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OPTIMALITY CONDITIONS FOR SYSTEMS WITH
INSUFFICIENT DATA

NIKOLAOS S. PAPAGEORGIOU

In this paper we use the Dubovitski-Milyutin formalism to establish necessary and
sufficient conditions for optimality in a nonlinear, distributed parameter control
system, with convex cost criterion and initial condition not given a priori (that is
it is not a known function but instead it belongs to a specified set). Our result
extends a recent theorem of Lions. Finally a concrete example is worked out in
detail.

1. INTRODUCTION

In this paper, we consider a nonlinear distributed control system, with time varying
control constraints and an initial condition which is not determined by an a priori given
function, but instead is assumed to belong to a certain specified set (Lions [5] calls
them "systems with insufficient data"). The cost criterion is a general convex integral
functional.

Using the Dubovitski-Milyutin formalism, we are able to obtain a necessary and
sufficient condition for the existence of an optimal solution. A very comprehensive
presentation of the Dubovitski-Milyutin theory can be found in the monograph of
Girsanov [3]. Our result extends Theorem 2.1 of Lions [5], since we allow for nonlinear
dynamics and a nonquadratic cost criterion.

2. PRELIMINARIES

The mathematical setting is the following. Let T — [0, 6] C R+ (a bounded time
interval) and H be a separable Hilbert space. Also let X C H be a subspace of H
carrying the structure of a separable reflexive Banach space, which imbeds continuously
and densely into H. Identifying H with its dual (pivot space), we have X c—* H <—» X* ,
with all embeddings being continuous and dense. Such a triple (X, H, X*) of spaces is
sometimes called a "Gelfand triple" or "spaces in normal position". By ||-|| (respectively
l"l> ll'll*) w e w ^ denote the norm of X (respectively of H, X*). Also by (•, •) we will
denote the inner product in H, and by (•, •) the duality brackets for the pair (X, X").
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46 N.S. Papageorgiou [2]

The two are compatible in the sense that if x G X C H and h G H C X*, we have
(x, h) = (x, h). Also let Y be another separable Banach space modelling the control
space. By Pfc(Y) we will denote the nonempty, closed, convex subsets of Y.

The optimal control problem under consideration is the following:

r rb

Minimise J(x,u) - L(t,x(t), u{t))dt

(*1 I
K ' ' such that x(t) + A(t,x(t)) = B(t,x(t))u(t) a.e.x(0) G C, u(i) e U(t) a.e.

We will need the following hypotheses concerning the data of (*).
H(A): A: T x X -> X* is an operator such that

(1) t —> A(t, x) is measurable,
(2) x —» A(t, x) is continuously Frechet differentiable and strongly monotone

uniformly in t G T,

(3) \\A(t, » ) | | . < « ( * ) + 4 ||aj|| a.e. with o(-) £ L%, b>0,

(4) {A{t,x),x)>c\\xf,c>0.

H(B): B:TxH-+ C(Y, X*) is an operator such that

(1) t —» J3(i, x)u is measurable for all (x, u) £ H x Y,
(2) x —» 2?(f, x) is continuous,
(3) x —> S(<, x)u is continuously Frechet differentiable,
(4) \\B(t, x)u\l < ft(i)+A(t)H+ft(OH a.e. with /?,(•), /3a(-) G ^ ,

/ 3 3 ( - ) e ^ .

^ ( Z ) : £ : T x F x y - + R i s a n integrand such that

(1) t —• £(<, x, u) is measurable,
(2) (x, u) —» Z(£, x, u) is convex and continuously Gateaux differentiable,
(3) for every (x, u) G L°°(H) x L2{Y), J (x, u) is finite.

H(U): U-.T-* Pfc(Y) is a multifunction such that

(1) GrU = {(t, it) G T x Y: u G C^(t)} G J5(T) x B{Y) (where 5 (T) is the
Borel o--field of T and B[Y) the Borel <7-field of Y),

(2) < - • \U(t)\ = sup{||u|| : u G tf(*)} belongs to i^ . , and if S£ = {u(-) G
L2(Y): «(<) G U(t) a.e.}, then int S£ ^ 0.

H(C): C Q H is a. closed, convex set with a nonempty interior.

Following Lions [4], we define W(T) = {x(-) G L2{X): x G L2(X*)}. This is a

Banach space with norm | | x | | w ( T ) = [/„* ||x(<)||2 dt + /„* ||x(<)||^ dt}1!2 . It is well known

that W{T) •—» C(T, # ) , that is, the elements of PT(T) are continuous maps with values

in H, possibly after changing each function on a set of measure zero.
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[3] Optimal control 47

Since our necessary and sufficient conditions, will involve the adjoint state, we need
the following existence result.

PROPOSITION 2 . 1 . Ithypotheses H{A), H(B), H(L) hold, Bx(t, x(t), u{t)) \x

(•) is dissipative, and t —» Lx(t, x[t), u(t)) belongs to L2(H), then there exists
p(-) E W(T) such that

-p(t) + AUt, x(t))p(t) = B*x(t, x(t), u(t))p(t) - Lx{t, x(t), u(t)) a.e.

p(b) € H

PROOF: From the strong monotonicity of A(t, •), uniformly in t 6 T, we have:

(A{t, x1) - A(t, x(f)), x' - x(t)) > 0 \\x' - x(t)f 0 > 0and so
(Ax(t, x(t))(x' - x(t)) + o(\\x' - «(i)| |), x' - x(t)) > 0 ||x' -

Putting x' — x(t) = ep, we see that

(Ax(t,x(t))eP + o(e\\p\\),ep)>Oe2\\p\\2.

Divide by e2 and let e -> 0+ . We get:

(Ax(t, x(t))p, p) = (Al(t, x(t))p, p) > b" \\p\\2 .

Also, by hypothesis, (-Bx(t, x(t),u{t))p, p) > 0. Since t -» Lx(t, x(t), u(t))
belongs in L2(H), we can invoke Theorem 4.2, p.167 of Barbu [1], and get that indeed
there exists p(-) G W(T) solving our problem. u

3. NECESSARY AND SUFFICIENT CONDITIONS

The next result gives us necessary and sufficient conditions for a triple (xo, x, u) 6
H x W(T) x L2(Y) to be a solution of (*).

THEOREM 3 . 1 . IIhypotheses H{A), H{B), H{L), H(U), H{C) hold, lor the
pair (x, u) e W[T) x L2(Y) we have

(1) PzM^llrccx-)^!,
(2) \\Bx(t,x(t), «(<))IL(/f,x.) ^ V2, Bx{t,x{t)),
(3) (•"(<)) \x (•) is dissipative,

then the triple (x{0) = x0, x, u) £ H x W{T) x L2{Y) is a solution ol (*) it and only it

x(t) + A(t,x(t)) = B(t,x(t))u(t)a.eA

x(O) = xoeC,u(t)eU(t) J '
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48 N.S. Papageorgiou [4]

(b) tiere exists p(-) € W(T) satisfying the "adjoint equation"

f = B:(t,x(t), u(t))p{t) - Lx(t,x(t), « !

\p(b) = O }

(c) and the following "minimum principles" hold

(3) {Lu{t, x{t), u{t)) - B*(t, x{t))p(t), v - u{t))Y< y . s£ 0 for all v G U(t) a.e.

and (-P(O), c - x0) ^ 0 for all c £ C.

PROOF: AS we already mentioned in the introduction, our approach is based on
the Dubovitski-Milyutin formalism. So we need to analyse the cost criterion, the equal-
ity constraint (that is the evolution equation) and the initial data-control constraints
(regarded here as an inequality constraint, by determining the cone of directions of
decrease, the tangent cone, and the cone of feasible directions, respectively.

We will start with cost criterion J(-, •). Recalling that J(-, •) is convex and using
the monotone convergence theorem we get that

VJ(x,u)(h,v)= f VL(t,x(t),u(t))(h(t),v(t))dt.
Jo

But since hy hypothesis H(L)(2), L(t, •, •) is continuously Gateaux differentiable,
from the total differential rule we have:

V L(t,x(t), u(t))(h(t), v(t)) = L'x(t, x(t), u(t))h(t) + L'u{t,x(t), u(t))v(t).

Invoking Theorem 7.4 of Girsanov [3], we get that the cone of directions of decrease
of the cost criterion J(-,-) at (x, u) is given by

Kd{(h, v) e W(T) x L2(Y): J'(x, u)(h, v) < 0}.

Assume Kj ^ 0. Then we have:

Now we pass to the analysis of the equality constraint. This is determined by
the dynamical equation of the system. Consider the map P: H x W(T) x L2(Y) —»
L2(X*) x H defined by

P(x'o, x', «') = (i'(<) + A(t, x'(t)) - B(t, x'(t))u'(t), *'(0) - x'o).
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Observe that because of our hypotheses both A: W(T) —» X* defined by

( ix ' ) ( t ) = A(t,x'{i)) and B: W{T) x L2(Y) -» X* defined by B{x',u')(t) =
B(t, x'(t))u'(t) are continuously Frechet difFerentiable at (x0, x, u). So P(-, •, •) is
continuously Frechet differentiable at (xo, X, U) and furthermore

P'(x0 , x, u)(h0, h, v){i) = (

We will show that P'(x0, x, u) is surjective. Let (g, v, h0, hi) £ L2(X*)xL2(Y)x
H x H he given and consider the following Cauchy problem.

f h(t) + Am(t, x(t))h(t) = Bx(t, x(t), u(t))h(t) + B{t, x{t))v(t) + g(t) a.e.l

\ h(0) = ho + h1 J

As in the proof of Proposition 2.1, we can check that all the hypotheses of Theorem
4.2 of Barbu [1] are satisfied. Hence the above Cauchy problem has a solution h(-) 6
W{T). So for any (g, hx) & L2{X*) x H, we can find (h0, h,v) € H xH x L2(Y)
such that P'(xo, x, u)(ho, h, v) = (g, hi) that is P(xo, x, u) is surjective. Hence we
can apply Lyusternik's theorem (see Girsanov [3, Theorem 9.1]) and deduce that if

Qi = {(x'o, x\ u1) G H x W{T) x L2{Y): P(x'o, x\ u') = 0} (equality constraint set),

then the tangent space to Qi at (XQ, X, U) is given by

T(Qi) = {(ho, h,v)€Hx L2(Y): P'{x0, x, u){hQ, h, v) = 0}

= kerP'(x0, x, u)

and so

(T(Qi))* = {x* e HxW(T)'xW(T)xL2(Y*): (V(h0, h, v) G T(Qi))w*(h0, h, v) = 0}

Finally we will analyse the initial data-control constraints. Set

<?2 = C x Si C H x L2(Y).

By hypothesis, int C ^ 0 and int Sy ^ 0, and C x Sfj is convex. So Theorem
10.5 of Girsanov [3], tells us that the dual to the cone of feasible directions of Q2 at
(x0, u) is given by
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50 N.S. Papageorgiou [6]

Hence (c*, u*) G K(Q2)*j if and only if c* supports C at xo and u* support Sfj
at u .

Now that we have in our disposal all the appropriate cones, we can apply the
Dubovitski-Milyutin theorem [2] (see also Girsanov [3, Theorem 6.1]) and get y* G K*.,
w* G T(Qi)* and (c*, u*) G K(Q^)*f, not all simultaneously zero such that

(0,y*) + w* + (c*,0,u*) = 0.

Hence y*(h, v) + w*(h0, h, v) + (c*, h0) + u*{v) = 0 for all (h0, h,v)eH x W{T) x

Recall from the analysis of the equality constraint that if (ho, h, v) E T(Qi) (that
is if P'(x0, x, u)(ho, h, v) = 0), then w*(ho, h, v) = 0. This means then that if for
any (h0, v) € H X L2(Y), we choose h G W(T), so that (ho, h, v) solves the Cauchy
problem

f h(t) + Ax(t,x(t))h(t) = Bx(t,x,(t), ti(t))M') + B(t,x(t))v(t) a.e.l

1 h(0) = h0 J "
(we already saw that such an h G W(T) always exists), then w*(ho, h, v) — 0 and in
this case the Euler-Lagrange equation becomes

h*(h, v) + (c\ h0)+ u*(v) = 0
and so

-A J'(x, u)(h, v) + (c*. ho) + u'(v) = 0.

Since (h0, v) e H x L2(Y) is arbitrary, if A = 0, then c* = 0, u* = 0 and so
to* = 0, a contradiction to the Dubovitski-Milyutin theorem. So A > 0 and, without
any loss of generality, we can take A = 1.

Consider the following adjoint Cauchy problem.

f - p(t) + Ax(t,x(t))p(t) = B*x(t,x(t), u(t))p(t) - Lx(t,x(t), u(t)) a.e.l

From Proposition 2.1 we know that the Cauchy problem above has a solution
p(-) G W(T). Using this adjoint state p(-), we get:

(Lx(t,x(t),u(t)),h(t))dt

= I\i,(t)-Al(t,x(t))p(t)+B:(t,x(t))p(t), h(t))dt
Jo

= [\p(t),h(t))dt- f (A*x(t,x(t))p(t),h(i))dt
Jo Jo

+ f (Bl(t,x(t))p(t),h(t))dt.
Jo
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From Lemma 5.5.1 of Tanabe [6], we know that:

/ (p(t), h(t))dt = {P(t), h(t)) \\- I (P(t), h(t))dt
Jo Jo

rb

= -(p(0) , h0) - / (p(t), h(t))dt.
Jo

Also we have

,b fb

and /

t> rb

(A*x(t,x(t))p(t),h(t))dt- / (p(t), Ax(t, x(t))h(t))dt
Jo

f (B:(t,x(t),u(t))p(t),h(t))dt= [ (p(i),Bx(t,x(t),u(t))h(t))dt.
Jo Jo

Using these facts, we get:

/ (Lx(t,x(t),u(t)),h(t))dt
Jo

fb

= / (PW> -h{t)-Ax(t,x(t))h(t) + Bx(t,x(t), u{t))h(t))dt-(p(0),ho).
Jo

Recalling the choice of h(-) € W(T), we get:

f (Lx(t,x(t),u(t)),h(t))dt= f (p(t),-B(t,x(t))v(t))dt-(p(O),ho).
Jo . Jo

Substitute this back into the Euler-Lagrange equation, to get:

u*(v) + (c*, h0) = / (p(t), -B(t,x(i))v(t))dt
J

fb

+ / (Lu(t,x(t), u(t)), v(t))YY.dt - (p(0), h0)
Jo

for every v £ L2(Y) and every ho £ H. Hence clearly

u*(v)= f (L4t,x(t), u(t)) - B*(t,x(t))p(t),v(t))YY.dt
Jo

and c*(h0) = - (p(0), ho).

Recall that u* supports Sf, at u and c* supports C at Xo • So we have:

/ (Lu(t,x(t), u(t)) - B*(i,x{t))p(t), v{i) - u(t))dt > 0 for all v £ S^
Jo

and ( - P ( O ) J c - x0) ^ 0 for all c G C.
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Suppose that for some E C.T with X(E) > 0, we have:

Jnf^ (£„(*,*(<)), u(t)) - B*(t,x(t))p(t), v-u(t)YY. <0, (6£.

Consider the multifunction V: E -> 2Y \ {0}, denned by:

V(t) = {ve U(t): (Lu(t,x(t), u(t)) - B*(t,x(t)W), * - <*))Y,Y < °>

From our hypotheses H(B) and H(L), it is easy to see that (t, v) —> r(t, v) =
(Lv.(t,x(t), u(t)) — B*(t,x(t))p(t), v - u ( f ) ) y y , , is measurable in t, continuous in v,
hence jointly measurable. Thus

GrV = {(t, v)eExY: r(t, v) < 0} n GrU E B(E) x B{Y).

Apply Aumann's selection theorem (see Wagner [7]), to get V\: E —> Y measurable
such that vi(<) € V(t) , t G E. Let v: T -» Y be defined by setting v(t) = v^i) for
t e E and v(t) = u(t) for t £T\E. Clearly t g S y and furthermore

I

f
Jo

(Lu(t, x(t), •u(t)) - B*(t,x(t))p(t), v{t) - u(t))YY.dt < 0,
0

a contradiction. So we have:
Jnf^ (LH(t,x(t), u(t))-B*(t,x{t))p(t), v-u{t)) > 0 a.e.

while
inf(-p(0),c)=(-p(0),*o).
cfeO

Finally we remove the hypothesis Kj. ^ 0. If K& = 0, then
fb f

(Lx(t,x(t), u(t)), h(t))dt+ / (iu(f,z(t), u(t)), v(t))YT.dt = 0

for all (h, v) £ W(T) X L2{Y). Let A = 1 and working as before we get
rb rb

(Lx(t,x(t), u(t)), h(t))dt = / (p(t), B(t,x{t))v(t))dt
/o Jo

with p(-) G PF(T) being the adjoint state. So we have:
rb

{Lu(t,x(t), «(<)) - B'(t,x(t))p{t), v{t))YY.dt = 0
/o

and so the first minimum principle follows.

This completes the necessity part of the proof.

For the sufficiency part, we apply Theorem 15.2 of Girsanov [3]. Note that J{-, •)
is a convex function, which is finite everywhere. Also, through a simple application
of Fatou's lemma, we can check that J(-, •) is l.s.c. A convex, l.s.c. function which
is finite everywhere is continuous. So J(-, •) is continuous and convex. The Slater
type requirement of Theorem 15.2 of Girsanov [3], is automatically satisfied, since by
hypothesis int Sy ^ <j> and int C ̂  <f>. Thus an application of Theorem 15.2 of Girsanov
[3], gives us the sufficiency part. U

f
Jo
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REMARK. If U(-) is not £2-bounded (that is t -» \U(t)\ is not in L\), then the min-
imum principle has integral form, that is jQ (Lu(t,x(t)), u(t)) — B*(t,x(t))p(t), v(t) -
v.(t)YY. ^ 0 for all v G Sfj.

4. AN EXAMPLE

In this section we work out a concrete example of a parabolic distributed parameter
control system, to which our result applies.

Let T = [0, b] and let V be a bounded domain in Rn, with a smooth boundary
dV = F. We consider the following distributed parameter optimal control problem
defined on F x V

( rb f - )
Minimise J{x, u) = I I L(t, z, x(T, z), u(t,z))dzdt

Jo Jv

(**)
such that — ^ - ^ + A(t)x(i, z) = u(t, z) on (0, b) x V

x(t,z) = 0 o n T x T

x(0, •) G C C L2(V), dv

Here A(t) is the formal second order elliptic partial differential operator in diver-
n

gence form, defined by A(t)y = — ]T) d/dzi(a,ij(t, z)(dy(t, z))/(dzj)). We assume that

aiji.'i ") ^ L°°(T X V) and that they satisfy the following strong ellipticity condition:

for all (t, z) G T x V, t] = (T7,)"=1 £ Rn and with B > 0 .
For this example X = K\{V), H = L2{V) and X* = H'^V). Clearly

(X, H, X*) is a Gelfand triple. On X x X we consider the following bilinear Dirichlet
form:

<t, x, y) =

by

Since a{j(-, •) G L°°{T x V) and using Poincare's inequality, we have:

\a(t, x, y)\ < c ||a:||Hi(v) ||y||Hi(V) •

Let A{t): Hl{V) = X -» H~l{V) = X* be the continuous linear operator defined

a(t, x, y) = (A{t)x,y)x,y G H*{
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Making use of the strong ellipticity condition, we can show that:

{A[t)x, x) > c ||a;||Hi(v) •

We set Y = L2(V) (the control space) and set U{t) = {u G L2{V): \\u\\2 <

r(t)}. Assume r(-) G L\ and 0 < 6 ^ r(t). Let B(6/(max{b,l))) = B = {u G

i 2 ( y ) : | | « | | i J ( y ) < £/(max(6, 1))}. Then B C S2, and so int 5^ ^ <£. Also we

assume that C C. L2(V) is nonempty, closed, convex, solid (that is int C ^ <f>).

Finally let L i T x V x R x R — > R be an integrand such that

(i) (t, z) —» L(t, z, x, u) is measurable,

(ii) (a;, u) —> Z(i, z, x, u) is convex and continuously differentiable,

(iii) for every x G L°°(T, L2{V)) and every u G L2(T,L2(V)) =

L2{T x V), J(x, u) is finite.

Define L: T x L2(V)x L2(V) -» R by X(i, a;, u) = / v i ( < , z, x(z), u{z))dz. Using

the above hypotheses (i) - (iii) about L, we have that L(t, x, u) satisfies H(L). Fur-

thermore Lx(t, x, u)(h) = fv Lx(t, z, x(z), u(z))h(z)dz and Lu(t,x,u)(v) =
JvLu(t, z, x(z), u(z))v(z)dz

Now rewrite the optimal control problem (**) in the following abstract form:

, 6

Minimise / L{t, x(t), u(t))dt
Jo

such that x(t) + A(t)x(t) - u(t) a.e.

x{0) £ C, u{i) G U{t) a.e. .

This is a particular case of the more general problem studied in Section 3. So we
can apply Theorem 3.1 and get the following necessary and sufficient conditionf for a
triple (a;o, x, u) G L2(V) x W{T) x L\T X V), to be a solution of (**). Recall that
W[T) = {x G L2(T, H^(V)): x G L2(T, H-^V))}. Also A*(t) is the formal adjoint
of the operator A(t).

THEOREM 4 . 1 . If the above hypotheses hold, then

(x0, x, u) G L2{V) x W(T) x L2(T x V) solves (**) if and only if

(i) dx(t, z)/dt + A(t)x(t, z) = u(t, z) onTxV

(( , \ 1 / 2

x |Txr (*, *) = 0, x(0, •) - *,(•) G C, / \u(t, z)\2 dz < r(l);
\Jv J

(ii) there exists p(-) G W(T) satisfying the "adjoint equation"

p(t, z) = 0 onTxT, p{b, z) = 0, z G V;
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(iii) the following "minimum principles" hold

( -p( t , z) + Lu{t, z, x(t, z), «(*, z))) (v(z) - »(*, z))dz > 0 a.e.

for all v e L2(V) such that \\v\\2 < r(f)

and / -p(Q,z)(c(z) - x(0,z))dz > 0 for all c(-) G C.
Jv

REMARK. If r(-) is not in L\ , but simply measurable, then the minimum principle has

an integral form /„* Jv ( -p ( i , z) + Lu(t, z, x(t, z), u(t, *))) (v{t, z) - u{t, z)) > 0 for all

v G L2(T x V) such that \\v(t, OILJCV) < r ( f ) a - e -
Finally we will conclude with some special cases of the problem studied in this

paper

(1) C = H,Sl = L\Y):
Then from the maximum principles we get

B*(t,x(t))p(t) = £„(*,*(*),«(*)) a.e.

andp(0) = 0.
(2) G C L2(Y) with mtC^d), Sl = L2{Y):

The maximum principles give us

B*(t,x(t))p(t) = Lu{i,x{t), «(<)) a.e.

and (-p(O), c - z(0)) > 0 for all x € C.

Finally if C = {0}, then although int C — 0, it can be easily seen looking at the
proof of Theorem 3.1 that the second minimum principle disappears and we have:

(3) C = {0}, Sl = L\U):

The first minimum principle tells us that

B*{t, x{t))p{t) - £.(*, x(t), «(!)) a.e.

In the particular case of our example we have in all cases that the adjoint state is
p{i,z) = Lu(t,z,x(t,z), u(t,z)) a.e.
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