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ADAPTED COMPLEX STRUCTURES AND

GEOMETRIC QUANTIZATION

RÓBERT SZŐKE

Abstract. A compact Riemannian symmetric space admits a canonical com-
plexification. This so called adapted complex manifold structure JA is defined
on the tangent bundle. For compact rank-one symmetric spaces another com-
plex structure JS is defined on the punctured tangent bundle. This latter is used
to quantize the geodesic flow for such manifolds. We show that the limit of the
push forward of JA under an appropriate family of diffeomorphisms exists and
agrees with JS .

§0. Introduction

Different kind of geometric constructions naturally lead to complex

structures defined on tangent bundles. The main purpose of this paper is

to explore the relationship of two such constructions.

The first of these is the so called adapted complex structure and the

second comes from geometric quantization.

Adapted complex structures (see Section 2 for the precise definition)

were discovered by studying certain global solutions of the complex, ho-

mogeneous Monge-Ampère equation on Stein manifolds. One starts with a

compact, real-analytic Riemannian manifold (M,g). The adapted complex

structure lives on TM or perhaps only on a subdomain T rM consisting of

those vectors having length smaller than r for some fixed positive radius r.

These complex manifolds have many interesting properties. Among oth-

ers the norm-square function is strictly plurisubharmonic and thus it defines

a Kähler metric. The Kähler form of this metric is the symplectic form Ω

of the tangent bundle (that comes from the canonical symplectic structure

of the cotangent bundle using the metric to identify these two bundles).

The second kind of complex structures JS live on the punctured tangent

bundle of compact, rank-1 symmetric spaces. For the spheres it was Souriau
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172 R. SZŐKE

who in [So] identified the regularized Kepler manifold with the cotangent

bundle of the sphere minus its zero section (T̊∗Sn). He also defined a com-

plex manifold structure on this space identifying it with the singular affine

hyperquadric.

Later it was observed by Rawnsley [Ra1], that the norm function is

strictly plurisubharmonic with respect to the above complex structure and

thus defines a Kähler metric on T̊Sn and the Kähler form is again Ω. He

also observed the complex structure to be invariant w.r.t. the normalized

geodesic flow that he used in [Ra2] to quantize the geodesic flow on the

spheres.

Subsequently Furutani and Tanaka [F-T] defined a Kähler structure

on the punctured cotangent bundle of complex and quaternionic projec-

tive spaces. Their Kähler structure is also invariant w.r.t. the normalized

geodesic flow. Furutani and Yoshizawa [F-Y] used this Kähler structure to

quantize the geodesic flow on complex and quaternionic projective spaces.

Furutani and Tanaka described their Kähler structures in terms of ma-

trices in the spirit of Lie groups. A more geometric description of the com-

plex (Kähler) structure on T̊M (where M now can be either a sphere, a

complex or quaternionic projective space or their quotient w.r.t. a discrete

group of isometries) was given by Kiyotaka Ii [Ii]. In this paper we shall use

Ii’s description of these structures (see Section 3 for more details).

The main result of this paper (Theorem 3.2) is to show that for com-

pact, rank-1 symmetric spaces the family of complex structures obtained by

pushing forward the adapted complex structure with respect to an appropri-

ate family of diffeomorphisms has a limit and this limit complex structure

coincides with JS .

After this paper was finished, we received a preprint from R. Aguilar

[Ag], discussing, among other things, similar limits. Instead of the punctured

tangent bundle, he works on the unit sphere bundle.

§1. Geometry of the tangent bundle

LetM be a smooth n-dimensional manifold and TM its tangent bundle.

π will denote the projection map π : TM → M . We shall denote by T̊M

the punctured tangent bundle i.e., T̊M = TM \ {zero section}.
Suppose a Riemannian metric g is also given onM . The metric identifies

the tangent and cotangent bundles and thus we can also talk about the
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canonical 1-form θ on TM , that is defined by

θ(v) := g(z, π∗v), v ∈ Tz(TM).(1.1)

Ω := dθ defines then the symplectic form of TM .

When M = R we can canonically identify TR with the complex plane:

TσR 3 τ
∂

∂σ

ι7−→ σ + iτ ∈ C.(1.2)

From now on we shall always tacitly assume this identification. Denote by

H+ the upper half plane and by T+
R the corresponding part of TR. For

simplicity, we shall also assume that our manifold (M,g) is complete.

Let γ : R → M be a geodesic and γ∗ : TR → TM the induced map.

As γ runs through all geodesics, the images γ∗(T
+

R) define a foliation of

T̊M . This foliation is called the Riemann foliation. We shall denote the

corresponding distribution on T̊M by L.

Let ρ : TM → R be the norm-square function. There is another natural

distribution on T̊M , denoted by H, that at a point z ∈ T̊M is defined by

Hz := ker θz ∩ ker dρ.(1.3)

H and L are complementary distributions, i.e., Tz(T̊M) = Lz + Hz.

For a real number s define the map Ns : TM → TM by multiplying

every vector in each fibre with s. For a non-zero s, Ns is a diffeomorphism.

The metric g determines the Levi-Cività connection on TM and thus a

splitting of Tz(TM) into horizontal and vertical subspaces. Let v, z ∈ TpM .

We shall denote the horizontal (resp. vertical) lift of the vector v to z by

ξvz ∈ Tz(TM) (resp. ηvz ∈ Tz(TM)).

For an λ 6= 0 we get

(Nλ)∗ξ
v
z = ξvλz,

(Nλ)∗η
v
z = ληvλz.

(1.4)

Now let γ be a unit speed geodesic. Let z = τ0γ̇(σ0), v = γ̇(σ0). Then we

have

(γ∗)∗

(
∂

∂σ

∣∣∣
(σ0,τ0)

)
= ξvz ,

(γ∗)∗

(
∂

∂τ

∣∣∣
(σ0,τ0)

)
= ηvz .

(1.5)
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§2. Adapted complex structures

For an 0 < r ≤ ∞ denote by T rM the tube of vectors having length

smaller than r.

Definition 2.1. Let (M,g) be a complete Riemannian manifold. A

smooth complex structure on T rM is called adapted if for any geodesic

γ : R →M , the map

γ∗ : (γ∗)
−1(T rM) −→ T rM

is holomorphic, where (γ∗)
−1(T rM) ⊂ TR and TR is endowed with the

complex structure from (1.2).

The adapted complex structure (if it exists) is unique and when (M,g)

is compact, real-analytic, we have existence for small enough r (see [G-S],

[L-Sz], [Sz]).

One particular example that shall concern us in Section 3 is the case of

the round sphere. The standard realization of TSn is

{(e,X) ∈ R
n+1 × R

n+1 | ‖e‖ = 1, 〈e,X〉 = 0}.(2.1)

Let X1,X2 ∈ Sn, 〈X1,X2〉 = 0. Then γ : R → Sn ⊂ R
n+1, γ(θ) = cos θX1+

sin θX2 is a unit speed geodesic (i.e., a great circle) of Sn. Complexifying

this map gives γC : C → C
n+1,

γC(ζ) = cos ζX1 + sin ζX2.

The image γC(C) lies in the affine hyperquadric Q1 ⊂ C
n+1.

Q1 =

{
(z1, . . . , zn+1) ∈ C

n+1

∣∣∣∣
n+1∑

j=1

z2
j = 1

}
(2.2)

= {X + iY | X,Y ∈ R
n+1, 〈X,X〉 − 〈Y, Y 〉 = 1, 〈X,Y 〉 = 0}.

If we can find a diffeomorphism δ : TSn → Q1 such that the following

diagram commutes, the pullback complex structure on TSn will be adapted

(ι is from (1.2)).

C
γC−−−→ Q

ι

x δ

x

TR
γ∗−−−→ TSn.
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A little bit of calculation gives that the choice

δ(e,X) := cosh(‖X‖)e+ i
sinh(‖X‖)

‖X‖ X(2.3)

will work.

It is always possible to express the almost complex tensor JA of the

adapted complex structure in terms of Jacobi fields and analytic continua-

tion (see [L-Sz]). On a symmetric space Jacobi’s equation can be explicitly

solved. This suggests that for such spaces the formula for JA should be very

explicit as well. This is indeed the case.

Denote by R the curvature tensor of the metric and let z ∈ TpM . The

operator Rz(·) = R(· , z)z is the Jacobi operator associated to z. In fact a

little bit of calculation together with [Sz, Theorem 2.5] yields:

Proposition 2.2. Let (M,g) be a compact symmetric space (or a lo-

cally symmetric quotient of such). Let z ∈ T̊M , v1 = z/‖z‖. Let v1, v2, . . . , vn
be an orthonormal basis of TπzM consisting of eigenvectors of the Jacobi

operator Rv1 with eigenvalue Λj, j = 1, . . . , n. Let h(x) := x cothx. Let

ξ
vj
z (resp. η

vj
z ) be the horizontal (resp. vertical) lift of vj to the point z,

j = 1, . . . , n. Then

JAξ
vj
z = h

(√
Λj‖z‖

)
η
vj
z .(2.4)

i.e., with the positive, real-analytic function t(x) := h(
√
x), the matrix of

JA in the basis ξ
vj
z , η

vj
z , j = 1, . . . , n is :

JA|z =

[
0 −(t(Rz))

−1

t(Rz) 0

]
.(2.5)

§3. Complex structures on T̊M

In this section we discuss the complex structures on the punctured tan-

gent bundles of compact, rank-1 symmetric spaces that arose in geometric

quantization, using Ii’s description of these structures. We start first with

the spheres. We identify (using the metric) the tangent and cotangent bun-

dles and take the standard representation (2.1) of the punctured tangent

bundle of Sn. The singular affine hyperquadric Q0 is defined as

Q0 =

{
z = (z1, . . . , zn+1) ∈ C

n+1

∣∣∣∣
n+1∑

j=1

z2
j = 0

}
.
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The complex structure JS on T̊Sn is obtained by identifying it with Q0.

More precisely, the map T̊Sn → Q0 \ {0} defined by

(e,X) 7−→ z = ‖X‖e + iX(3.1)

is a diffeomorphism. The pull back gives us the desired complex structure

on T̊Sn.

Ii’s description of JS on T̊Sn is as follows. For 0 6= z ∈ TpSn, v ∈ TpM ,

denote by ξvz (resp. ηvz ) the horizontal (resp. vertical) lift of the vector v to

the point z. Then

JSξ
v
z = ‖z‖ηvz .(3.2)

Our first observation about JA (the adapted complex tensor) and JS is that

they are genuinely different complex structures on T̊Sn.

Proposition 3.1. The complex manifolds (T̊Sn, JA) and (T̊Sn, JS)

are not biholomorphic.

Proof. The statement is equivalent to showing that X = Q0 \ {0} and

Y = Q1 \Sn (where Q1 is the affine hyperquadric (see (2.2)) are not biholo-

morphic. Suppose on the contrary that ψ : Y → X is a biholomorphism.

We can apply a theorem of Hartogs (see [Sh]), to conclude that ψ has a

holomorphic extension ψ̃ : Q1 → C
n+1 (the theorem we use here says that

if N is a complex manifold, L ⊂ N a real submanifold of real codimension

at least 2 and ψ : N \ L → C is holomorphic which does not extend holo-

morphically to a point q ∈ L, then in a neighborhood of q, L is a complex

submanifold).

Since Q is defined as the zero set of a holomorphic function, therefore

ψ̃ also maps into Q0. Since ψ is biholomorphic and ψ̃ is holomorphic, ψ̃(Sn)

must be the point 0. But Sn is a maximal dimensional totally real subman-

ifold in Q, hence ψ̃ must be constant, a contradiction.

Despite of the negative result of Proposition 3.1, JA and JS do have

something to do with each other. To discover their relation, consider now

for any t ≥ 0 the quadric

Qt =

{
z ∈ C

n+1

∣∣∣∣
n+1∑

j=1

z2
j = t

}
.

For t, s > 0, Qt and Qs are biholomorphic complex submanifolds and Qt\R
n

and Qs \ R
n are both biholomorphic to (T̊Sn, JA). The complex manifold
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Q0 \ R
n = Q0 \ {0} is in some sense the limit of the complex manifolds

Qt \ R
n when t goes to zero. This gives the idea to try to push forward JA

by a family of diffeomorphisms in such a way that the limit of these push

forwards is JS . This indeed can be done as the following theorem shows.

Theorem 3.2. Let (M,g) be a compact, rank-1 symmetric space. De-

note by Φε the diffeomorphism : T̊M → T̊M

Φε(v) = ε exp(‖v‖) v

‖v‖ .(3.3)

Then the following limit complex structure J0 exits

lim
ε→0

(Φε)∗JA = J0.

The maps Ns, s 6= 0 and the normalized geodesic flow are J0 holomorphic.

When M is the sphere, J0 agrees with JS and for the complex and quater-

nionic projective spaces it coincides with the structure studied by Furutani-

Tanaka-Ii ([F-T], [Ii]).

Remark. Since the entire construction and the proof is compatible with

taking quotients w.r.t. a discrete group of the isometry group, the result of

Theorem 3.2 is valid for such quotients as well.

When (M,g) is a round sphere, it was already noticed by Su-Jen Kan

in [Ka], that the CR-manifolds Sr = {‖v‖ = r} posses a limit CR structure

as r → ∞.

Before we go on with the proof, we give another description of the

complex structures studied in [F-T], [Ii], [Ra1], [So]. Recall the notion of

Jacobi operator Rz from Section 2. Rz is self-adjoint and z always belongs

to its kernel. We shall need a modified operator R̃z : TpM → TpM , defined

as follows

R̃z(X) = 〈X, z〉z +Rz(X) = 〈X, z〉z + R(X, z)z.(3.4)

Define the almost complex tensor J0 : Tz(TM) → Tz(TM) in the horizontal

and verical decomposition Tz(TS
n) = Hz + Vz, by the formula

J0 =




0 −
(√

R̃z

)
−1

√
R̃z 0


 .(3.5)
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Example.

1) Let (M,g) have constant curvature 1. Then the curvature tensor R
has a particularly simple form R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y .

Therefore in this case R̃z(X) = 〈z, z〉X. This implies that for z 6= 0 the

complex structure JS of (3.2), agrees with J0.

2) Let now (M,g, J) be a Kähler manifold of constant holomorphic

sectional curvature 4. Then the curvature tensor has the following form

R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y − 〈Y, JZ〉JX
+〈X,JZ〉JY + 2〈X,JY 〉JZ.

This yields

R̃zv = 〈z, z〉v + 3〈v, Jz〉Jz.
From this it follows:

√
R̃zv =

〈v, Jz〉
‖z‖ Jz + ‖z‖v, z 6= 0.(3.6)

The complex structure on T̊M studied by Furutani and Tanaka in [F-T] is

defined by (see [Ii])

J1(ξ
v
z ) =

{
2‖z‖ηvz , if v = αJz, for some α ∈ R,

‖z‖ηvz , if v ⊥ Jz.

It follows from formula (3.6) that J1 in fact has the form of (3.5).

3) Let (M,g, I1, I2, I3) be a quaternion Kähler manifold of constant

Q-sectional curvature 4. Then

R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y

−
3∑

i=1

〈Y, IiZ〉IiX + 〈X, IiZ〉IiY + 2〈X, IiY 〉IiZ.

This yields

R̃zv = 〈z, z〉v +
3∑

i=1

〈v, Iiz〉Iiz.

Thus
√

R̃zv = ‖z‖v +

3∑

i=1

〈v, Iiz〉
‖z‖ Iiz.(3.7)
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The complex structure of Furutani-Tanaka is defined on T̊M by (see [Ii])

J2ξ
v
z =

{
2‖z‖ηvz , if v =

∑3
i=1 αiIiz for some αi ∈ R,

‖z‖ηvz , if v ⊥ Iiz, i = 1, 2, 3.

Comparing this to formula (3.7) yields that J2 again has the form (3.5).

Remark. The formula (3.5) for J0 is so simple that it cries for a gen-

eralization for higher rank symmetric spaces. Of course when the rank is

larger than 1, the operators

√
R̃z are no longer invertible, so formula (3.5)

makes no sense literaly. But an appropriate formulation of Theorem 3.2 is

still valid. We shall discuss these circle of questions in another publication.

Proof of Theorem 3.2. We shall prove that limε→0(Φε)∗JA exists and

has the form of (3.5).

Step 1.

The diffeomorphisms Φε map any leaf of the Riemann foliation onto

itself. First we shall prove the existence of the limit complex structure along

a leaf.

Let γ : R →M be a unit speed geodesic. Denote by H+ the upper half

plane. Then γ∗ : H+ → TM , (σ + iτ) 7→ τ γ̇(σ) parametrizes a leaf. Define

ψε : H+ → H+ by ψε(σ + iτ) = σ + iε exp τ . Then ψε is a diffeomorphism

of H+ and the following diagram commutes:

H+

γ∗−−−→ (TM, JA)

ψε

y Φε

y

H+

γ∗−−−→ (TM, JA).

Denote by J+ the complex tensor on H+. Since γ∗ is holomorphic, we get

(Φε)∗JA = (Φε)∗(γ∗)∗J+ = (γ∗)∗(ψε)∗J+.(3.8)

Now let σ1 + iτ1 ∈ H+. It follows from the definition of ψε, that

(ψε)∗
(
∂σ|σ1+iτ1

)
= ∂σ|σ1+iε exp τ1

and

(ψε)∗
(
∂τ |σ1+iτ1

)
= εeτ1∂τ |σ1+iε exp τ1

.
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This implies that the push forward complex structure at a fixed point σ0+iτ0
can be computed as follows

[(ψε)∗J+]
(
∂σ|(σ0+iτ0)

)
(3.9)

= (ψε)∗

(
J+|(σ0+i log(τ0/ε))

(
∂σ|(σ0+i log(τ0/ε))

))

= (ψε)∗
(
∂τ |(σ0+i log(τ0/ε)

)

= ε exp(log(τ0/ε)) ∂τ |(σ0+iτ0)

= τ0 ∂τ |(σ0+iτ0)

Let Y = γ̇(σ0) and X = τ0Y . Recall from (1.5) that

(γ∗)∗
(
∂σ|(σ0+iτ0)

)
= ξYX , (γ∗)∗

(
∂τ |(σ0+iτ0)

)
= ηYX .

Furthermore

R̃X(Y ) = 〈Y,X〉X,

hence √
R̃XY =

〈Y,X〉
‖X‖ X = X.

So we get

J0

(
(γ∗)∗

(
∂σ|(σ0+τ0)

))
= J0ξ

Y
X = ηXX = (γ∗)∗

(
τ0∂τ |(σ0+iτ0)

)
.(3.10)

(3.8), (3.10), (3.10) together imply that the image γ∗(H+) is a complex

submanifold w.r.t. both structures, J0 and (Φε)∗JA and in fact these two

complex structures coincide.

Step 2.

To complete the proof of the theorem we need to show the existence

of the limit (Φ)∗JA, when we restrict ourselves to the distribution H, the

complementary distribution to L (see (1.3). Let ε > 0 and p ∈ T̊M be fixed,

‖p‖ = c, define v1 = p/c, r = log(c/ε), q = (r/c)p, λ = (εer)/r. Then Φε

maps the hypersurface Sr = {u = r} onto Sc = {u = c}.
As before denote by Nλ the diffeomorphism of TM that is multiplica-

tion by λ in the fibers. It is clear that

Φε|Sr
= Nλ|Sr

.(3.11)
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Choose eigenvectors v2, . . . , vn of Rv1 such that together with v1 they form

an orthonormal basis for Tπ(p)M . Recall from (2.4)

JAξ
vj
q = h

(√
Λjr

)
η
vj
q ,(3.12)

where h(x) = x cothx. From (1.4) we know

(Nλ)∗ξ
vj
q = ξ

vj
p , (Nλ)∗η

vj
q = (c/r)η

vj
p .(3.13)

From (3.11), (3.12) and (3.13) we get

(Φε) ∗ JAξvj
p = (Φε)∗

(
JA((Φε)

−1
∗
ξ
vj
p )

)
(3.14)

= (Φε)∗(JAξ
vj
q )

= (Φε)∗

(
h
(√

Λjr
)
η
vj
q

)

= h
(√

Λjr
)
(c/r)η

vj
p .

Now r → ∞ as ε → 0. Hence h
(√

Λjr
)
(c/r) =

√
Λj coth

(√
Λjr

)
c →√

Λjc. This together with (3.14) implies

lim
ε→0

(Φε)∗JAξ
vj
p =

√
Λjcη

vj
p .(3.15)

On the other hand

R̃pvj = 〈vj , p〉p +Rp(vj)

= 〈vj , cv1〉cv1 + c2Rv1vj

= c2Λjvj.

This implies

J0ξ
vj
p = c

√
Λjη

vj
p .(3.16)

Finally (3.15) and (3.16) together imply that indeed limε→0(Φε)∗JA exists

and equals to J0. The examples after (3.5) show that J0 in fact coincides

with the complex structure studied by Furutani-Tanaka-Ii. The normalized

geodesic flow was shown to be J0-holomorphic in [Ii].

Let now 0 6= s, 0 6= p ∈ TmM and v ∈ TmM be arbitrary. Define w by

w =

√
R̃spv. From the definition of R̃sp we get that

w = s

√
R̃pv.
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This together with the action (1.4) of (Ns)∗ and the definition (3.5) of J0

yields:

J0|sp (Ns)∗ξ
v
p = J0|sp ξvsp = ξwsp = (Ns)∗Jpξ

v
p ,

i.e., Ns is indeed J0-holomorphic.
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