EC

4πk2

k2
x

k2

[
kz

(K (kz + K )

(k+ K )2

)]}
, (5.18a)

NS = iK
Ω ′

∫
dk

{
ES

4πk2

k2
x

k2

[
kz

(
−K (kz + K )

(k+ K )2

)]

+ EC

4πk2

k2
x

k2

[
2K

(
k2

x

(k+ K )2

)]}
, (5.18b)

MA =− iK
Ω ′

∫
dk

E A

4πk2

k2
x

k2

[
2K

(
−1+ k2

x

(k+ K )2

)]
, (5.18c)

NA = iK
Ω ′

∫
dk

E A

4πk2

k2
x

k2

[
kz

(
−K (kz + K )

(k+ K )2

)]
, (5.18d)
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mS = K

Ω ′

∫
dk

k2
x

k2

{
HC

8πk2

[
−1+ K (kz + K )

(k+ K )2

]}
, (5.18e)

nS = K

Ω ′

∫
dk

k2
x

k2

{
HS

8πk2

[
K (kz + K )

(k+ K )2

]
+ HC

8πk2

}
, (5.18f )

m A = 0, (5.18g)

n A = K

Ω ′

∫
dk

k2
x

k2

HA

8πk2

[
K (kz + K )

(k+ K )2

]
. (5.18h)

Hence, the dispersion relation (5.17) becomes the product of two quadratic poly-
nomials in ΩΩ ′. It can then be easily solved, yielding eight total solutions Ω(K ).
The solutions obtained in this manner are what will be presented throughout this
section. Also, unless explicitly stated otherwise, we will assume the limit St→∞,
i.e. Ω ′ ≈Ω , for clarity.

Although the Rm, St→∞ limit is formally outside of the QLA applicability
domain, we believe this to be a worthwhile approach nonetheless, for the following
reasons. Firstly, it is often the case that equations derived in a certain asymptotic
limit qualitatively hold outside of that same limit. In particular, the accuracy of the
QLA for the modulational dynamics of MHD is a rather complicated issue, and the
conventional validity criterion min{St, Rm}� 1 can be understood as a sufficient,
but not necessary condition (Jin & Dodin 2025). Secondly, the simplified picture
that emerges in the QLA can serve as a stepping stone towards a more complex
future theory that will contain quasilinear dynamics as a limiting case.

In addition, we will also supplement qualitatively novel predictions of MFWK
with a study of their dependence on St within the MTA-like closure used in (2.43),
i.e. retaining the τ−1

c term in Ω ′ =Ω + iτ−1
c . This is, of course, a highly simplified

model of the effect of the higher-order correlations neglected in the QLA, the results
of which must therefore be taken with a grain of salt. Nevertheless, establishing the
dependence on St within this limited approach can serve as a tentative predictor of
the robustness of the collective effects found in the ideal limit (St� 1) to eddy–eddy
interactions.

5.4. Parametrization of isotropic helical background
As discussed in § 3.1, the Wigner matrix of a generic isotropic turbulent back-

ground is fully determined by the six spectra that characterise the total energy
ES(k), residual energy EC(k), cross-helicity E A(k), total (kinetic + current) helic-
ity HS(k), residual (kinetic − current) helicity HC(k) and flow–current alignment
HA(k). Solving (5.17) for different background spectra will therefore allow us to
determine how the modulational dynamics of the system depend on the properties
of the turbulent equilibrium.

For simplicity, we assume Gaussian test spectra:

ES

4πk2
= 〈̃v · ṽ〉 + 〈̃b · b̃〉

(
√

2π)3
l3

2
exp

(
− l2k2

2

)
, (5.19a)

EC

4πk2
= 〈̃v · ṽ〉 − 〈̃b · b̃〉

(
√

2π)3
l3

2
exp

(
− l2k2

2

)
, (5.19b)
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E A

4πk2
= 2〈̃v · b̃〉
(
√

2π)3
l3

2
exp

(
− l2k2

2

)
, (5.19c)

HS

8πk2
= 〈̃v · ∇× ṽ〉 + 〈̃b · ∇× b̃〉

(
√

2π)3
l3

2
exp

(
− l2k2

2

)
, (5.19d)

HC

8πk2
= 〈̃v · ∇× ṽ〉 − 〈̃b · ∇× b̃〉

(
√

2π)3
l3

2
exp

(
− l2k2

2

)
, (5.19e)

HA

8πk2
= 〈̃v · ∇× b̃〉 + 〈̃b · ∇× ṽ〉

(
√

2π)3
l3

2
exp

(
− l2k2

2

)
. (5.19f )

Such spectra correspond to two-point correlations of the form

〈̃v(x + r/2) · ṽ(x − r/2)〉 = 〈̃v · ṽ〉 exp
(
− r 2

2l2

)
(5.20)

and are a convenient and popular choice in the mean-field dynamo literature (Rädler
& Stepanov 2006; Squire & Bhattacharjee 2015). Note that we have assumed the
same Gaussian form and same characteristic correlation length l for all spectra.
Although this is surely a simplification, it enables a minimal parametrization of
the properties of the turbulent background in terms of the single-point statistics.
Although six spectra are needed to fully define the isotropic Wigner matrix, we need
only five parameters to capture physical properties of the turbulent equilibria that
have the potential to qualitatively impact the modulational dynamics, since

τ
.= l/vrms (5.21)

simply serves to set the characteristic time scale of the problem.8 In the following
section, we will normalise all modulational frequencies, Ω to τ−1 and all modu-
lational wavevectors K to l−1. Then, our turbulent equilibria (after the Gaussian
spectral ansatz) can be fully characterised by the five dimensionless parameters,

m
.= b2

rms/v
2
rms, (5.22a)

a
.= 〈̃v · b̃〉/vrmsbrms, (5.22b)

hv
.= l 〈̃v · ∇× ṽ〉/v2

rms, (5.22c)

hb
.= l 〈̃b · ∇× b̃〉/b2

rms, (5.22d)

hc
.= l 〈̃v · ∇× b̃〉/vrmsbrms, (5.22e)

where 〈̃v · ṽ〉 = v2
rms and 〈̃b · b̃〉 = b2

rms. The relative strength of magnetic fluctua-
tions is captured by the parameter m, with m = 0 corresponding to hydrodynamic

8In general, the turbulent velocity and magnetic fields will have different characteristic time scales (Yokoi
2023; Hughes et al. 2024), and this will be an important assumption to relax in future work.

https://doi.org/10.1017/S0022377825100561 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100561


30 S. Jin and I.Y. Dodin

turbulence and m = 1 corresponding to equipartition. The parameter a is the nor-
malised cross-helicity, which is non-zero only in the case of ‘imbalanced’ MHD
turbulence, i.e. when energy is unevenly distributed between z̃+ and z̃−. (Note that
〈̃z+ · z̃+〉 − 〈̃z− · z̃−〉 = 2〈̃v · b̃〉.) The parameters hv and hb are the normalised kinetic
and current helicities, respectively. The parameter hc captures flow–current align-
ment and can be understood as the ‘helical counterpart’ to the cross-helicity a in
that it captures the imbalance of the Elsässer-fields helicities (〈̃z+ · ∇× z̃+〉 − 〈̃z+ ·
∇× z̃+〉 = 2〈̃v · j̃〉).

Note that the parameters are scaled such that their values lie between zero and one
for ‘realistic’ turbulence, which we define to include turbulence that can be feasibly
obtained in numerical simulations with the appropriate choice of forcing functions.
For example, hv = 1 is commonly referred to as ‘maximally helical turbulence’ in
the literature, and, understandably, it is a popular scenario for numerical studies
of the α-effect (Brandenburg 2001; Sur, Brandenburg & Subramanian 2008; Mitra
et al. 2009), although such turbulence is indeed highly stylised and not realistic in
the usual sense of the word.

The mean-field effects associated with hv, hb and m are relatively well understood,
since the kinetic-helicity-driven α-effect and its quenching by current helicity are
arguably the central results of traditional mean-field theory for homogeneous MHD
turbulence and have been the subject of much numerical investigation. Furthermore,
these effects alone can be accommodated within the usual mean-field treatment
where only the dynamics of the mean magnetic field are considered, since the
mean induction equation decouples from the momentum equation in the absence
of cross-helicity or flow–current alignment, as discussed in § 4.

For cases where a = 0 and hc = 0, we therefore expect MFWK to largely corrobo-
rate the results of previous mean-field theories. In contrast, the mean-field dynamics
associated with cross-helicity (as parametrised by a) and flow–current alignment
(parametrised by hc) have not yet been fully analysed. As discussed in § 4, cross-
helicity and flow–current alignment couple the mean induction and momentum
equations such that the usual kinematic approach cannot be applied. Determining
the mean-field modes associated with these effects has therefore, until now, been
intractable in the general case.9 In particular, we report a new dynamo effect driven
by correlations between the fluctuating velocity and current, 〈̃v · j̃〉.

5.5. Benchmark example: the α2-dynamo
We first benchmark the modulational dynamics obtained with the MFWK formal-

ism by reproducing the expected α-effect and associated α2-dynamo, i.e. solve (5.17)
for a = hc = 0.

5.5.1. Hydrodynamic turbulence
Figure 1 shows the modulational modes obtained from MFWK for hydrodynamic
helical turbulence. As expected, the kinetic helicity supports a stationary (ReΩ = 0)
unstable solution that is helically b-polarised (bx = iby , vx = vy = 0), with a growth
rate that is maximised at relatively large modulational wavelengths (l K < 1). To
further confirm that the unstable b-polarised mode is indeed the expected α2-
dynamo, figure 2 shows that the growth rate of the unstable b-polarised mode indeed

9However, see Courvoisier et al. (2010a,b) for a different approach to this problem for simple cases.
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FIGURE 1. The imaginary (a–c) and real (d–f ) parts of modulational frequencyΩ versus modu-
lational wavevector K at m = a = hb = hc = 0 and St = 105 for hv = 0 (a,d), hv = 0.5 (b,e) and
hv = 1 (c,f ). The magnetic-energy fraction fb=̇b2/(v2 + b2) of the corresponding eigenmodes
are given in panels (g)–(i). The frequencies are given in units of the inverse turnover time τ−1

and wavevectors are given in units of the inverse characteristic eddy size l−1.

converges to the local α2-dynamo growth rate,

Γ = αK − (η+ β)K 2, (5.23)

in the St� 1 limit, and still qualitatively agrees with (5.23) for larger values of St in
that it is unstable strictly for K < 1 and is stabilised by current helicity.

Note that in the ideal limit (ν± → 0), and unless driven unstable by helicity, the
modulational perturbations obtained from the MFWK framework are damped at
the rate τ−1

c /2, irrespective of the modulational wavenumber K . In this sense, the
interpretation of β in the local expansion of the EMF (also, B in (4.35)) as a turbu-
lent diffusivity relies on the assumption of short correlation times, and the analogy
must therefore be applied with caution. A true dissipation such as viscosity ν would
damp the modulational perturbations at the rate νK 2. Figure 1 also shows another
(less) unstable stationary mode that is helically v-polarised (ivx = vy , bx = by = 0;
note the opposite handedness relative to the b-polarised mode) and is unstable for
relatively larger values of K . It may seem, at first glance, that this is simply the
hydrodynamic α-effect, also known as the Hα-effect (Moiseev et al. 1983); however,
it has been argued that the latter vanishes in incompressible turbulence (Khomenko,
Moiseev & Tur 1991). The incompressible analogue is known as the anisotropic
kinetic alpha instability (Frisch, She & Sulem 1987); however, as the name might
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FIGURE 2. The growth rate Γ =̇ImΩ versus modulational wavenumber K for various St =̇τc/τ .
The classic α2-dynamo dispersion relation (5.23) is shown in the black dashed line. The frequen-
cies are given in units of the inverse turnover time τ−1 and wavevectors are given in units of the
inverse characteristic eddy size l−1.

suggest, this effect requires anisotropy, while our figure 1 is for an incompressible,
isotropic turbulent background. Therefore, this mode remains to be interpreted.
Although the generation of mean flows from hydrodynamic turbulence has received
considerable attention (Rüdiger 1980; Yokoi & Yoshizawa 1993; Elperin, Kleeorin
& Rogachevskii 2003; Yokoi & Brandenburg 2016), our focus is on the tur-
bulent dynamo problem. We therefore do not discuss this hydrodynamic mode
further, except to note that it is stabilised by magnetic fluctuations and vanishes
entirely for m � 0.2. Instead, we invite future investigations that may resolve this
mystery.

5.6. Dynamo driven by flow–current alignment
Let us now examine the effect of flow–current alignment by solving (5.17) for

non-zero values of the parameter hc. As discussed in § 4, flow–current alignment
(equivalently, an imbalance in the helicities of the Elsässer fields) couples the mean
momentum and induction equations, and the fundamental modulational dynamics
associated with this property have not yet been established. Let us therefore first
isolate the influence of flow–current alignment by removing all other potential effects
(a = hv = hb = 0). The resulting modes are shown in figure 3.

It can be seen that the flow–current alignment hc indeed drives a strange and novel
dynamo effect, the properties of which we shall discuss at length in the remainder of
this section. Let us first highlight that this effect is emphatically not one that can be
captured under the assumption of scale separation, as the mode is stable for l K � 1.
Moreover, in the absence of viscosity or resistivity, the growth rate asymptotes to a
constant non-zero value as K →∞, although we will show in Appendix E that this
property is limited to the case a = 0.

In contrast to the stationary α2-dynamo, the unstable modes driven by flow–
current alignment propagate as they grow. The propagation speed of these
‘correlation waves’ is given by

v±ph =
√
〈̃z∓ · z̃∓〉/3 (5.24)

for z± polarised modes, and they are further discussed in Appendix E. Furthermore,
for a = 0 these modes are polarised such that the associated energy is split evenly
between the mean flow and magnetic fields, or equivalently, between z+ and z−.
Note that this means that a 〈̃v · j̃〉-dynamo drives a net conversion of kinetic energy
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FIGURE 3. The imaginary (a–c) and real (d–f ) parts of modulational frequency Ω normalised
to τ−1 at m = 1, a = hb = hv = 0 and St = 105 for hc = 0 (a,d), hc = 0.5 (b, e) and hc = 1
(c,f ). The magnetic energy fraction fb=̇b2/(v2 + b2) of the corresponding eigenmodes is pre-
sented in panels (g)–(i). The frequencies are given in units of the inverse turnover time τ−1 and
wavevectors are given in units of the inverse characteristic eddy size l−1.

to magnetic energy as long as the turbulent magnetic energy is below equipartition
(m < 1). As will be discussed shortly, the energy balance for the a �= 0 case is more
complicated, but the ultimate consequence of dynamo action is the same.

5.6.1. Interaction with kinetic helicity
Although the EMF for isotropic MHD turbulence can be neatly split into the sum
of separate ‘effects’ (for example, the term proportional to the mean flow that arises
from 〈̃v · j̃〉), these additive contributions to the EMF certainly do not guarantee
additive contributions to the solutions of (5.17), and the various statistical properties
of the turbulence can interact in non-obvious ways. To illustrate this, figure 4 shows
the dependence of the maximum growth rate of the 〈̃v · j̃〉-dynamo on the kinetic
and current helicities. This figure also compares the said maximum growth rate with
that of the α2-dynamo, particularly in how it depends on flow–current alignment and
the current helicity.

It can be seen that although flow–current alignment has almost no effect on the
α2-dynamo (as opposed to current helicity, which can exactly cancel the destabil-
ising drive for hv =mhb), kinetic helicity partially suppresses the 〈̃v · j̃〉-dynamo.
Interestingly, the 〈̃v · j̃〉-dynamo is not perceptibly affected by current helicity. Let
us therefore, in the remainder of this section, take hv =mhb, so that the α2-dynamo
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FIGURE 4. The maximum growth rate Γmax (colourbars) of the (a) α2-dynamo versus flow–
current alignment (hc) and current helicity (hb); (b) 〈̃v · j̃〉-dynamo versus the dimensionless
kinetic (hv) and current (hb) helicities. The growth rates are given in units of the inverse turnover
time τ−1 and wavevectors are given in units of the inverse characteristic eddy size l−1.

is completely stabilised. This will allow us to focus on the 〈̃v · j̃〉-dynamo and pin
down the dimension of the parameter space that is irrelevant for the dynamics of
interest.

Beyond a simple suppression of the maximum growth rate, kinetic helicity can
qualitatively impact the 〈̃v · j̃〉-driven mode properties shown in figure 3. As seen
in figure 5, kinetic helicity breaks the degeneracy of the modes shown in figure 3,
shifting one unstable branch towards higher K and the other towards lower K . For
brevity, let us refer to the former mode as M1 and the latter as M2 (each mode label
refers to two separate solutions of (5.17) with opposite signs of Re Ω). As shown
in figure 5, at sufficiently high values of hv, M2 splits into two unstable K regions
at low and high K . The modes are both circularly polarised in both z+ and z−, but
with opposite handedness (z±x = iz±y for M1 and iz±x = z±y for M2).

5.6.2. Cross-helicity interaction
Let us now examine the impact of cross-helicity on the 〈̃v · j̃〉-dynamo. As can be
seen in figure 6, the overall effect of cross-helicity is to suppress the 〈̃v · j̃〉-dynamo
and shift the instability range to smaller K , for both M1 and M2.

At first, this may seem like bad news for the 〈̃v · j̃〉-dynamo, since cross-helicity
is a measure of the imbalance between the Elsässer fields (〈̃z+ · z̃+〉 − 〈̃z− · z̃−〉 =
2〈̃v · b̃〉), and flow–current alignment is a measure of the imbalance between the
Elsässer helicities (〈̃z+ · w̃+〉 − 〈̃z− · w̃−〉 = 2〈̃v · j̃〉). Although they both capture
some form of imbalance between the Elsässer fields, cross-helicity and flow–current
alignment are entirely independent properties of MHD turbulence (determined by
the spectra E A and HA, respectively). Whether such turbulence is realised in astro-
physical environments or other environments of interest is a question that we leave
to future work.

5.6.3. Dependence on St
The results presented in this section thus far are truly quasilinear, in that they are
obtained in the St→∞ limit of (2.43). For ‘realistic’ large-Rm turbulence, St is
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FIGURE 5. The imaginary (a–c) and real (d–f ) parts of modulational frequency Ω at m = hc =
1, a = 0 and St = 105 for hv = hb = 0.3 (a,d), hv = hb = 0.8 (b, e) and hv = hb = 0.9 (c,f ). The
magnetic energy fraction fb=̇b2/(v2 + b2) of the corresponding eigenmodes are given in panels
(g–i). The frequencies are given in units of the inverse turnover time τ−1 and wavevectors are
given in units of the inverse characteristic eddy size l−1.

expected to be order-one. Let us therefore explore how strongly damped the 〈̃v · j̃〉-
dynamo is by eddy–eddy collisions, at least within the simple MTA-type model used
in (2.43). Figure 7(a) shows the maximum growth rate of the 〈̃v · j̃〉-dynamo over
the (m, hc) parameter space, and figure 7(b) shows the critical St below which the
fastest growing 〈̃v · j̃〉-mode is completely stabilised. It can be seen that although
the 〈̃v · j̃〉-dynamo can still be unstable at St ∼ 1, it is, in general, far less robust to
the damping effect of decorrelations than the α2-dynamo, whose growth rate scales
linearly with τc in the St→ 0 limit.

5.6.4. Discussion
In summary, we have shown that correlations between the turbulent flow and cur-
rent, 〈̃v · j̃〉, support a previously unknown mechanism of mean-field dynamo. The
curious properties of this dynamo warrant further investigation in a number of
directions that we leave to future research.

Firstly, as we have shown, the 〈̃v · j̃〉-dynamo is notably less robust to the effect of
eddy–eddy interactions than the classic kinetic-helicity-driven α-effect, at least within
the simple MTA-type closure (2.43). Targeted direct numerical simulations (DNS)
with the Elsässer fields helically driven with opposite handedness could clarify if
these effects persists beyond this simple closure. There is then the separate question
of whether such an imbalance in Elsässer helicities naturally occurs in astrophysical
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FIGURE 6. The imaginary (a,b) and real (c,d) parts of modulational frequency Ω versus K and
a at m = hv = hb = hc = 1 and St = 105, for both 〈̃v · j̃〉-driven modes M1 (a,c) and M2 (b,d).
The frequencies are given in units of the inverse turnover time τ−1 and wavevectors are given in
units of the inverse characteristic eddy size l−1.

systems, e.g. through instability-driven turbulence in the presence of a magnetic field.
For instance, magnetoconvection or the Tayler instability with rotation – where the
unstable eigenmodes are helical – could plausibly generate such an imbalance (Tayler
1973; Chatterjee et al. 2011; Bonanno et al. 2012). The relevance and broader signif-
icance of the 〈̃v · j̃〉-dynamo, beyond being a curious collective effect that emerges
in the quasilinear limit, hinges on such further investigations.

Although whether it is anything more remains to be seen, the 〈̃v · j̃〉-dynamo is
certainly an interesting and previously unrecognised collective effect of isotropic
MHD turbulence, and it is worth pondering its properties further. Perhaps most
notably, although it is a mean-field dynamo in the sense that it is a mode of the mean-
field system, it is clearly not a large-scale dynamo. For the ideal balanced case shown
in figure 3, the 〈̃v · j̃〉-modes do not have a K at which the growth rate is maximised,
instead asymptoting to its maximum growth rate as K →∞. (This, of course, would
be cut off by dissipation in practice.) What kind of physical phenomenon does such a
solution describe? As the growth rate is mostly insensitive to K at large K , perhaps
this describes the system’s propensity to form coherent structures, as any initial
perturbation would roughly retain its shape while getting steeper (due to the effective
high-pass filter) and growing exponentially in the linear stage. Perhaps this is some
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FIGURE 7. (a) The maximum growth rate Γmax normalised to τ−1 of 〈̃v · b̃〉-dynamo, at St = 105

and (b) critical St, Stcrit, required for instability versus hc and m, both at a = hv = hb = 0. Note
that Stcrit can only be defined for parameter values where the 〈̃v · b̃〉-dynamo is unstable; the
grey region on (b) indicates values of (m, hc) for which there is no instability at any value of St .
The colourbar is limited to the values (0, 15) for visibility, although Stcrit reaches much larger
values near the stability boundary.

signature of the small-scale dynamo that survives the quasilinear treatment. We leave
this as an open question for future work, but highlight the stabilising effect of cross-
helicity as a potential clue that may lead to the desired physical insight if pursued.

6. Summary

This paper aims to advance the existing understanding of self-organization in
MHD turbulence by studying mean-field formation as a modulational instability
of the underlying turbulence.

In the first part (§§ 2 and 3), we propose a wave-kinetics-based extension to
mean-field theory, which we term MFWK. The MFWK is different from previous
mean-field approaches in that (i) it does not assume scale separation between the
mean fields and turbulence, and (ii) it self-consistently applies the mean-field treat-
ment to the full MHD equations rather than the induction equation alone. We also
introduce the modulational-instability formulation of mean-field formation, in which
the equations of MFWK are linearised around statistically homogeneous turbulent
equilibria.

In the second part of the paper (§§ 4 and 5), we apply the MFWK formalism to
obtain two main results pertaining to the turbulent dynamo.

The first of these results is an analytical expression for the non-local response ker-
nel relating the turbulent EMF to the mean magnetic and velocity fields for generic
MHD turbulence (§ 4). To the best of our knowledge, this is the first time such
an expression has been derived, as opposed to inferred through DNS. Our result
is in agreement with DNS and previous analytical findings in the relevant limits,
with the important exception of the dependence of the EMF on the mean flow.
The disagreement between our calculation of this effect and the previous result
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(Rädler & Brandenburg 2010) highlights the importance of a self-consistent
treatment of the flow.

The second main result is our prediction of a novel mean-field dynamo effect that
is driven by correlations between the turbulent flow and current, 〈̃v · j̃〉 (§ 5). We
emphasise that such an effect cannot be captured with the usual kinematic and scale-
separated approach. Although the 〈̃v · j̃〉-dynamo is generally less robust than the
well-known α2-dynamo, it has the important distinction that it is not quenched by
current helicity, and is, in fact, enabled rather than suppressed by magnetic fluctua-
tions. Whether this effect survives beyond the QLA, and whether the flow–current
correlations required for its onset are relevant to astrophysical environments or other
environments of interest remains to be seen.
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Appendix A. Modulational instability
The MI (Zakharov & Ostrovsky 2009) is an instability of a homogeneous finite-

amplitude wave that results in spontaneous symmetry breaking, namely, appearance
of unstable periodic modulations of the wave amplitude. The MI is usually illus-
trated on the example of a nonlinear Schrödinger equation (NLSE), which arises
in the context of nonlinear optics, Bose–Einstein condensates, and water waves.
Although the derivation of the MI for the NLSE is commonly known (Dewar, Kruer
& Manheimer 1972), we present it here for completeness, to facilitate understanding
of the big picture behind the MI in the dynamo context.

The NLSE can be written in dimensionless form as

i∂tψ + 1
2
∂2

xψ = σ |ψ |2ψ, (A.1)

where ψ(t, x) is a complex field and σ is a constant. This equation has a
homogeneous-wave solution

ψ0(t)= A exp(−iσ |A|2t). (A.2)

Let us consider the dynamics of such a wave if its amplitude is perturbed as follows:

ψ(t, x)= [1+ η(t, x)]ψ0(t), (A.3)

where η� 1 is a small complex function that represents an inhomogeneous
perturbation to the wave amplitude. Assuming the notation

D̂
.= i∂t + 1

2
∂2

x , (A.4)
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we can rewrite (A.1) as follows:

0= D̂ψ − σ |ψ |2ψ
= D̂ψ0 +ψ0 D̂η+ ηi∂tψ0 − σ

[
ψ∗0 (1+ η∗)

][
ψ2

0 (1+ η)2
]

≈ D̂ψ0 +ψ0(D̂ + σ |A|2)η− σψ0|A|2(1+ 2η+ η∗)
≈ψ0(D̂η− σ |A|2(η+ η∗)], (A.5)

where we have neglected terms quadratic in η.
This leads to the following equation for η:

i∂tη+ 1
2
∂2

xη= σ |A|2(η+ η∗), (A.6)

which can be written as two real equations for ηr
.=Re η and ηi

.= Im η,

∂tηr + 1
2
∂2

xηi = 0, (A.7a)

∂tηi − 1
2
∂2

xηr + 2σ |A|2ηr = 0. (A.7b)

Seeking solutions of the form ηr , ηi ∼ exp(−iΩt + iK x) yields the following
dispersion relation:

Ω2 = K 2

2

(
K 2

2
+ 2σ |A|2

)
. (A.8)

It is seen from (A.8) that the primary wave (A.2) is modulationally unstable if σ < 0,
specifically, for K 2 < 4|σ ||A|2. The maximum growth rate of this instability is
reached at K 2 =−2σ |A|2 and is given by Γ =−σ |A|2.

If a monochromatic wave (A.2) is replaced with a broad wave spectrum, the
average intensity of the corresponding oscillations exhibits a similar instability. The
wave-kinetic calculation of its rate, which is also similar in spirit to our dynamo
calculation in this paper, can be found, for example, in Hall et al. (2002). The
dispersion relation of this MI reduces to (A.8) in the limit when the spectrum width is
negligible, i.e. the spectrum is delta-shaped. Another arguably instructive comparison
of an NLSE-based model and wave kinetics can be found in Zhou, Zhu & Dodin
(2019), which addresses this problem in the context of drift-wave turbulence.

Appendix B. Review of the Wigner–Weyl transform
Here we provide a minimal, low-brow review of the Wigner–Weyl transform and

list some useful properties and identities that are used throughout this work. For a
more in-depth discussion, see, for example, Tracy et al. (2014) or Case (2008).

We will write our formulae for the specific case of operators Â acting on the
Hilbert space of functions f (x) defined on a three-dimensional configuration space
x
.= (x1, x2, x3). The formalism is, of course, more general, but here we prioritise

ease of application to the specific problems considered in this paper over generality.
We will also limit our consideration to scalar operators and scalar functions, as
matrix-valued operators and functions can be treated element-wise with the scalar
formulae.
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The Wigner–Weyl transform, or simply the Wigner transform, maps an operator
Â onto a function A on the 2× 3-dimensional phase space (x, k),

A(x, k)=
∫

ds e−ik·s〈x + s/2| Â|x − s/2〉. (B.1)

Here, the kets |x〉 are the eigenstates of the position operator x̂, normalised such
that 〈x ′|x̂|x〉 = xδ(x − x ′). This projection is known as the the Weyl image or symbol
of Â.

The inverse Wigner–Weyl transform, also known as the Weyl transform, is defined
as

Â= 1
(2π)3

∫
dx

∫
dk

∫
ds e−ik·s A(x, k)|x − s/2〉〈x + s/2|. (B.2)

It follows that the matrix elements of Â in the coordinate representation, A(x, x ′) .=
〈x| Â|x ′〉, are connected with A via

A(x, x ′)= 1
(2π)3

∫
dk e−ik·(x−x′)A

( x + x ′

2
, k
)
, (B.3)

and in particular,

A(x, x)= 1
(2π)3

∫
dk A(x, k). (B.4)

The identity, position and momentum operators have intuitive mappings,

1̂⇔ 1, x̂⇔ x, k̂⇔ k, (B.5)

where we use⇔ to denote the Wigner–Weyl correspondence between operators and
their symbols. Also, pure functions of the position and momentum operators map
on to the same functions of the corresponding phase-space coordinate,

f (x̂)⇔ f (x), g(k̂)⇔ g(k) (B.6)

for any functions f and g.
More generally, the product of operators Ĉ = Â B̂ maps in the following way:

Â B̂⇔ A(x, k) 
 B(x, k), (B.7)

where 
 is the Moyal star product. This product is defined as

A(x, k) 
 B(x, k)
.= A(x, k)eiL̂/2 B(x, k), (B.8)

where L is the Janus operator,

L̂ .=←−∂x ·−→∂k −←−∂k ·−→∂x , (B.9)

and the arrows indicate the directions in which the derivatives act, so that AL̂B =
{A, B}, where {. . . , . . .} is the canonical Poisson bracket,

{A, B} .= (∂x A) · (∂k B)− (∂k A) · (∂x B). (B.10)

In the main part of the paper, we make frequent use of the following identities:

A(k) 
 eiK ·x = A(k+ K/2)eiK ·x, eiK ·x 
 A(k)= A(k− K/2)eiK ·x, (B.11)

where K is a constant. For other potentially useful properties of the Moyal star, see,
for example, Tracy et al. (2014).
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Appendix C. Quadratic invariants of MFWK
In this appendix, we show that the quasilinear MFWK equations (2.39) derived

in § 2 conserve two key invariants of the original MHD model (2.1): energy (E) and
cross-helicity (HC ), which are given by

E
.= 1

2

∫
dx|z+|2 + |z−|2 (C.1)

and

HC
.= 1

2

∫
dx|z+|2 − |z−|2. (C.2)

Since the energy is given by E = E+ + E− and the cross-helicity is given by HC =
E+ − E−, where

E± = E± + Ẽ± = 1
2

∫
dx
(|z±|2 + |̃z±|2), (C.3)

they are both conserved if and only if both E± are conserved separately,

dE±

dt
= 0. (C.4)

Let us show that this is the case.
First of all, notice that the MFWK equations (2.39) can be rewritten in the

following spectral form:

∂tw
±(q)=

∫
dq ′

(2π)3
[q · z±(q ′)][q × z±(q − q ′)] + S±(q), (C.5a)

i∂t W(q, k)=
∫

dq ′

(2π)3

{
H
(

q ′, k+ q − q ′

2

)
W
(

q − q ′, k− q ′

2

)
−W

(
q − q ′, k+ q ′

2

)
H†

(
q ′, k− q − q ′

2

)}
, (C.5b)

S±i (q)= εi jk

∫
dk
(2π)3

q j(kl + ql/2)W±∓
kl (q, k), (C.5c)

H±±i j (q, k)= [k · z∓(q)]
(
δi j − (ki + qi/2)q j

(k+ q/2)2

)
,

H±∓i j (q, k)= q j z
±
i (q)− [k · z±(q)](ki + qi/2)q j

(k+ q/2)2
, (C.5d)

and, due to incompressibility, one also has(
kl + ql

2

)
W σ1σ2

lm (q, k)=
(

km − qm

2

)
W σ1σ2

lm (q, k)= 0. (C.6)
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Then,

dE±

dt
= 1

2
d
dt

∫
dx |z±|2

=
∫

dx z · ∂t z

=
∫

dx z± · [−(z∓ · ∇)z± −∇P − 〈(̃z∓ · ∇)̃z±〉 −∇〈P̃〉]

=
∫

dx
{
∇ ·

(
1
2
|z±|2z∓ − (P + P̃)z±

)
− iz±l

∫
dk
(2π)3

km 
W±∓
lm

}
=−i

∫
dk
(2π)3

∫
dq
(2π)3

z±l (−q)
(

km + qm

2

)
W±∓

lm (q, k)

= Im
∫

dk
(2π)3

∫
dq
(2π)3

z±l (−q)W±∓
lm (q, k)qm, (C.7)

and

dẼ±

dt
= d

dt

1
2

∫
dx |̃z±(x)|2

= 1
2

∫
dx

∫
dk
(2π)3

∂t W
±±
ll (x, k)

= Im
∫

dx
∫

dk
(2π)3

[
H±±lm 
W±±

ml + H±∓lm 
W∓±
ml

]
= Im

∫
dk
(2π)3

∫
dq
(2π)3

[
H±±lm (−q, k)W±±

ml (q, k)

+ H±∓lm (−q, k)W∓±
ml (q, k)

]
= Im

∫
dk
(2π)3

∫
dq
(2π)3

{[
[k · z∓(−q)]

(
δlm + (kl − ql/2)qm

(k− q/2)2

)]
W±±

ml (q, k)

−
[

qmz±l (−q)+ [k · z±(q)](kl − ql/2)qm

(k+ q/2)2

]
W∓±

ml (q, k)
}

=−Im
∫

dk
(2π)3

∫
dq
(2π)3

z±l (−q)W±∓
lm (q, k)qm . (C.8)

Therefore, E± + Ẽ± = const, and energy and cross-helicity are conserved for our
quasilinear system.

Appendix D. Diagonalising transformation for 2-D MHD
In this appendix, we show that the Hamiltonian for the fluctuating fields in 2-D is

approximately diagonalisable in the strong magnetic field limit, |b| � |v|.
Consider 2-D dynamics in which z± lie in the (x, y) plane and ∂z = 0. In this case,

the only potentially non-zero component of w± is the z-component, w± .= (∇× z±)z.
Then, the vector equation (2.10) can be replaced with a scalar equation for w±,

∂tw
± =−(z∓ · ∇)w± +∇z∓ :∇∇k̂−2w±. (D.1)
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Splitting the Elsässer vorticities in fluctuating and averaged parts (w± =w± + w̃±
with 〈w̃〉 = 0), one obtains the following equation for the fluctuating fields w̃±:

∂tw̃
± = (− (z∓ · ∇)+∇z∓ :∇∇k̂−2

)
w̃± + [− (∇2z± · ∇)−∇z± :∇∇k̂−2

]
w̃∓,

(D.2)
where z± .= ik̂−2(k̂yw

±,−k̂xw
±, 0)ᵀ and the terms nonlinear in the fluctuating fields

have been neglected. Equation (D.2) can be written as a vector Schrödinger equation
for the field variables ξ± = k̂−1w̃±,

i∂tξ = Ĥξ , (D.3)

where ξ .= (ξ+, ξ−)ᵀ and the Hamiltonian Ĥ is given by

Ĥ .=
(
Ĥ+ χ̂+

χ̂− Ĥ−

)
, (D.4)

where Ĥ± are Hermitian operators given by

Ĥ± .= k̂−1
[
(z± · k̂)− i((∇z± · k̂) · k̂)k̂−2

]
k̂

= k̂−1k̂l(z
∓ · k̂)k̂l k̂

−1, (D.5)

and we have also introduced the following operators:

χ̂± .= k̂−1
[
i((∇z± · k̂) · k̂)k̂−2 + (∇2z± · k̂)k̂−2

]
k̂

= ik̂−1k̂l(∂l z
∓ · k̂)k̂−1. (D.6)

Suppose we are interested in the quasiparticle dynamics up to O(ε2) in the GO
parameter ε .= l/L. Since the off-diagonal elements of the Hamiltonian χ̂± are O(ε),
one cannot treat the Elsässer vorticities w̃± as decoupled scalar waves. Let us there-
fore consider the transformed variable ψ .= Ûξ , where the operator Û is taken to be
of the form

Û =
(

1 â

b̂ 1

)
, (D.7)

which has the inverse

Û
−1 =

(
ĝ1 −ĝ1â

−ĝ2b̂ ĝ2

)
, (D.8)

where
ĝ1 .= (1− âb̂)−1, ĝ2

.= (1− b̂â)−1. (D.9)

If ∂t Û is negligible, (D.3) can be rewritten as

i∂tψ = Ĥψ (D.10)

with the transformed Hamiltonian

Ĥ
.= ÛĤÛ

−1

=
(

ĝ1(Ĥ+ + χ̂+b̂− âχ̂−−âĤ−b̂) ĝ1(Ĥ+â + χ̂+ − âχ̂−â − âĤ−)
ĝ2(−b̂Ĥ+ − b̂χ̂+b̂+ χ̂− + Ĥ−b̂) ĝ2(−b̂Ĥ+â − b̂χ̂+ + χ̂−â + Ĥ−)

)
.

(D.11)

https://doi.org/10.1017/S0022377825100561 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100561


44 S. Jin and I.Y. Dodin

To diagonalise Ĥ , the operators â and b̂ must satisfy

Ĥ+â + χ̂+ − âχ̂−â − âĤ− = 0, (D.12a)

−b̂Ĥ+ − b̂χ̂+b̂+ χ̂− + Ĥ−b̂= 0, (D.12b)
which also simplifies the diagonal elements,

Ĥ11 = ĝ1[Ĥ+ + χ̂+b̂− âχ̂−−â(b̂Ĥ+ + b̂χ̂+b̂− χ̂−)]
= Ĥ+ + χ̂+b̂,

Ĥ22 = ĝ2[−b̂(−χ̂+ + âχ̂−â + âĤ−)− b̂χ̂+ + χ̂−â + Ĥ−]
= Ĥ− + χ̂−â, (D.13)

such that

Ĥ =
(
Ĥ+ + χ̂+b̂ 0

0 Ĥ− + χ̂−â

)
(D.14)

for â and b̂ satisfying (D.12).
In the strong magnetic field limit, |v|/|b| ∼ O(ε), (D.12) can be solved approxi-

mately. To leading order in ε, (D.12) become

â(Ĥ+ − Ĥ−)+ χ̂+ = 0, (D.15a)

b̂(Ĥ−−Ĥ+)+ χ̂− = 0, (D.15b)
which yield the approximate solutions

â ≈−1
2
χ̂+Ĥ−1

b , b̂≈ 1
2
χ̂−Ĥ−1

b , (D.16)

where Ĥb
.= (Ĥ+ − Ĥ−)/2. Since χ̂+ and χ̂− commute within the accuracy of the

approximation, we finally have

Ĥ =
(
Ĥ+ − σ̂ 0

0 Ĥ− + σ̂

)
+ O(ε2), (D.17)

where

σ̂
.= 1

2
χ̂+χ̂−Ĥ−1

b . (D.18)

In this approximation, ψ+ and ψ− evolve independently and are governed by the
Hamiltonians Ĥ+ − σ̂ and Ĥ− + σ̂ , respectively.

Appendix E. Correlation waves
As can be seen in the many plots of modulational frequency versus wavenumber

Ω(K ) throughout § 5, the generic modulational response to a high-K mean-field
perturbation takes the form of a sound-like travelling wave, i.e. a wave with linear
Ω(K ). Although instabilities driven by the various helicities may modify or dominate
over this oscillatory tendency at smaller values of K , it can be seen that the real
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components of all solutions of (5.17) eventually converge to the universal sound-like
solutions as K →∞. Let us therefore consider the K →∞ limit of (5.18),

MS→ iΩ + i
Ω ′

(
−1

3

〈̃
v2 + b̃2

〉
K 2 + 1

5

〈
w̃2 + j̃ 2

〉− 1
30

〈
w̃2 − j̃ 2

〉)
, (E.1a)

NS→ i
Ω ′

(
− 1

30

〈
w̃2 + j̃ 2

〉+ 1
5

〈
w̃2 − j̃ 2

〉)
, (E.1b)

MA→ i
Ω ′

(
2
3

〈̃
v · b̃

〉
K 2 − 2

5

〈
w̃ · j̃

〉)
, (E.1c)

NA→− i
15Ω ′

〈w̃ · j̃〉, (E.1d)

mS→ 0, (E.1e)

nS→ 1
3Ω ′
〈̃v · ∇× ṽ〉K , (E.1f )

n A→ 1
3Ω ′
〈̃v · j̃〉K , (E.1g)

where ∫ ∞
0

dk k2 ES(k)= 1
2
〈w̃2 + j̃ 2〉,∫ ∞

0
dk k2 EC(k)= 1

2
〈w̃2 − j̃ 2〉,∫ ∞

0
dk k2 E A(k)= 〈w̃ · j̃〉,∫ ∞

0
dk k2 HS(k)= 〈w̃ · ∇× w̃+ j̃ · ∇× j̃〉,∫ ∞

0
dk k2 HC(k)= 〈w̃ · ∇× w̃− j̃ · ∇× j̃〉,∫ ∞

0
dk k2 HA(k)= 〈w̃ · ∇× j̃ + j̃ · ∇× w̃〉,

(E.2)

and, as before, m A = 0. To the leading order in K , and taking Ω ′ =Ω for simplicity,
we then have

MS = iΩ − i
3Ω ′

〈̃
v2 + b̃2

〉
K 2, (E.3)

MA = 2i
3Ω ′
〈̃v · b̃〉, (E.4)

https://doi.org/10.1017/S0022377825100561 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100561


46 S. Jin and I.Y. Dodin

�
.= i
Ω

⎛⎜⎜⎝
(
Ω2 − 〈̃z

− · z̃−〉
3

K 2

)
12 02

02

(
Ω2 − 〈̃z

+ · z̃+〉
3

K 2

)
12

⎞⎟⎟⎠ , (E.5)

where 12 is the 2× 2 identity matrix and 02 is the 2× 2 zero matrix. It can be easily
seen from (E.5) that the sound-like modes take the form of z± polarised modes
propagating with two different speeds V±,

Ω2 = V 2
±K 2, V±

.=
√
〈̃z∓ · z̃∓〉/3), (E.6)

provided that the turbulence is imbalanced, i.e. 〈̃z+ · z̃+〉 �= 〈̃z− · z̃−〉.
If the turbulence is balanced, i.e.(〈̃z+ · z̃+〉 = 〈̃z− · z̃−〉), and thus V+ = V− ≡ V ,

Ω2 = V 2K 2 can eliminate all of the leading-order (∼ K 2) terms in (E.5) then distin-
guishing the two modes requires consideration of higher-order corrections. Letting
Ω2 = V 2K 2 + δΩ2, we have to keep the next highest order in K ,

ΩMS→ iδΩ2, ΩnS→ 〈̃v · w̃〉
3

K , Ωn A→ 〈̃v · j̃〉
3

K , (E.7)

�
.= 1
Ω

⎛⎜⎜⎜⎜⎜⎝
iδΩ2 0 0 〈̃v·w̃〉+〈̃v·̃ j〉

3 K

0 iδΩ2 −〈̃v·w̃〉+〈̃v·̃ j〉
3 K 0

0 〈̃v·w̃〉−〈̃v·̃ j〉
3 K iδΩ2 0

−〈̃v·w̃〉−〈̃v·̃ j〉
3 K 0 0 iδΩ2

⎞⎟⎟⎟⎟⎟⎠ , (E.8)

and we find from the dispersion relation that

δΩ =±
√
〈̃v · w̃〉2 − 〈̃v · j̃〉2

3
K . (E.9)

In other words, these solutions support a finite growth rate even as K →∞,

Γ 2
∞ =
〈̃v · j̃〉2 − 〈̃v · w̃〉2

2〈̃v2 + b̃2〉 . (E.10)

The polarisations of these modes can be found from (E.8) and (E.9), but they are
fairly complicated, so we will not do it here.

Finally, note that the decorrelation term can be restored in the calculations above
by setting Ω2→ΩΩ ′. Since ΩΩ ′ = (Ω + iτ−1

c /2)2 − (τ−1
c /2)2, we can see that the

modes discussed above are damped at a rate τ−1
c /2.
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