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COMMUTATIVE ALGEBRAS FOR ARRANGEMENTS

PETER ORLIK anp HIROAKI TERAO"

1. Introduction

Let V be a vector space of dimension [ over some field K. A hyperplane H is
a vector subspace of codimension one. An arrangement &4 is a finite collection of
hyperplanes in V. We use [7] as a general reference. Let M(of) =V — Uy, H
be the complement of the hyperplanes. Let V™ be the dual space of V. Each hyper-
plane H € 4 is the kernel of a linear form ay € V¥, defined up to a constant.
The product

Q) = 1 ay
Hegd

is called a defining polynomial of 4. Brieskorn [3] associated to & the finite dimen-
sional skew-commutative algebra R(#) generated by 1 and the differential forms
day /oy for HE 4. When K = C, the algebra R(«) is isomorphic to the coho-
mology algebra of the open manifold M(#). The structure of R(«) was deter-
mined in [6] as the quotient of an exterior algebra by an ideal. In particular this
shows that R(#) depends only on the intersection poset of &, L(#), and not on
the individual linear forms .

A subarrangement B & & is called independent if N you H has codimension
| B 1, the cardinality of ®. In a special lecture at the Japan Mathematical Society in
1992, Aomoto suggested the study of the graded K-vector space

A0 = SKQ®B™, 3 independent.
2

It appears as the top cohomology group of a certain ‘twisted’ de Rham chain com-
plex [1]. When K = R, he conjectured that the dimension of AO(4) is equal to the
number of connected components (chambers) of M(4), which he proved for gener-
ic arrangements. In this paper we prove this conjecture in general. We construct a
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commutative algebra W(d) which is isomorphic to AO(4) as a graded vector
space. Note that AO(4A) is not closed under multiplication because a product
Q(®B) 'Q(®) ™" may contain the same linear form aj more than once. In order to
allow this, we need the following definition. A multiarrangement & is a finite set of
hyperplanes where each hyperplane may occur more than once. The multiplicity of
Hin & m(H, &) is the number of times H occurs in 8. The cardinality of &, | &/,
is the total number of elements of §, each hyperplane counted with its multiplicity.
Let E,(«) be the set of multisubarrangements & of 4 of cardinality p. Let
E(d4) = U, (E,(#). This union is disjoint. We write E = E(#) when & is
fixed. Let NE = N poH We call § € E independent if codim (U8) = | &1, and
dependent otherwise. Note that if m(H, 8) > 1 for some H € &, then & is depen-
dent. Let E' denote the set of independent multisubarrangements. This is a finite
set. Let B denote the set of dependent multisubarrangements. This is an infinite
set. There is a disjoint union E = E' U E%. Let S= S(V™) be the symmetric

algebra of V™. Choose a basis {e,,...,¢} in V and let {z,,...,z,} be the dual
basis in V™ so z,(e) = 08,,. We may identify S(V*) with the polynomial algebra
S=Klx,...,zl Let Q) =14 ay for § € E. Note that ay appears with

multiplicity m(H, 8) in Q(8). Let S, be the field of quotients of S, the field of
rational functions on V.

Dermvition 1.1, Let Kla,'] be the K-subalgebra of S, generated by
{Q&™"| 8 € E}.

Let J(«) be the ideal of K[a;] generated by {Q(&) ™' | & € E}.
Let W(d) = Kla;'1/]().

Consider the usual grading of Sy. Since J(4) is a homogeneous ideal,
W(4) is a graded commutative algebra. There is a natural map of graded vector
spaces j:AO(A) — W(d) defined by Q®B '+~ [Q®B ']. 1t is clear that
AO(4) is finite dimensional because the set E is finite. Since the map J is surjec-
tive, the algebra W(d) is also a finite dimensional K-vector space. Its total
dimension, Poincaré polynomial, or algebra structure are not obvious at this point.
In the rest of this paper we determine these.

In Section 2 we define a polynomial algebra K[u,] based on & and a quo-
tient algebra U(d). We also study some properties of U(d). Section 3 contains
the proof that U(4) and W(A) are isomorphic graded algebras. In Section 4 we
compute the Poincaré polynomial of W(4) and prove that 7 is an isomorphism of
vector spaces.
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It is not clear from our results whether W(4) depends only on L(#) or not.
Another interesting question is if W(«) is the model for any topological invariant

of M(d).

2. The algebralU(«)

Let & be an arrangement. Let L = L(4) be the set of all intersections of ele-
ments of &f. We agree that L includes V as the intersection of the empty collection
of hyperplanes. We should remember that if X € L, then X & V. Partially order L
by reverse inclusion. Then L is a geometric lattice with rank function #(X) =
codim(X) [7, Lemma 2.3].

Let Ey = {§ € E| N§ = X}. Then we have the disjoint union

E= U, E,.

We use notation such as E,y = E, N Ey, E, , = E' N E, 4, etc.

Derivition 2.1, Let Klu,]l be the polynomial ring in the indeterminates
uy, HE€ d. Write uy = Il g uy. Define

K[uﬂ],,=£z Ku,, Kluyly= 2 Ku,,

€E, E€Ex

Kl = = Ku;, Klu,l"= 3 Ku,.
8€R seEY

We have the following direct sum decompositions:

Kluyl = B, Kluyl,,
Klu,l = By, Klu,ly,
Klu,] = Klu,]' & Klu,l’
Let m,, 7y, n'i, and 7° be the respective projections. These maps commute pair-

wise. We use notation such as Klu,l,, = Klu,, N Klu,ly, Klu,l, =
Klu,l' N Klu,l, , etc.

DermviTioN 2.2, Let I(4) be the ideal of K[u,] generated by

(1) the elements of K[uﬂ]d,

(i) when 2.4 cyay = 0 with ¢ € K, the element 2 4 Cyltg_ -
Let U(d) = Klu,l /1(d).
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Grade K[uy] by deg uy; = — 1. Since I(«) is a homogeneous ideal, U(«) is
a graded commutative K-algebra. The isomorphism U(d) = K[uﬂ]i/ I«@) N
K[ud]i shows that U(H) is a finite dimensional graded commutative K-algebra.

A circuit C = {H,,...,H,} is a minimally dependent subset of hyperplanes: C
is dependent, but C — {H}} is independent for all i.

PROPOSITION 2.3.  The ideal I(d) is generated by the following finite set:
(a) ui, forHE 4,
(b) for each circuit C = {H,,...,H} with Z¢_, cioty, = 0, the element PN CMeop,

Proof. Let I’ denote the ideal generated by elements of type (a) and (b) of the
proposition. It is clear that I’ & I. To prove the converse, we argue separately for
elements of type (i) and (ii) of the definition.

(i) Suppose fEEK[ud]d. Since K[ud]d is an ideal, it suffices to assume that
f=uc where C={H,,...,H} is a circuit. Suppose > ¢y, = 0. It follows
from (b) that 2r_, Che_y, € I" and uy, > cthe_y, € I'. We use the distributive
law and (a) to conclude that ¢;u, € I’. Since C is a circuit, ¢; # 0. Thus f€ 1",

(i) We show that for each relation 2iycq cgy = 0 with ¢y € K, the corres-
ponding element ZHeg Cattg_gy € I'. Suppose not. Choose a counterexample with
minimal | §|. Note that minimality implies that for every H € &, m(H, §) = 1.
Let § = {H,,...,H,} with distinct H, Let 3., c,ay = 0 be the corresponding
relation. Since & is dependent, it contains a circuit. We may assume that C = {H,
...,H}, k < m, is a circuit. Thus 2;;1 aay, = 0 and @; # 0 for 1 < i< k. De-
fine @; = 0 for k + 1 < { < m. Then we have

$ ey — LS aoy =5 (o - =0
- (,',-Cl'Hi a. a,-a,,‘ = C; a a; (ZHl == V.
i=1 1 i=1 i=2 1

The index set of the last relation is & — {H,}. It follows from the minimality
assumption, that the corresponding element
E; (Ci - a‘la’) Ug oy € 1.

Multiply by #y and rewrite to get

m cl k

——— ’
Z CiMlg—my = ", Ug-c Z aue_gy € I'.
i=1 1 i=1

Since the second sum is in I’ by (b), so is the first sum. This contradiction com-
pletes the argument. ™
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3. The isomorphism

DermniTioN 3.1. Let @, : Klu,] — S, be the K-algebra homomorphism in-
duced by u, — aj’. Since im(®,) = K[a;], we have a surjective graded algebra
homomorphism

0 :Klu,] — Kla,'].
Let K = ker(®).

Lemma 3.2. (1) 7,(K) € K,
(2) m4(K) € K,
3) 7'(K) S K,
() =°(K) € K.

Proof (1) If a K-linear combination of Q&' is zero, then each
homogeneous component of it is zero.

(2) Fix f € K. By (1), we may assume that f € K[u,], Write
(i) f= 2 cyuy.

8<E,

Let f, = m,(f) for Z€ L. If f, € K for all Z, we are done. Suppose there exist
some Z € L with f, K. Among these Z we choose one with minimal rank and
call it X. Thus we may assume f, € K for all ¥ with #(¥) < »(X). We may write

O(f) =0 as

(ii) T QB TT=— 2 X 07
&€E, Y#X g<E,
ng=x FreK ng=v

Multiply both sides of (ii) by Q()”. All the resulting terms are in S. We count
zeros on both sides separately. We may choose coordinates so that X = {zx, = -
=z, = 0}. Let M be the ideal of S generated by {z,,...,2,}.

Let ch(éa)_1 be a term from the right side of (ii). Let Y= N& # X. Note that
Y £ X because if Y < X, then #(¥) < 7(X) so fy € K by the minimality assump-
tion. Thus & N (f — o) # @ . It follows that Q(#)’Q©®) ™" € M*'*'™** Now
consider the left side of (ii). Since Q(«)/Q(dy) € M and M s o
M-primary ideal, we have

Qty’ T Q@7 & M,
8€E,

ng=X
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The degree of this nonzero polynomial is equal to p | dXI — p. This contradiction
completes the argument.

(3) Suppose f € K. It follows from (1) and (2) that we may assume f €&
Klu,], 1f p > #(X), then f € Klu ]’ Thus 7'f=0 € K. If p = #(X), then f €
Klu,]' Thus 7'f=f€ K.

(4) follows from (3) because r+r=1 .

TueoreM 3.3.  The map @ : Klu,]1 — Kla,'] induces an isomorphism of graded
algebras ¢ . U(d) — W(d).

Proof. Since ker(¢) = K + K[ud]d, it is enough to show that /= K+
K[uﬂ]d_ It is clear that ] € K + K[ud]d because the generators of I of the second
kind belong to K. Since K[u,]* S I, it suffices to show for the converse that if
f€ KN Kluy,l', then f€ I It follows from Lemma 3.2 (1) and (2) that we may
assume f€ K N K[ud];,x. We argue by induction on p. If p = 0, then f=0 € L.
If p >0, then gy # 0. Let H, € dy. Write f= Zgcp Cottg 1If 8 € E,y, then
{8, H)} is a dependent set. Thus we have

oy, + 20 cyay = 0.
Heg
Since & is independent, ¢, # 0 and we may assume that ¢, = 1. By definition we
have
ug + uy 2 cytg_im € K.
Heg

It follows that f—uyg € K for g€ K[ud];_l, so uyg € K. Since K=

ker(®) is a prime ideal, f € K and uy & K, we conclude that g € K. Let g, =

7y(g) and write g = X gy where g, € K[u,],_, ;. It follows from Lemma 3.2 (2)

that g, € K for all Y. By the induction hypothesis, g, € I. Thus g € I and f € I
O

4. Structure theorems
Let Uld)y = Kluly/Kluyly N Iand W(d), = K[a;]X/K[a;]X nj.
THEOREM 4.1. The algebra U(A) is the divect sum U(d) = Dy, U(A) .

Proof. 1t follows from Theorem 3.3 and Lemma 3.2 that my(]) = m(K +
K[ud]d) C K+ K[ud]d = [. It implies that my(y) € I N K[uyly for any y € L
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Thus we have [ = @By, (I N Klu,],). The result follows. O

THEOREM 4.2.  The map j : AO(A) — W(A) is an isomorphism of graded vector

spaces.

Proof. Observe that j is a graded, K-linear, surjective map. It remains to
show that j is injective. Note that AO(4) = ®(K[u,]"). Thus we have a commut-
ing diagram.

A0l = OKlu,]) = Klu,)'/K N Klu,)'
il lr
W) = U = Klu,l/I

where 7 is induced by the diagram. We show that 7 is injective. It suffices to show
that I N Klu,]'= K N Klu,]". Theorem 3.3 implies that 1N K[u,]' 2 K N
K[u,]'. For the converse, write an element of [ = K + K[u_]" as a + b, where a
€ K and b € K[u,]" Then an arbitrary element of I N Klu,]" is 7'(a + b) =
r'(a) € KN Klu,]' by Lemma 3.2 (2). O

If M=®,.,M, is a finite dimensional graded vector space, we let Poin(M, #)
= 2J,-0(dim M,) t* be its Poincare polynomial. Recall [7, 2.42] the (one variable)
Mobius  function g : L(d) — Z defined by u(V) =1 and for X>V by
Zyxu(Y) =0.

THEOREM 4.3.

Poin(W(d), £) = Poin(U(d), £) = Poin(A0(d), H = X pu(X)(— ™.

XelL(g)

Proof. 1t suffices to show that dim W(d), =|u(X)|. It follows from
Theorem 4.2 that 7 induces an isomorphism jy : AO(A) y — W(d) for all X € L.
Thus it suffices to show that dim AO(#), = | u(X) |. Since AO(d)y = AO(dy)y,
we may assume that X = N & is the maximal element of L{(#). Choose coordin-
ates so that X = {x; = -++ = x,, = 0}. Suppose B C 4 is independent and N B
= X. Then 8= {H,,...,H,} and day N -++ A\ day, is a constant multiple of
dx, N\ -+ A dx,,. Recall the graded K-algebra R(«) generated by 1 and day/ay,.

It follows that multiplication by dx; A -+ A dzx, induces an isomorphism
AO(d) y = R(A)™. It was shown in [6] (see also [7, 3.129)) that dim R(«#)" =
[ (X |. O
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COROLLARY 4.4. We have

dim W(d) = dim U(4) = dmA0(A) = > |uX) |.

XeL(o)

When K = R, this number equals the number of chambers of M(A).

Proof. The first part is by Theorem 4.3 and the fact that (— 1)"®u(X) =
| u(X) |, see [7, 2.47). When K = R, connected components are called chambers.
The second part follows from Zaslavsky’s theorem [8]. |

5. NBC bases

In this section we construct explicit K-bases for AO(«), U(d), and W(A).
These bases are in one-to-one correspondence with the set of NBCs (non-broken
circuits).

Fix a total order on o by o = {H,, H,,...,H,}. Recall that a subset C of &
is a circuit if it is a minimally dependent set. A subset C of o is a broken circuit
or a BC if there exists a hyperplane K € o satisfying K < min C so that the set
C U {K} is a circuit. A subset T of & is called a non-broken circuit or an NBC if T
contains no broken circuit.

LemMa 5.1. If an independent subset C of A contains a BC, then Q(C) isa
linear combination of {Q(D) ™| NT= NC, T is an NBC}.

Proof. We may assume that C = {H,,...,H, } itself is a BC. Suppose that
T={H,} U Cis a circuit and that 4, <, <4, < -+ <4i,. Let T, = T\ {H,}.
This shows that @(C) ™" is a linear combination of {Q(T) ™} |j=1,...,m}. Note
that NC = NT = NT,; and we get the desired result. ]

For any subset C = {H,,...,H; } of 4, define

height(C) = i, + -+ + i,

TuEOREM 5.2. Let X € L. The set
NBC(d), = {Q(C)™"| C inan NBC and NC = X}

is a K-basis for AO(d) . Therefore the set {Q(C)™"| C is an NBC} is a K-basis for
AO(d).
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Proof. 1t follows from [2],[4],[5] that the cardinality of the set
{C| Cis an NBC and NC = X}

is | #(X) |. We showed in the proof of Theorem 4.3 that dim AO(#), = | u(X) |.
Thus it suffices to show that NBC(d), spans AO(«)y. If not, there exists C,

such that:
(1) C, is independent,
(2) NC, = X,

(3) Q(C, " is not spanned by elements of NBC(«f), and
(4) the height of C, is minimum among all subsets satisfying (1)-(3). Since C,
is not an NBC, Q(CO)_l is a linear combination of

{Q(D™'| Tis an NBC and N T = X}

by Lemma 5.1. By condition (4) and (3), this is a contradiction. |

COROLLARY 5.3. (i) The residue classes of the set {uz| C is an NBC} give a
K- basis for U(A) as a K-vector space.

(ii) The residue classes of the set {Q(C)™'| C is an NBC} give a K-basis for
W(d) as a K-vector space. O
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