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Abstract
The Gulf of California, one of the world’s most biodiverse marine ecosystems, is also heavily
exploited by fisheries. Among its fish fauna are species that, although currently underappreci-
ated, may become commercially important in the future. Enhancing our biological knowledge
of these species is crucial for monitoring population dynamics and community changes.
Fish parasites offer valuable insights into host ecology, including feeding habits and popula-
tion structure. In this study, we document the metazoan parasite fauna of Trichiurus nitens
(Trichiuridae) from four locations in the eastern Gulf of California, Mexico. A total of 165 fish
specimens were examined, revealing five parasite species identified using both morphologi-
cal characteristics and molecular markers: the monogenean Octoplectanocotyla travassosi, the
trematode Lecithochirium sinaloense, and three nematodes – Anisakis typica A, Skrjabinisakis
brevispiculata, and Spinitectus sp. Among these, L. sinaloensewas themost prevalent. Although
parasite species richness was similar between small and large fish, overall parasite abundance
was higher in larger specimens. Moreover, parasite assemblages did not vary significantly
across the study locations. These findings suggest that T. nitens exhibits a specialized feed-
ing strategy, relying on a narrow range of prey throughout its life, and that the oceanographic
variability does not limit fish movement in the region. Future studies encompassing a broader
geographical scale, additional fish size classes, and different climatic seasons are needed to
further elucidate the ecological role of this species. This work provides novel insights into
the host-parasite dynamics of T. nitens and establishes a valuable baseline for ecosystem
monitoring under global change scenarios.

Introduction

Fish of the genus Trichiurus (Scombriformes: Trichiuridae), commonly known as cutlassfish or
hairtails, are benthopelagic species that play an important ecological role as regulators of lower
trophic-level populations. Their diet includes fish, crustaceans, and cephalopods, positioning
them as key predators within marine ecosystems and contributing to the balance and energy
flow in food webs (Shin et al., 2022; Yan et al., 2011). In addition to their ecological impor-
tance, cutlassfish hold substantial commercial value, particularly in East Asian countries such
as China, India, Japan, and Korea, where they constitute a major component of global fisheries
catches, supporting both local economies and food security (Ghosh et al., 2024; Liao et al., 2021;
Shin et al., 2023; Watari et al., 2017). Trichiurus currently comprises 10 valid species (Froese
and Pauly, 2024), with T. lepturus being the only circumtropical taxon. While Trichiurus nitens
was historically synonymized with T. lepturus, recent studies recognize it as a distinct Eastern
Pacific species (Burhanuddin and Parin, 2008; Fricke et al., 2024; Yi et al., 2022), ranging from
California to Peru.

TheGulf of California is one of themost biodiversemarine ecosystems globally and an essen-
tial fishing ground for Mexico. It is home to a wide range of species, including many endemics,
and supports critical habitats likemangroves, coral reefs, and seagrass beds.However, the region
faces significant environmental pressures, including overfishing, habitat loss, and the impacts
of climate change (Arreguín-Sánchez et al., 2017; Lluch-Cota et al., 2007; Páez-Osuna et al.,
2016). Particularly, the eastern portion of the Gulf experiences high fishing effort (Moreno-
Baez et al., 2015). This situation represents a threat for both the biodiversity of the Gulf and the
sustainability of its fisheries, which are vital for the local economy and food security.

Trichiurus nitens is a documented component of fish assemblages in the Gulf of California
(Amezcua and Amezcua-Linares, 2014). Despite its presence, the species has received
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Table 1. Sample characteristics of Trichiurus nitens collected from four locations in the eastern Gulf of California

Location Latitude N Longitude W Date n SST ºC TL ± SD (cm)

Yavaros 26°30′72.3′′ 109°69′22.1′′ 02 May 2024 40 22.6 25.2 ± 2.4

Topolobampo 25°45′07.6′′ 109°42′73.1′′ 27 April 2024 20 22.9 74.9 ± 15.3

Las Glorias 25°03′39′′ 108°72′10.9′′ 26 April 2024 61 22 26.3 ± 2.8

El Tambor 24°70′11.8′′ 108°20′75.7′′ 25 April 2024 44 23.6 24.9 ± 3

n = sample size; TL = total length ± standard deviation; SST = sea surface temperature.

little attention in scientific literature. Technical reports indicate
that it is commonly caught in the Gulf ’s fishing grounds (Vallarta-
Zárate et al., 2023), yet its ecological relevance remains largely
unexplored. This lack of research may be attributed to the fact that
T. nitens holds no commercial value in the region, limiting its scien-
tific attention. Nonetheless, it is known that environment pressures
can change species abundances, potentially elevating previously
overlooked species into more prominent ecological or economic
roles (Link, 2007). Therefore, recognizing the ecological impor-
tance of underappreciated fish species is critical for tracking and
maintaining the functional diversity of an ecosystem in a changing
world (Link, 2007).

The ecology of a fish species can often be partially under-
stood through the study of its parasites, as these organisms are
intricately linked to various aspects of their host’s biology, includ-
ing distribution patterns, habitat selection, and diet composition
(Jacobson et al., 2024; Timi and Poulin, 2020). For example, fish
with broad dietary ranges tend to host more abundant, rich,
and diverse communities of food-transmitted parasites compared
to those with a restricted prey spectrum (Dallarés et al., 2016;
Knudsen et al., 1996). Likewise, shifts in parasite populations or
community structures can serve as indicators of host popula-
tion structure (George-Nascimento and Oliva, 2015; Lester and
Moore, 2015). In this context, the present study aimed to document
the parasite fauna of T. nitens from four locations in the eastern
Gulf of California, Mexico, providing clues to the species’ eco-
logical characteristics, including its feeding habits and population
connectivity.

Methods

Fish and parasites sampling

Fish samples were collected from fishing hauls conducted at four
locations in the eastern Gulf of California during April–May
2024 (Figure 1 and Table 1). The hauls were performed as part of a
research cruise aboard the R/VDr. Jorge Carranza Fraser, operated
by the Instituto Mexicano de Investigación en Pesca y Acuacultura
Sustentables (IMIPAS). Amidwater net with four equal panels (top
and bottom footrope length: 48.17 m) was used, deployed at an
average speed of 6.5 km/h for 45 minutes at a depth of 25–30 m,
in water with an average temperature of approximately 23ºC. In
total 165 fish identified as T. nitens were collected and frozen for
later examination. Species identification was carried out onboard
the vessel by ichthyologists from IMIPAS.

For parasitological examination, fish were thawed and mea-
sured for total length (TL, in cm). The external surfaces, gills,
body cavities, and internal organs were then carefully exam-
ined under a stereomicroscope to detect metazoan parasites. All
observed parasites were counted. Trematodes and monogeneans
were processed using standard morphological identification

techniques (Salgado-Maldonado, 2009; Vidal-Martínez et al.,
2001). Nematodes and some trematodes were fixed and preserved
in 96% ethanol for subsequent molecular identification.

Molecular identification

DNA extraction and amplification were carried out following
established protocols (Hernández-Mena et al., 2017; Shamsi
et al., 2017). For trematodes, the 28S rDNA region was amplified
using primers 391 (5′-AGCGGAGGAAAAGAAACTAA-3′)
and 536 (5′-CAGCTATCCTGAGGGAAAC-3′) (García-
Varela and Nadler, 2005; Nadler and Hudspeth, 1998). For
nematodes, the ITS-1 region was targeted with primers SS1
(5′-GTTTCCGTAGGTGAACCTGCG-3′) and NC13R (5′-
GCTGCGTTCTTCATCGAT-3′), while the ITS-2 region used
SS2 (5′-TTGCAGACACATTGAGCACT-3′) and NC2 (5′-
TTAGTTTCTTTTCCTCCGCT-3′) (Zhang et al., 2007; Zhu et al.,
1998). PCR products were sequenced on an ABI 3730xl Genetic
Analyzer (Applied Biosystems, Foster City, CA, USA). The result-
ing sequences were analyzed, edited, and assembled using the
software Geneious Pro 4.8.4 software (Biomatters Ltd., Auckland,
New Zealand). Sequence similarities were determined via BLAST
searches against the GenBank nucleotide database. All newly
generated sequences have been deposited in GenBank (Table 2,
Supplementary Table S1). For phylogenetic analyses, datasets were
generated usingMesquite 3.62 (https://www.mesquiteproject.org/)
with the newly obtained sequences in this study and sequences
published in GenBank, including those selected in previous
studies (Chan-Martin et al., 2022; Mattiucci et al., 2014). A total
of two data matrices were generated: one for trematodes with
DNA sequences of the 28S marker and another for nematodes
with the ITS-1 and ITS-2 markers. In the case of nematodes, the
ITS-1 and ITS-2 regions were combined into a single analysis.
The matrices were aligned using the default parameters (Pairwise
Alignment: SLOW/ACCURATE) of ClustalW (Thompson et al.,
1994) implemented on the website: https://www.genome.jp/tools-
bin/clustalw. The nucleotide substitution model that best fit the
aligned datasets was inferred with jModelTest v2 (Darriba et al.,
2012). The method used to determine phylogenetic relationships
was maximum likelihood (ML), which was implemented in
RAxML v. 7.0.4 (Stamatakis, 2006). The reliability of the phylo-
genetic relationships was assessed via non-parametric bootstrap
analysis with 1000 replicates.

Parasitological metrics for population and community analysis

Parasite data were analyzed at both the population and infracom-
munity levels following Bush et al. (1997). At the population level,
prevalence (percent of infected fish) andmedian intensity (median
number of parasites per infected fish) were calculated for each par-
asite species at each location. At the infracommunity level, only
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Figure 1. Study area with sampling locations across the eastern Gulf of California. 1: Yavaros; 2: Topolobampo; 3: Las Glorias; 4: El Tambor.

the species richness and the total number of parasite individuals
were measured, as most fish were either uninfected or hosted only
a single parasite species. Similarity in parasite assemblages among
individual fish hosting parasites was quantified using Bray–Curtis
distances, calculated on square-root-transformed abundance data
to reduce the dominance of highly abundant taxa in the analysis.
Uninfected fish were excluded from these analyses. To visualize
patterns related to sampling locations, non-metric multidimen-
sional scaling (nMDS) was performed using the similarity matrix.
To enhance visualization, distances between the centroids of each
sample were plotted by bootstrap averaging the original dataset (75
iterations with replacement; rho coefficient = 0.99). Statistical dif-
ferences among locationswere evaluated using a one-way permuta-
tional multivariate analysis of variance (PERMANOVA), incorpo-
rating fish TL as a covariate and ‘location’ as a factor. A sequential
sum of squares (Type I SS) approach was applied to account for
the covariate. All analyses were conducted using PRIMER v7 and
the PERMANOVA + for PRIMER package (Anderson et al., 2008;
Clarke and Gorley, 2015).

Results

Five parasite species were identified: the trematode Lecithochirium
sinaloense, the monogenean Octoplectanocotyla travassosi, and
three nematodes – Anisakis typica A, Skrjabinisakis brevispicu-
lata, and Spinitectus sp. (Table 2). Identification was based on a
combination of morphological and molecular data for the trema-
tode, morphology alone for the monogenean and Spinitectus, and
molecular data only for the two anisakids.

Anisakid larvae were initially separated into two morphotypes
based on ventricular characteristics and body length: Anisakidae
gen. sp. 1, approximately 1mm in length, had a large ventricle rela-
tive to body size; Anisakidae gen. sp. 2, approximately 25mm long,
exhibited a small ventricle. This classification followed the ventric-
ular size criterion proposed by Safonova et al. (2021). Molecular
analysis (ITS-1 and ITS-2 regions) of three larvae from gen. sp. 1
and two from gen. sp. 2 confirmed that these morphotypes corre-
sponded to distinct species: gen. sp. 1 showed 100% similarity toA.
typica A and gen. sp. 2 to S. brevispiculata in BLAST, as supported
by phylogenetic analysis (Figure 2, Supplementary Table S1).
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Table 2. Parasite infection parameters in Trichiurus nitens across four localities in the Gulf of California, Mexico

Parasite/GenBank accession number Site Yavaros Las Glorias El Tambor Topolobampo

Trematoda (A)

Lecithochirium sinaloense Stomach P% 27 (15−43) 39 (27−52) 40 (26−55) 85 (63−95)

PV788762−68 MI 1 (1−1) 1 (1−1) 1 (1−2) 25 (19−34)

Monogenea (A)

Octoplectanocotyla travassosi Gills P% 0 11 (5–21) 2 (1–11) 60 (36–79)

MI 0 1 (1–2) 1a 4 (3−5)

Nematoda (L)

Anisakis typica A Stomach P% 0 9 (4–20) 2 (1–11) 15 (4–36)

PV788755−57, 59−61 MI 0 2 (1−4) 2a 1a

Skrjabinisakis brevispiculata Stomach P% 5 (1−16) 0 0 0

PV788753, 54, 58 MI 1a 0 0 0

Spinitectus sp. Stomach P% 0 0 0 5 (2−23)

MI 0 0 0 1a

A = adult; L = larva; P% = prevalence; MI = median intensity.
Note: Values within parenthesis represent 95% confidence intervals.
aSample too small to calculate the confidence limits for median intensity.

Figure 2. Maximum-likelihood phylogenetic tree of concatenated ITS-1 and ITS-2 sequences from anisakid nematodes. Terminal labels show species names and GenBank
accession numbers (sequences from this study in bold). Bootstrap support values are shown at nodes. The tree was rooted with Skrjabinisakis paggiae and Skrjabinisakis
physeteris as outgroups. Scale bar indicates nucleotide substitutions per site.
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Figure 3. Maximum-likelihood phylogenetic tree of 28S sequences from hemiurids. Terminal labels show species names and GenBank accession numbers (sequences from
this study in bold). Bootstrap support values are shown at nodes. Lecithaster gibbosus, Merlucciotrema praeclarum, and Bunocotyle progenetica were used as outgroup. Scale
bar indicates nucleotide substitutions per site.

For the trematode, 28S sequences were obtained from seven
specimens. BLAST searches andphylogenetic analyses placed these
specimens within the genus Lecithochirium, particularly as a sister
species to L. synodi and L. microstomum (Figure 3, Supplementary
Table S1). Morphologically, our specimens were identified as L.
sinaloense by a combination of characters such as the presence of
a presomatic pit glandular, the sucker ratio (1:2.9–3.9 × 1:2.7–3.5),
shape of the vitelline masses, and egg size (21–23 × 13–15).

Among the five parasite species found in T. nitens, L. sinaloense
was the only one occurring in all four sampling locations (Figure 4)
and themost notable in terms of prevalence and infection intensity,
followed by O. travassosi, while the nematodes were infrequently
encountered (Table 2). Fish from three locations – Yavaros, Las
Glorias, and El Tambor – were small, all measuring around 25 cm
in length, and fish from Topolobampo were large, measuring an
average of 75 cm (Table 1). In small fish, L. sinaloense reached a
prevalence of 40% and median intensity of 1, whereas in large fish
these values were 85% and 25, respectively. Likewise, in small fish,
O. travassosi reached a prevalence of 11% and median intensity
if 1, whereas in large fish these values were 60% and 4, respec-
tively (Table 2).

The examined fish showed depauperate parasite infracommu-
nities (Figure 5). About half of the small fish were free of parasites,

while the rest were parasitized by one or two species, with an aver-
age of fewer than three individual parasites per fish (Figure 5). In
contrast, 90% of the large fish were parasitized by one to three
species, with an average of 42 individual parasites per fish.

The analysis of infracommunity similarity across locations
excluded Topolobampo, as fish sizes from this site were not com-
parable to those from the other three locations. The bootstrap-
average-based nMDS ordination of infracommunities (Figure 6)
did not reveal a clear separation among samples, with a low value
of stress (0.03), indicating a good fit.This lack of differentiationwas
further supported by the PERMANOVA analysis (Table 3), which
showed no significant differences among the parasite assemblages
of fish from Yavaros, Las Glorias, and El Tambor.

Discussion

Comments on the parasite fauna of T. nitens

Thus far, no parasitological studies have focused on T. nitens, limit-
ing direct comparisons.Of the 11 species ofTrichiurus, parasitolog-
ical research has predominantly focused on T. lepturus, likely due
its commercial importance. In fact, these studies often emphasize
the identification of anisakid nematodes because of their zoonotic
relevance (e.g., Cipriani et al., 2022; Kim et al., 2016).
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Figure 4. Spatial variation in parasite community composition of Trichiurus nitens across sampling locations in the Gulf of California. Pie charts represent the relative
abundance (%) of each parasite species, coded by colour: (1) Lecithochirium sinaloense (blue), (2) Octoplectanocotyla travassosi (green), (3) Anisakis typica (red), (4) Skrjabinisakis
brevispiculata (yellow), and (5) Spinitectus sp. (pink). Size proportions reflect actual abundance ratios among species at each site.

The parasite species identified in this study have previously
been reported in other fish host species and geographical regions.
Anisakis typica (s.l.) is one of the most common anisakid nema-
todes in warm temperate and tropical waters, occurring as an adult
in various dolphin species and as a larva in multiple fish species
worldwide, including T. lepturus from Korea and the Southwest
Indian Ocean (Cipriani et al., 2022; Lee et al., 2009;Mattiucci et al.,
2022). Previous studies have reported A. typica (s.l.) in the fish
Trachinotus rhodopus (Carangidae) from Puerto Ángel, Oaxaca,
and in the dolphin Stenella longirostris (Delphinidae) from La Paz,
Baja California Sur (Aguilar-Aguilar et al., 2001; Martínez-Flores
et al., 2023). Thus, the present study further confirms the pres-
ence of A. typica (s.l.) in the Mexican Pacific, including the Gulf
of California.

Thephylogenetic analysis provides additional resolution for this
taxon. Our sequences clusteredwithinA. typica sp. A, as defined by
Cipriani et al. (2022), who also reported the occurrence ofA. typica
sp. B in sympatry with sp. A inT. lepturus.This placement indicates

phylogenetic affinity with Indo-Pacific populations and suggests
that A. typica sp. A has a broader distribution than previously doc-
umented, now including the Eastern Pacific. In our material, A.
typica sp. B was not detected. The detection of A. typica sp. A in
the Gulf of California expands both the known host range (now
including T. nitens) and the geographic distribution of this lin-
eage. Cipriani et al. (2022) already emphasized that A. typica sp.
A shows a worldwide distribution, and our findings are consistent
with this interpretation.These results are relevant not only for clar-
ifying the diversity and phylogeography of anisakid nematodes,
but also for food safety considerations, since Anisakis larvae are
zoonotic.

Skrjabinisakis brevispiculata is currently the valid name for
Anisakis brevispiculata, which has been found in kogiid whales as
definitive hosts and in several fish species as intermediate hosts
across the Atlantic and Indo-Pacific regions (Cabrera-Gil et al.,
2018; Cipriani et al., 2024; Safonova et al., 2021). In our phy-
logenetic reconstruction, the sequences obtained from T. nitens
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Figure 5. Parasite infracommunities of Trichiurus nitens across four
localities in the Gulf of California, Mexico. (A) Relative parasite species
richness represented in greyscale: white = 0 parasite species, medium
grey = 1 parasite species, light grey = 2 parasite species, dark grey = 3
parasite species. (B) Average number of parasite individuals (bars indi-
cate standard error).

clusteredwith sequences of S. brevispiculata, supporting the identi-
fication of this species in the Gulf of California. To our knowledge,
there are no previous records of S. brevispiculata in the Mexican
Pacific. Its presence in T. nitens can be explained by the wide geo-
graphic distribution of at least two of its definitive hosts, Kogia
breviceps and Physeter macrocephalus, as well as one of its interme-
diate hosts, Xiphias gladius, all of which extend into the Mexican
Pacific. This study represents new host and geographical records
for S. brevispiculata.

A single specimen of Spinitectus sp. was found in all fish
examined. Molecular analysis was precluded by DNA degradation.
Morphologically, the specimen was identified as Spinitectus
sp. following Moravec et al. (2023), based on its character-
istic transverse rows of conical, pointed cuticular spines –

a diagnostic feature distinguishing this genus from other
nematodes. The low prevalence could suggest accidental acqui-
sition through trophic interactions. This nematode has been
reported in other marine fish from the Mexican Pacific, typ-
ically at very low prevalence; however, in some species, such
as Euthynnus lineatus, prevalence can range from moderate
to high (Miranda-Delgado et al., 2019; Santos-Bustos et al.,
2018; Villalba-Vasquez et al., 2022). Despite its occurrence,
Spinitectus has only been identified at the genus level. According
to Moravec et al. (2023), species-level identification of Spinitectus
remains challenging due to the inadequacy of existing species
descriptions.

Currently, three valid species of monogeneans belong to the
genus Octoplectanocotyla: O. aphanopi, O. travassosi, and O.

https://doi.org/10.1017/S0025315425100623 Published online by Cambridge University Press
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Figure 6. Non-metric multi-dimensional scaling plot (nMDS) of boot-
strap averages of parasite infracommunities in three samples of
Trichiurus nitens from the Gulf of California, based on Bray–Curtis dissim-
ilarity of square root-transformed data of abundance. Black full symbols
represent the overall centroids across all repetitions. Blue circles: El
Tambor; red triangles: Las Glorias; and green squares: Yavaros. Colours
areas represent 95% confidence regions.

Table 3. PERMANOVA results of square-root-transformed abundance of para-
sites of Trichiurus nitens in three samples from the Gulf of California, based on
the Bray–Curtis dissimilarity measure with host length as covariable. P-values
obtained after 9999 permutations

Source df SS MS Pseudo F P (perm)

Host length 1 300.71 300.71 0.2562 0.721

Locality 2 5123 2561.5 2.1824 0.0886

Host length x Locality 2 754.11 377.06 0.32125 0.7802

Residual 54 63381 1173.7

Total 59 69559

df = degrees freedom; SS = sum of squares; MS = mean square.

trichiuri. The morphology of the monogeneans found in T. nitens
aligns with O. travassosi, originally described by Carvalho and
Luque (2012) from specimens collected on T. lepturus in Brazil.
According to these authors, O. travassosi differs from its con-
geners by possessing a third pair of small hooks between the outer
and inner pairs, as well as six large and two small genital spines.
These distinguishing structures were observed in specimens from
T. nitens; however, further detailed morphological and molecular
analyses are required to confirm the presence ofO. travassosi in the
Mexican Pacific.

Lecithochirium sinaloense was previously reported from
Cynoponticus coniceps in the Mexican Pacific (Bravo-Hollis, 1956),
and to our knowledge, no additional records of this trematode
exist. Our specimens resemble L. sinaloense, particularly based
on a combination of characters: shape of the vitelline masses,
presomatic pit glandular, sucker ratio and egg size. This species
belongs to the ‘synodi’ group, which includes several very similar
species. Bray (1991) mentions that the species in this group
could well be synonyms. However, L. sinaloense (and therefore
our specimens) can be distinguished from L. synodi by having
larger eggs (20–23 in length vs. 12–16 in L. synodi) and by the
average sucker ratio (1:3.1 in L. sinaloense vs. 1:1.3 in L. synodi)
(Bravo-Hollis, 1956; Bray, 1991; Manter, 1931). Additionally, Bray
(1991) explicitly mentions that L. sinaloense may be a synonym of
L. acutum; however, we differ since L. acutum generally has smaller
eggs (e.g., 15 × 10 in Chauhan, 1954; see Bray, 1991 for further

measurements). Genetically and phylogenetically, our specimens
are also distinct from specimens that have been identified as L.
synodi from Brazil. Clearly, resolving the taxonomic problem
of the ‘synodi’ group requires a more thorough review of the
species that comprise the group, supported by DNA sequences
and phylogenetic analysis. However, we have decided to adopt
a conservative position regarding the taxonomic validity of L.
sinaloense, since there are underlying morphological differences,
which are compatible with the specimens collected in this study.

The parasite community of T. nitens in our study area showed
low richness (five taxa), consistent with patterns observed in other
mesopelagic vertical migrators (Woodstock et al., 2020). While T.
lepturus populations may show variable parasite richness across
regions, for instance, 6 taxa in Taiwan (Shih, 2004) vs. 14 in Brazil
(Carvalho and Luque, 2011), our findings align with the typi-
cally depauperate communities reported for bathypelagic fishes.
This pattern may reflect ecological constraints of the mesopelagic
zone, including greater host spacing and lower nutrient avail-
ability that limit parasite transmission (Woodstock et al., 2020).
Consistent with the findings of the present study, a trematode
(Lecithochirium microstomum) was the most abundant parasite
reported in T. lepturus from Brazil. Notably, the Brazilian fish
measured approximately 100 cm in length, whereas the Taiwanese
specimens and most of those examined in this study measured
approximately 25 cm. Such differences in fish size may explain
the higher parasite species richness reported in Brazil. In fish
populations, larger individuals typically harbour richer parasite
communities because they have had more time to accumulate
parasites, access a wider range of habitats, and consume a more
diverse diet, all of which can increase exposure to a broader array
of parasite species (Guégan and Hugueny, 1994; Pérez-del Olmo
et al., 2008; Poulin, 2007). Nonetheless, in the present study, the 20
larger fish (75 cm in length) did not exhibit higher parasite species
richness, although they did harbour a greater number of parasite
individuals. This observation supports the idea that the decay in
similarity of parasite communities as a function of ontogenetic
distances becomes more apparent when using abundance-based
metrics rather than those based solely on presence/absence data
(Timi et al., 2010). The absence of a clear correlation between par-
asite richness and host size has been documented in several studies
(e.g., González and Poulin, 2005; Norton et al., 2003). While our
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data show a similar pattern, we emphasize that our sample lacked
sufficient representation across size classes for robust statistical
analysis.

Parasites of T. nitens as indicators of fish feeding ecology

The lack of obvious variation in parasite species across the size
range studied (25–75 cm) suggests that T. nitens maintains a
specialized feeding strategy throughout ontogeny. This aligns
with a previous study which identified T. lepturus as a special-
ist feeder, with larger individuals narrowing to only three prey
types: Clupeiformes, Mugiliformes, and Perciformes (Gomathy
and Vivekanandan, 2017). Another study also revealed that T. lep-
turus strongly prefers one of three selected fish species (Chiou
et al., 2006). Broader evidence from other fish species supports
the parasite-diet link. For instance, Knudsen et al. (1996) demon-
strated that infections by three food-transmitted parasite species
reflected the specialization of Arctic charr on specific prey items.
In contrast, Kleinertz et al. (2012) found that the diversity of the
parasite community mirrored the variety of prey items consumed
by European sprat. Similarly, Dallarés et al. (2016) observed that
the high abundance, richness, and diversity of parasites in greater
forkbeard correlated with its broad dietary range. However, further
targeted research is necessary to confirm the hypothesis of feeding
specialization in T. nitens.

Based on our findings, it is also plausible to suggest thatT. nitens
primarily feeds in the pelagic zone, where intermediate host avail-
ability is limited compared to benthic zones (see Dallarés et al.,
2014, and references therein). On the other hand, our results do
not allow us to determine the specific prey consumed by T. nitens.
Of the five parasite species found in T. nitens, four are food-
transmitted (one trematode and three nematodes). Inferring how
these parasites are transmitted to T. nitens is challenging, as they
can use a variety of invertebrate and fish species as paratenic hosts
through their indirect life cycles, which are not totally understood
(Gibson andBray, 1986;Mattiucci et al., 2022;Moravec et al., 2023).

Parasites of T. nitens as indicators of host population structure

The similarity in parasite assemblage structure across sampling
locations could reflect connectivity among host populations, based
on two established ecological patterns: first, some parasite species
tend to occur only in specific host populations; second, the abun-
dance of certain parasite species can vary among host populations
where they are present (Poulin and Kamiya, 2015). In general, sim-
ilarity among parasite communities in marine fish tends to decline
with increasing geographical distance, due to oceanographic vari-
ability that can act as a barrier to the distribution of both fish
and their parasites (Oliva and González, 2005; Vales et al., 2011).
This decay in similarity depends, among other factors, on the spa-
tial scale of the study, environmental constraints, and the dispersal
abilities of the organisms (Poulin and Kamiya, 2015).

Our study area is characterized by pronounced environmental
complexity (Marín-Enríquez et al., 2024). Despite this heterogene-
ity, which might theoretically limit host movement, we observed
homogeneous parasite assemblages across sites. This pattern could
suggest sufficient host connectivity to maintain shared parasite
faunas, or limitations of parasite tags to resolve subtle popula-
tion structure in this system. Our study design did not include a
geographically distinct reference population to test the method’s
resolution. The maximum sampled distance (∼260 km between
Yavaros and El Tambor) falls within ranges where parasite tags

have detected structure elsewhere (Poulin and Kamiya, 2015), but
conclusions remain provisional without complementary data (e.g.,
genetics, otolith chemistry). Future studies should integrate these
approaches to validate potential connectivity.

Conclusion

To the best of our knowledge, this study represents the first para-
sitological investigation ofT. nitens.The depauperate parasite com-
munity, comprising one monogenean species, one trematode, and
three nematodes, suggests that T. nitens may exhibit a specialized
feeding strategy. Moreover, the homogeneous parasite assemblages
across our 260-km study area suggest potential connectivity among
T. nitens populations, though we emphasize that this interpreta-
tion requires validation through complementary approaches (e.g.,
genetics, otolith chemistry). Although T. nitens remains underap-
preciated, our findings provide valuable insights into its ecology,
which could inform future fisheries management. Additionally,
these parasitological data serve as a useful baseline for ecosystem
monitoring under future global change scenarios.
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