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The turbulent transport of momentum, energy and passive scalar is investigated in the
flow around a rectangular cylinder of aspect ratio 5 : 1 – a geometry representative of
separating and reattaching flows from sharp-edged bodies. The study is based on direct
numerical simulation (DNS) conducted at Reynolds numbers up to Re = 14 000, based
on the cylinder thickness, with Schmidt number fixed at Sc = 0.71. At this Reynolds
number, the flow exhibits features of asymptotic high-Re behaviour. Budgets of mean
momentum, Reynolds stresses, mean scalar and scalar fluxes provide a detailed view
of the underlying transport mechanisms. The mean momentum balance elucidates the
role of turbulence in entraining free stream fluid, promoting shear-layer reattachment,
sustaining backflow in the recirculation region and regulating wake dynamics through
large-scale vortex shedding. The leading-edge shear layer is the main site of turbulence
production, with energy injected into streamwise fluctuations and redistributed to cross-
flow components by pressure–strain interactions. As Re increases, vertical fluctuations
increasingly return energy to the mean upward flow, stabilising the separation bubble
height. Turbulent transport dominates scalar redistribution. Scalar fluxes are primarily
generated by interactions between Reynolds stresses and scalar gradient, and modulated by
pressure-scalar gradient effects. An a priori evaluation of eddy-viscosity and diffusivity
models quantifies the misalignment between modelled and DNS-resolved stress and flux
tensors, as well as the inhomogeneity of eddy transport coefficients. This analysis deepens
the understanding of transport phenomena in bluff-body flows approaching the asymptotic
regime, and underpins the validation and improvement of turbulence models for separating
and reattaching flows.
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1. Introduction
Flow separation and reattachment substantially affect the transport of mass, momentum
and energy (both kinetic and thermal) around bluff bodies, with implications for
performance, efficiency and stability in numerous engineering systems. Examples include
the aerodynamic drag of ground vehicles, wind loading on buildings, vortex-induced
vibrations in structures such as bridges and chimneys, fuel–air mixing in combustors,
and pollutant dispersion in urban and natural environments. Despite their importance and
considerable advances in recent years, many aspects of separated and reattaching flows
remain poorly understood due to their inherent complexity. Turbulent processes, such
as momentum redistribution, energy exchange between mean and fluctuating motions,
and heat transfer across separation and reattachment regions, are difficult to measure
experimentally and predict computationally.

These difficulties stem from the unsteady, multi-scale and three-dimensional nature of
such flows. Current turbulence models often fail in capturing the intricate interactions
between separation, reattachment and turbulent fluctuations. On the other side, minor
disturbances in experimental set-ups can significantly alter separation and reattachment
dynamics, hindering data repeatability and accuracy. Overcoming these obstacles requires
high-fidelity simulations, advanced experimental techniques and innovative modelling
approaches capable of elucidating the underlying mechanisms governing these flows.

Separating and reattaching flows have been extensively studied using different nominally
two-dimensional configurations. Sharp-edged geometries, where the separation location
is fixed and independent of the Reynolds number, are particularly useful for isolating
the mechanisms of separation and reattachment without the added complexity of
time-dependent separation points. Commonly studied geometries include forward- and
backward-facing steps (Armaly et al. 1983; Adams & Johnston 1988b; Hattori & Nagano
2010), sudden expansions in plane channels (Durst, Pereira & Tropea 1993; Casarsa &
Giannattasio 2008), blunt flat plates (Kiya & Sasaki 1983; Cherry, Hillier & Latour 1984),
surface-mounted obstacles like ribs and fences (Castro 1981; Fang, Tachie & Dow 2022),
and bluff bodies with rectangular cross-sections of various aspect ratios (Nakamura,
Ohya & Tsuruta 1991; Moore, Letchford & Amitay 2019). These configurations share
fundamental features while offering distinct insights into separation and reattachment
phenomena. Comprehensive reviews of these geometries have been provided by Simpson
(1989) and Ota (2000).

This study investigates the flow around a rectangular cylinder of chord-to-thickness ratio
equal to 5 : 1 in a uniform stream. This geometry provides a simple yet representative
model for examining the fluid dynamic characteristics of real-world separating and
reattaching flows. An overview of the main features of this configuration, along with a
discussion of separated flows, is provided in § 3.

The turbulent flow around the rectangular 5 : 1 cylinder has gained significant attention
as part of the BARC (Benchmark on the Aerodynamics of a Rectangular 5 : 1 Cylinder)
initiative (Bruno, Salvetti & Ricciardelli 2014; Mannini et al. 2018; Bartoli et al. 2020;
Chiarini & Quadrio 2022; Corsini et al. 2022; Crivellini et al. 2022; Mariotti, Lunghi &
Salvetti 2024). Established in 2008, BARC provides a collaborative framework for
comparing numerical simulations and wind tunnel experiments. The initiative seeks to
establish best practices, ensure consistency across research methodologies, and promote
the integration of experimental and computational results to improve the understanding
of separating and reattaching flows. In this context, direct numerical simulation (DNS)
studies have proven crucial in providing high-fidelity insights into the aerodynamic
characteristics and separation-reattachment mechanisms. Recent DNS studies (Cimarelli
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et al. 2018a; Chiarini & Quadrio 2021, 2022; Corsini et al. 2022; Cimarelli, Corsini &
Stalio 2024; Li et al. 2024b) have started to examine this flow configuration over a range
of Reynolds numbers representative of turbulent regimes, spanning 1000< Re< 14 000,
where Re = U0 D/ν is based on the cylinder thickness D and the free stream velocity U0.

Currently, features of the turbulent transport around the rectangular 5 : 1 cylinder are
well documented by various authors for Reynolds numbers up to Re = 3000, with results
derived from DNS employing different numerical methodologies. At Re = 3000, Cimarelli
et al. (2018a) and Cimarelli et al. (2018b) presented the distributions of Reynolds stresses
(turbulent momentum fluxes) and turbulent kinetic energy around the rectangular 5 : 1
cylinder. Based on the same DNS dataset, Cimarelli et al. (2019) investigated turbulence
production statistics, revealing the occurrence of negative production phenomena in the
shear layer, where energy is transferred from turbulent fluctuations back to the mean flow.
For the same Reynolds number, Chiarini & Quadrio (2021) conducted a detailed analysis
of Reynolds-stress budget terms, while Chiarini et al. (2022a) explored the role of flow
structures in producing and redistributing large- and small-scale velocity fluctuations using
the anisotropic generalised Kolmogorov equations. At a lower Reynolds number (Re =
1000), Li et al. (2024a) recently examined the connection between transport mechanisms
and vortical structures, extending their analysis to include rectangular cylinders of different
aspect ratios.

While several experimental studies have investigated the flow around the rectangular
5 : 1 cylinder at high Reynolds numbers, detailed analyses of turbulent momentum and
energy transfer for Re> 104 remain limited. The works of Lander et al. (2018) and Moore
et al. (2019) examined the dynamics of the separated shear layer over the range 13 400 �
Re � 118 000, showing that turbulent kinetic energy production increases with Reynolds
number due to intensified instability interactions and spatial amplification of disturbances.
Recently, Kumahor & Tachie (2022) employed particle image velocimetry (PIV) at Re =
16 200 to quantify in-plane turbulent fluctuations and the terms of the turbulent kinetic
energy budget, providing insight into Reynolds stress transport by turbulence.

The present study aims to bridge the gap between low-Re DNS results and higher-
Re experiments by analysing turbulent transport mechanisms up to Re = 14 000. At
sufficiently high Reynolds numbers, the fluxes of mass, momentum and energy in
turbulent flows are expected to become independent of molecular viscosity and diffusivity
(Frisch 1995). Based on the same dataset employed here, Cimarelli et al. (2024) recently
showed that several integral quantities around the 5 : 1 cylinder exhibit only a weak
dependence on Reynolds number for Re> 104, suggesting that the flow is approaching
an asymptotic high-Re regime. Accordingly, while results at Re = 3000 and 8000 indicate
how turbulence evolves with Reynolds number, the analysis at Re = 14 000 can be
considered representative of the near-asymptotic behaviour. As compared with the cited
work by Cimarelli et al. (2024), which focuses on mean flow topology, unsteadiness and
entrainment processes, here we examine momentum and energy transfer through the full
budgets of the mean momentum and Reynolds stresses at Re = 14 000, and analyse passive
scalar transport with comparable detail, including the budgets of turbulent scalar fluxes.
These results elucidate the role of turbulence in governing shear-layer reattachment,
sustaining the backflow region and modulating wake dynamics. Furthermore, this analysis
enables an a priori assessment of turbulence models based on eddy viscosity and eddy
diffusivity, highlighting their limitations in separated and reattaching flows, characterised
by strong anisotropy and non-equilibrium effects.

Studying scalar transport gives additional insight into how turbulence affects mixing
and redistribution phenomena. In applied contexts, it provides a clearer view of how
turbulence spreads quantities like heat or concentration in separating and reattaching flows.
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In such flows, scalar transport is significantly affected by the structure and dynamics of
the separation bubble, reattachment region and wake. Although scalar transport has been
studied across different geometries (see the review by Ota 2000), investigations specific to
the rectangular 5 : 1 cylinder are missing. The only recent contribution in this regard is by
Cimarelli et al. (2024), who reported mean and variance of the scalar field. Earlier studies
on blunt plates (Ota & Kon 1974; Cooper, Sheridan & Flood 1986) described typical
scalar transfer distributions characterised by a local minimum downstream of separation,
followed by a peak near the mean reattachment location. However, the relation between
maximum wall scalar transport and reattachment dynamics is still unclear (Sparrow,
Kang & Chuck 1987; Yanaoka, Yoshikawa & Ota 2003).

To summarise, this paper investigates turbulent momentum and scalar transport in the
flow around a rectangular 5 : 1 bluff body by means of DNS at Reynolds numbers up to
14 000 and fixed Schmidt number, Sc = 0.71. The main objectives are to: (1) analyse the
full budgets of mean momentum and Reynolds stresses to characterise turbulent transport
mechanisms in separating and reattaching flows at Re ∼ 104; (2) investigate for the first
time passive scalar transport in this configuration, including turbulent scalar fluxes and
their budgets; (3) perform an a priori assessment of eddy viscosity and diffusivity-based
turbulence models, identifying and quantifying their limitations in highly anisotropic, non-
equilibrium regions.

The remainder of the paper is structured as follows. Section 2 outlines the numerical
methodology and details of the simulations. Section 3 provides an overview of the key
flow features around the rectangular cylinder. The turbulent transport of momentum and
its influence on flow reattachment are analysed in § 4 through the examination of mean
velocity fields, Reynolds stress distributions and their respective budgets. Section 5 extends
the analysis to the transport and mixing of a passive scalar, presenting, for the first time
in this flow configuration, the distributions of turbulent scalar fluxes, the mean scalar
balance and budgets of scalar fluxes. The performance of turbulence models based on eddy
viscosity and eddy diffusivity in predicting separating and reattaching flows is assessed in
§ 6. Finally, § 7 concludes the paper.

2. Numerical method and flow settings
The present study uses DNS datasets previously introduced by Cimarelli et al. (2024). For
clarity and completeness, the numerical methodology and flow parameters used in those
simulations are summarised here.

The governing equations solved are the continuity and Navier–Stokes equations for
incompressible flows, and the scalar transport equation,

∂ui

∂xi
= 0,

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂p

∂xi
+ 1

Re
∂2ui

∂x j∂x j
,

∂θ

∂t
+ ui

∂θ

∂xi
= 1

RePr
∂2θ

∂xi∂xi
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.1)

where the subscripts i , j ,k take values 1,2,3 to denote the streamwise, vertical and
spanwise directions, with (x1, x2, x3)= (x, y, z). Here, ui is the i th velocity component,
(u1, u2, u3)= (u, v, w), p is the pressure and θ represents the passive scalar field. All
variables in (2.1) and throughout the paper are non-dimensionalised by the thickness
of the rectangular cylinder D, the free stream velocity U0, and the difference in scalar
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concentration between the body surface and the free stream, Θw −Θ0. The Reynolds
number is defined as Re = U0 D/ν and the Schmidt number as Sc = ν/α, where ν is the
kinematic viscosity and α the molecular diffusivity of the scalar. Note that for heat transfer
with constant thermophysical properties, Sc corresponds to the Prandtl number, Pr. The
velocity, pressure and scalar fields are decomposed into mean and fluctuating components
as ui = Ui + u′

i , p = P + p′ and θ =Θ + θ ′.
DNS was performed using the code Nek5000 (Fischer, Lottes & Kerkemeier 2008),

based on the high-order spectral element method for spatial discretisation. Within each
spectral element, velocity and passive scalar are represented as N th-order Lagrange
interpolation polynomials on the Gauss–Lobatto–Legendre quadrature points, ensuring C0

continuity across element interfaces. The pressure is represented by polynomials of order
N − 2 based upon the Gauss–Legendre quadrature points. In this study, seventh-order
accuracy in space is achieved with N = 7. Temporal discretisation uses an operator-
splitting approach where viscous terms are treated implicitly via a third-order backward
differentiation scheme, while nonlinear advective terms are treated explicitly using a third-
order extrapolation scheme. In the DNS at the highest Re, the second-order accurate
scheme is applied. Aliasing errors are prevented through over-integration of the advective
terms by a 3/2 factor. A low-pass explicit filter with a cut-off mode of N − 1 and weight
0.02 is employed for additional stabilisation (Fischer & Mullen 2001).

At the inlet, Dirichlet conditions are imposed, prescribing a uniform velocity field
(U0, 0, 0) and a uniform scalar concentration Θ0 = 0. At the outlet and along the
vertical directions, natural boundary conditions are applied, corresponding to −pn̂ j +
1/Re(∂ui/∂x j )n̂ j = 0 and (∂θ/∂x j )n̂ j = 0, where n̂ j denotes the components of the unit
vector normal to the boundary surface. On the body surfaces, no-slip and fixed scalar
conditions, Θw = 1, are enforced. Periodicity is imposed in the spanwise direction.

The computational domain size is Lx × L y × Lz = 80D × 31D × 5D. The rectangular
5 : 1 cylinder is located 20D downstream of the inflow boundary, is centred in the vertical
direction and spans the domain width. The coordinate origin is positioned at the upper
leading-edge corner, centred spanwise, as shown in figure 2. Simulations are performed
for Reynolds numbers Re = 3000, 8000 and 14 000, with a constant Schmidt number of
Sc = 0.71, representative of air when the passive scalar being transported is heat.

The grid is designed to resolve the smallest turbulent length scales across critical
regions of the flow. For Re = 14 000, the minimum grid spacing is (�xmin, �ymin, �z)=
(0.0021, 0.0021, 0.007) at the leading edge. The maximum ratios of grid spacing to
Kolmogorov scale η in the shear layer are (�x/η, �y/η, �z/η)max = (4.2, 4.6, 6.3).
At the wall, the maximum grid spacings in viscous units are (�x+, �y+

w , �z+)max =
(4.1, 0.66, 5.1). Further details regarding the spatial resolution issue can be found from
Corsini et al. (2022). The time step is fixed to satisfy the Courant–Friedrichs–Lewy
condition CFL< 0.5, with �t = 5.5 × 10−4, 3.0 × 10−4 and 2.6 × 10−4 for Re = 3000,
8000 and 14 000, respectively, ensuring �t is significantly smaller than the smallest
Kolmogorov time scale, e.g. τη � 0.007 at Re = 14 000.

For the statistical analysis, once a statistically stationary state is reached, the flow is
sampled over at least 250D/U0 time units, with data collected at intervals of 5D/U0. This
yields a minimum of 51 three-dimensional samples per DNS. Statistics are then computed
by averaging over time, along spanwise homogeneous direction, and by exploiting the flow
symmetry about the xz plane at y = −0.5. Consequently, the figures presented in the
results only display the upper half of the rectangular cross-section, i.e. for y >−0.5. The
validations of the present datasets, along with an assessment of their quality in terms of
both spatial discretization and statistical convergence, are provided in Corsini et al. (2022)
for the case at Re = 3000 and in Cimarelli et al. (2024) for Re = 14000.
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–1.30 1.30 0 0.2 0.4 0.6 0.8 1.0–0.50 0.50(a) (b)

Figure 1. Instantaneous flow visualisations for the case at Re = 14 000. (a) Isosurfaces of λ2 = −5 coloured by
streamwise velocity. (b) Volume rendering of the passive scalar field. An animated version is also provided as
supplementary material.

For the sake of reproducibility and to limit the number of governing parameters, the
present simulations do not include imposed inflow disturbances. However, it is worth
noting that previous studies on rectangular cylinders with aspect ratio 5 : 1 and Re> 104

(Ricci et al. 2017; Mannini et al. 2018) have shown that free stream turbulence can affect
the flow. Increased turbulence intensity in the incoming flow typically leads to earlier onset
of shear-layer instabilities, enhanced entrainment and reduced reattachment length. These
effects also depend on the turbulence scale: small-scale disturbances, comparable to the
shear-layer thickness, promote shear-layer growth and reattachment, whereas turbulence
at scales of the order of the body size tends to weaken vortex shedding coherence
(Nakamura & Ozono 1987). Comparable behaviours have been observed for separating
and reattaching flows around rounded-edge bluff bodies and streamlined geometries, such
as aerofoils and turbine blades (Bearman & Morel 1983; Öztürk & Schobeiri 2006; Wang
et al. 2014). Although these configurations differ substantially from the present sharp-
edged body in smooth inflow, they provide useful insight into how inflow conditions and
surface curvature affect flow topology.

3. General flow characteristics
This section provides an overview of the flow around a rectangular cylinder with an
aspect ratio of 5 : 1, shown in figure 1, and highlights the primary phenomena and their
interrelations. The distinguishing time-periodic flow features are shortly described in § 3.1.

An attached boundary layer develops on the front face of the cylinder, starting from
the stagnation point and progressing towards the sharp leading edges, where it separates,
forming two laminar free-shear layers along the sides. Transition to turbulence occurs
shortly after separation. The Kelvin–Helmholtz instability triggers the roll-up of the shear
layers into a sequence of spanwise vortices. These vortices pair and undergo distortion
under the influence of growing disturbances, eventually breaking down into small-scale
turbulent motions. The evolution of the vortical structures is visualised in figure 1(a)
using the λ2 criterion by Jeong & Hussain (1995). The evolution of spanwise vortices into
turbulence drives the rapid growth of the shear layer and exhibits similarities to a canonical
mixing layer (Rogers & Moser 1992; Cimarelli et al. 2024). Reattaching shear layers,
however, differ from plane mixing layers in several ways (Castro & Haque 1987). First, the
low-speed side of the shear layer is highly turbulent, unlike the typically low turbulence
levels in a plane mixing layer. Second, the reattaching shear layer exhibits a low-frequency
flapping motion, which increases turbulence intensity by 5 %–10 % compared with plane
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y

DU0
xr

z
x

Figure 2. Schematic of the flow configuration and definition of symbols. Shaded regions indicate areas with
vorticity. The dashed line denotes the mean dividing streamline, yψ(x), the upper dotted line indicates the
mean turbulent/non-turbulent interface, yΩ(x), and the lower dotted line marks the boundary of the backflow
region, yb(x), on one side of the body. These lines are defined in the text. The arrows depict the conceptual
flow model, with turbulent structures supplying the backflow near the wall.

mixing layers, albeit with minimal contribution to Reynolds shear stress (Eaton &
Johnston 1982; Kiya & Sasaki 1983; Fang & Wang 2024). The instantaneous reattachment
location fluctuates due to vortex shedding, leading to periodic reattachment–detachment
cycles synchronised with large-scale vortex formation in the wake, see the discussion by
Cimarelli et al. (2018b).

The mean reattachment length of the turbulent shear layer, denoted as xr in figure 2, is
governed by pressure recovery in the wake and the entrainment process of the shear layer
(Smith, Pisetta & Viola 2021). The entrainment rate depends on the Reynolds number
(Dimotakis & Brown 1976), which influences the onset of turbulence and the scale of
turbulent structures. A higher entrainment rate causes a larger growth rate of the shear
layer, thus reducing the mean reattachment length. The proximity of the shear layer to
the wall further affects entrainment, limiting fluid transport across the lower interface
(Cimarelli et al. 2024; Li & Wang 2024). However, the detailed mechanisms regulating
momentum and energy transfer in the near-wall reattachment zone remain unsettled (Ota &
Kon 1980; Gorin 2012).

The recirculating flow region, also known as the separation bubble, is bounded by
the turbulent shear layer above and a near-wall backflow region below. The backflow
region, characterised by relatively slow reverse flow, is sustained by the adverse pressure
gradient, which deflects part of the shear-layer fluid upstream. As noted by Simpson,
Chew & Shivaprasad (1981), mean backflow originates not only from downstream regions
near reattachment but also intermittently from large-scale structures passing through the
separated flow and supplying the near-wall flow, see again figure 2. Within the backflow
region, a reverse boundary layer initially accelerates due to the pressure gradient, but it
is prone to separate as it approaches the leading edge under the action of an adverse
pressure gradient, forming a secondary separation bubble near the wall. The backflow
contains weak but dynamically relevant motion, as evident in the blue-shaded regions
of low streamwise velocity in figure 1(a). For instance, in backward-facing step flows,
reverse flow velocities can exceed 20 % of the free stream velocity (Adams & Johnston
1988b), with skin-friction coefficients as low as C f = −0.0033 (Jović & Driver 1994).
For the rectangular 5 : 1 cylinder, skin-friction values reach up to C f = −0.013 (Corsini
et al. 2022). This region lacks large-scale structures; instead, it consists of small-scale
turbulent fluctuations generated by vortex impingements and driven upstream by the
pressure gradient (Pronchick 1983; Cimarelli et al. 2018b).

In the reattachment zone, the adverse pressure gradient and wall interaction significantly
affect the shear layer. Reynolds normal and shear stresses decay rapidly in this region
and continue to diminish downstream. This behaviour is observed for aspect ratios of
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Figure 3. Phase-averaged velocity streamlines and pressure field at (a) Re = 3000 and (b) Re = 14 000. The
upper side of the rectangle corresponds to phase φmax, while the lower side corresponds to φmin. Cross symbols
mark the mean reattachment points on the body sides.

the cylinder as high as 15 : 1 (Li et al. 2024b). Concurrently, a boundary layer begins
to form within the reattached shear layer. In its inner layer, mean velocity profiles follow a
logarithmic law, similar to that of ordinary boundary layers. However, the outer part retains
free-shear-layer characteristics for a considerable distance downstream of reattachment,
with large eddies generated during separation persisting downstream. Transitioning to an
ordinary boundary-layer structure is generally a slow process (Bradshaw & Wong 1972;
Jović 1998), not accomplished in the 5 : 1 rectangle.

At the trailing edge, the turbulent boundary layer detaches, forming a wake characterised
by free-shear layers and two counter-rotating recirculation bubbles in the base region.
Vortex shedding occurs as large-scale oscillations due to alternating vortex formation
on either side of the body. These oscillations dominate wake dynamics, contributing to
aerodynamic drag, structural vibrations and scalar transport. Figure 1(b) shows how large-
scale vortex shedding promotes downstream transport and mixing of passive scalar, with
high-concentration scalar released from the body surface and recirculation region being
entrained into the wake and wrapped into the alternating vortical structures. The shedding
frequency, quantified by the Strouhal number St, depends on the Reynolds number Re and
the aspect ratio of the cylinder (Nakamura et al. 1996; Chiarini et al. 2022b; Li et al.
2024b). For a 5 : 1 aspect ratio, St approaches a constant value of approximately 0.11
for Re> 1000 (Schewe 2013; Moore et al. 2019). Cimarelli et al. (2024) attribute this
asymptotic behaviour of St and other integral quantities, such as drag coefficients, to the
flow approaching a high-Reynolds-number regime.

3.1. Phase-averaged statistics
Vortex shedding and the oscillatory motion of the separated flow region is a distinguishing,
general feature of the flow. Decomposing the flow in a periodic and random part can aid
in the characterisation of this oscillatory motion. Phase-averaged statistics are obtained
based on the temporal evolution of the lift coefficient, which exhibits regular oscillations
with a frequency corresponding to the vortex shedding. Around each lift extremum, a
tolerance window of duration ±1D/U0 was defined. Snapshots near lift minima were
mirrored about the horizontal symmetry plane y = −0.5 and averaged together with those
near lift maxima to produce statistically coherent phase-averaged fields. In total, 35 and
21 snapshots were used for the cases at Re = 3000 and Re = 14 000, respectively. The two
phases analysed, φmax and φmin, correspond to the averaged solution obtained on the upper
and lower sides of the body, respectively. The case at Re = 8000 is omitted for brevity, as
it presents intermediate behaviour.

The phase-averaged flow structure is displayed in figure 3, showing velocity streamlines
superimposed to the pressure field for Re = 3000 and 14 000. In phase with the streamwise
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Figure 4. Phase-averaged distributions of (a) skin friction coefficient, (b) Nusselt number, (c) pressure
coefficient and (d) standard deviation of pressure coefficient. Line styles denote results at Re = 3000 (dotted
line) and Re = 14 000 (solid line). Curve colours indicate averages over all samples (black), and at two phases
φmax (red) and φmin (blue).

oscillation of the low-pressure region, the separation bubbles along the rectangle sides
periodically elongate and contract, while its height remains nearly constant. A positive
peak in the lift coefficient corresponds to a longer separation bubble on the upper side.
The displacement of the reattachment point increases with Re. As displayed in figure 4(a),
showing the phase-averaged friction coefficient c f , the reattachment coordinate xr is in the
range 4.04< xr < 4.29 at Re = 3000 and within 4.07< xr < 4.55 at Re = 14 000. When
the separation bubble shortens (at φmin), the reverse flow strengthens, as apparent from
the reduced skin friction in the interval 2< x < 4. However, separation of the reverse
boundary layer is observed at both phases. This indicates that strong reverse flow does not
penetrate into the upstream portion of the backflow.

The unsteadiness of the separation bubble affects scalar transfer at the wall, as shown
by the local Nusselt number in figure 4(b). A longer separation bubble at φmax leads to en-
hanced scalar near reattachment and after it, while the reduced bubble at φmin corresponds
to diminished transfer with respect to the mean. This difference is attributed to vortices
impinging on the wall, which enhance the wall-normal scalar gradient more effectively
than the reattached turbulent boundary layer. These impingements increase wall-normal
velocity fluctuations and promote entrainment of fluid at low scalar concentration from
the free stream. The phase difference in scalar transfer is amplified as Re increases.

Figure 4(c) shows the phase-averaged pressure coefficient cp. The pressure difference
between the two phases generates the fluctuating lift force on the body and grows with
Re along the entire lateral face, consistent with the increase in lift amplitude reported
by Cimarelli et al. (2024) (see their figure 5d). While pressure minima maintain similar
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Figure 5. Mean (a,c) streamwise and (b,d) vertical velocity components at (a,b) Re = 3000 and (c,d) 14 000.
Dotted and dashed lines, from top to bottom, designate the turbulent/non-turbulent interface yΩ , the shear-layer
centreline ysl and the boundary of the backflow region yb. Cross symbols indicate the locations of maximum
and minimum values.

magnitudes across phases, their positions and pressure recovery rates change. At φmax
(red curves), the pressure minimum shifts upstream with increasing Re, and the recovery
becomes smoother, leading to lower pressure levels in the reattachment region. At
φmin (blue curves), pressure is higher near the leading edge and recovers more steeply
downstream, resulting in higher pressure in the reattached flow. The cp distribution
motivates also the persistence of the secondary separation bubble, as the more energetic
reverse flow is accompained by a stronger adverse pressure gradient.

Figure 4(d) shows the standard deviation of the phase-averaged pressure coefficient,
cpstd , which represents the amplitude of random pressure fluctuations at a fixed phase.
According to phase-averaged decomposition (Cantwell & Coles 1983), total fluctuations
from the global mean include contributions from periodic large-scale motion and from
local random turbulence: p = P + P̃ + p′′, where p′ = P̃ + p′′, P̃ is the periodic mean
component and p′′ is the random component. Fluctuations at φmax and φmin are similar
and decrease in intensity with increasing Re. The difference between the global mean
(black curves) and phase-locked results (coloured curves) arises from the contribution of
large-scale periodic fluctuations. The growing gap with Re suggests that periodic, coherent
unsteadiness becomes increasingly dominant relative to random turbulence.

4. Momentum transport

4.1. Mean flow
The analysis begins with the mean momentum distribution around the 5 : 1 rectangular
cylinder. Effects of a Reynolds number increase on the turbulent flow are considered.
A variation in the Reynolds number changes the location of laminar to turbulent transition,
affecting the pressure distribution and the momentum transfer along the shear layer and in
the base region (Chapman, Kuehn & Larson 1958).

Figure 5 shows the contours of the streamwise (U ) and vertical (V ) mean velocities at
Re = 3000 and 14 000, where the crosses indicate velocity extrema. To provide a support
for the interpretation of statistical quantities above the rectangle, figure 5, as well as
most of those following, include indications of the turbulent/non-turbulent interface of the
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leading-edge shear layer yΩ(x), the shear-layer centreline ysl(x), the line encompassing
the backflow region yb(x) and the dividing streamline yψ(x). The turbulent/non-turbulent
interface yΩ can be interpreted as the upper boundary of the shear layer, as it lies between
the free flow and the sheared region. It is defined here as the set of outermost points
of the rotational region with absolute values of vorticity greater than 0.01|Ωz|max(x),
where |Ωz|max(x) is the maximum absolute value of the mean spanwise vorticity at
each x-location. The shear-layer centreline ysl is identified by the position of |Ωz|max(x).
Concerning the boundary of the backflow region yb, it separates regions of the flow
with different characteristics beneath the shear layer, as will be shown later, and is
representative of the recirculation region. This boundary corresponds to the line where
the mean streamwise velocity is zero, U = 0. Finally, the dividing streamline yψ is the
mean streamline originating from the leading edge, and thus connects the separation point
of the shear layer to its mean reattachment point.

Two distinct regions of negative streamwise velocity are observed, one above the
rectangle and the other in its wake. These regions correspond to two mean separation
bubbles induced by the leading and trailing edges of the rectangle, hereafter referred to as
primary and wake separation bubbles. Minima of the streamwise velocity component are
found in the backflow region inside the primary separation bubble, reaching Umin = −0.34
and −0.37 for the cases at Re = 3000 and 14 000, respectively. In the case at high Re, low
values of streamwise velocity extend more upstream toward the leading edge, due to the
influence of a more extended favourable pressure gradient along the wall (see figure 7c of
Cimarelli et al. 2024).

The shear layer separating from the leading edge bounds the regions of flow reversal
(U < 0) on the lower side and high streamwise mean velocity (U >U0) on the upper
side. The maximum value of the streamwise velocity component is attained close to the
irrotational flow region, where Umax = 1.32 is reached for both the Reynolds numbers
considered. While the location of the leading-edge shear layer proves to be almost
independent from Re in the range analysed, its spreading primarily depends on the
transition process (and therefore on Re) and on the distance from the wall. In figure 5,
ysl remains constant with respect to Re, while yΩ begins to spread at varying distances
from the leading edge. The proximity of the wall to one side of the free shear layer
limits the entrainment of fluid on that side, inducing a lower pressure in that region. This
pressure difference generates a downward curvature in the flow, which further constrains
the inflow of fluid into the turbulent shear layer. The process intensifies until the shear layer
impinges on the rectangle wall. The mean reattachment point, xr , nearly coincides with
the intersection of yb with the rectangle wall. These locations are found to move slightly
downstream for Re ranging between 3000 and 14 000 (see figure 10 of Cimarelli et al.
2024), following a behaviour similar to the reattaching flow behind a backward-facing
step (Adams & Johnston 1988a).

The fluid entrained from the backflow region into the shear layer balances the flow
reversed by the pressure rise through the reattachment zone. The flow rate per unit span
entrained from the backflow region, Qe, increases from 0.0689 U0 D at Re = 3000 to
0.0754 U0 D at Re = 14 000. This quantity is computed as the line integral of the mean
velocity field U across the curve Γ , which represents the upstream boundary of the
backflow region:

Qe =
∫
Γ

U · n̂ ds. (4.1)

In the equation, n̂ is the unit vector normal to the curve and ds is the arc length element.
The curve Γ is parametrised as Γ = {(x, yb(x)) | x ∈ [0, x0]}, where yb(x) is the height
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Figure 6. Volume flux across the line of zero streamwise velocity as a function of the streamwise distance
normalised with the reattachment length: dotted line, Re = 3000; dashed line, Re = 8000 and solid line, Re =
14 000. The asterisk symbol marks the zero-crossing point x0.

at which the mean streamwise velocity vanishes and x0 is the streamwise location where
the volumetric flux changes sign (indicated by an asterisk in figure 6). Figure 6 shows the
volume flux across yb as a function of the streamwise direction. Positive values of the
volume flux indicate fluid flowing outward from the backflow region, while negative
values correspond to incoming flow. The slight increase in Qe with Re is consistent
with the enlargement of the primary separation bubble, as its vertical thickness remains
approximately constant over the analysed Re range. As the Reynolds number increases
and the transition of the laminar shear layer shifts upstream, a higher fraction of fluid is
entrained from the backflow region into the shear layer close to the leading edge.

Maxima of the vertical mean velocity (Vmax = 1.14 and 1.20 at Re = 3000 and 14 000)
are observed at the leading edge, where the laminar boundary layer formed on the front
face of the rectangle separates. The minimum value of the vertical velocity component
is found above the reattachment region and corresponds to Vmin = −0.172 and −0.156 at
Re = 3000 and 14 000, respectively.

4.2. Reynolds stresses
Reynolds stresses reflect how turbulence redistributes momentum, affecting dominant
phenomena such as shear-layer growth, reattachment and wake formation. In this section,
we analyse their evolution across the Reynolds number range 3000< Re< 14 000, also
establishing connections to findings from prior works. Reynolds stresses in the flow around
the rectangular 5 : 1 cylinder have been examined in previous numerical studies by Li et al.
(2024a), Cimarelli et al. (2018a) and Chiarini & Quadrio (2021), based on DNS data
ranging from Re = 1000 to 3000, as well as in the experimental study by Kumahor &
Tachie (2022), based on PIV measurements at Re = 16 200.

In the statistically two-dimensional flow considered, the only non-zero components of
the Reynolds-stress tensor are the normal stresses 〈u′2〉, 〈v′2〉 and 〈w′2〉, and the shear
stress 〈u′v′〉. Throughout this section, we use the term Reynolds stress to refer to quantities
〈u′

i u
′
j 〉, excluding the negative sign that is introduced when these terms are transferred from

the left-hand side to the right-hand side of the mean momentum equation to represent
turbulent stresses. The spatial evolution of the four terms in the present flow configuration
is shown in figures 7 and 8 for the cases at Re = 3000 and 14 000. For sharp-edged bluff
bodies with uniform incoming flow, the regions of maximum Reynolds stresses are strictly
related to the process of laminar to turbulent transition and occur along the turbulent
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Figure 7. Distributions of the Reynolds normal stresses (a,c) 〈u′2〉 and (b,d) 〈v′2〉 at (a, b) Re = 3000 and
(c,d) 14 000. The cross symbols mark the locations of the maximum values.
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Figure 8. Distributions of the (a,c) Reynolds normal stress 〈w′2〉 and (b,d) shear stress 〈u′v′〉 at (a,b) Re = 3000
and (c,d) 14 000. The cross symbols mark the locations of maximum value of 〈w′2〉 and the minimum value of
〈u′v′〉.

free shear layers. Turbulent fluctuations are initiated by the Kelvin–Helmholtz-like roll-
up of the vortex sheet separating from the leading edge and by the pairing of vortices.
By increasing the Reynolds number, the instability mechanisms are triggered at shorter
distances from the leading edge and turbulence arises more rapidly under the action of
mean shears of growing intensity. To illustrate the deformation experienced by the fluid
in the shear layer, the principal mean strain rate Sλ, i.e. the largest eigenvalue of the
mean strain-rate tensor Sij = (1/2)(∂Ui/∂x j + ∂U j/∂xi ), is evaluated along the shear-
layer centreline ysl and shown in figure 9. Note that Sij is a second-order symmetric and
traceless tensor, thus its eigenvalues are real and opposite, indicating stretching (Sλ) in
one direction and compression (−Sλ) in the other. The data in figure 9 are presented on a
logarithmic scale to highlight the power-law behaviour of Sλ. In the initial, laminar stage
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Figure 9. Largest eigenvalue of the mean strain-rate tensor along the leading-edge shear layer centreline: dotted
line, Re = 3000; dashed line, Re = 8000; and solid line, Re = 14 000. The dash-dotted lines mark the two power-
law decay regions.

of the shear layer, Sλ exhibits larger values with Re, but converges to similar values at the
trailing edge over the range of Re examined. Two distinct power-law decay regions, marked
by the dash-dotted lines in figure 9, are observed. The first region exhibits a weaker decay,
associated with transitional turbulence mechanisms, while the second shows a steeper
decay, corresponding to the fully turbulent shear layer. This variation indicates a change
in the deformation of fluid elements due to turbulence. The decay rates are found to be
almost invariant with respect to Re and can be associated with the different growth stages
of the shear layer thickness, as described by Cimarelli et al. (2024).

The streamwise Reynolds normal stress 〈u′2〉 is the dominant component in the leading-
edge shear layer for all the Reynolds numbers considered. At Re = 3000, high streamwise
fluctuations arise in the rear part of the primary separation bubble, reaching a peak of 0.116
at (x, y)= (3.37, 0.45). As shown by Cimarelli et al. (2024), in the case at Re = 3000, the
intense turbulent fluctuations originating in this region are due to the positive combination
of the transition process and the shedding of large-scale vortices from the separated region,
occurring in close proximity. As the Reynolds number increases, transition mechanisms
shift upstream along the shear layer centreline and separate (at least in terms of distances)
from the vortex shedding region. Hence, levels of 〈u′2〉 remain significant across the bulk
of the shear layer and aligned with the streamwise direction. The maximum values of 〈u′2〉
are reached in the early turbulent region and increase with Re. In detail, the peak values of
0.114 and 0.122 are found at x = 1.38 and 0.79 for Re = 8000 and 14 000, respectively.

The vertical and spanwise Reynolds normal stresses 〈v′2〉 and 〈w′2〉 are characterised by
a lower intensity in the leading-edge shear layer with respect to the streamwise component.
This difference becomes wider with the growth of the Reynolds number. In particular,
while at Re = 3000, the maximum values of 〈v′2〉max = 0.090 and 〈w′2〉max = 0.090 are
observed respectively at (2.96, 0.47) and (3.23, 0.40), and at Re = 14 000, 〈v′2〉max =
0.067 and 〈w′2〉max = 0.080 are found at (0.71, 0.38) and (0.89, 0.42), respectively.
Vertical fluctuations on the low-velocity side of the shear layer rapidly fall as the solid
wall is approached. Due to the curvature of the mean streamline close to the reattachment
region, turbulent motions are conveyed towards the wall and wall-normal fluctuations
are suppressed because of the impermeability condition. On the other side, fluctuations
parallel to the wall are generated close to the wall in the reattachment region and in the
backflow region at decreasing distances from the leading edge with Re.

The streamwise Reynolds normal stress also prevails in the shear layer separating from
the trailing edge of the rectangle. Here, turbulent motions developed in the reattached
boundary layer, while transported downstream, are amplified by the mean velocity
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gradients in the wake region and acquire streamwise turbulent energy. The magnitude
of 〈u′2〉 in this region increases with the Reynolds number. In the case at Re = 14 000,
〈u′2〉max = 0.084 is obtained at (6.03, 0.07). Unlike the leading-edge shear layer, high
streamwise fluctuations are not centred in the bulk of the trailing-edge shear layer, but
are spread across the vertical direction. One of the reasons lies in the vertical oscillatory
motion induced on the trailing-edge shear layer by the von Kármán vortex shedding motion
occurring in the wake region. Other factors that contribute to the fast growth of the shear-
layer thickness are the turbulent state of the boundary layer separating at the trailing
edge and the supply of turbulent motions generated upstream in the reattached boundary
layer.

The large scale oscillations in the vertical direction occurring in the wake are associated
with high vertical fluctuations centred in the wake centreline, i.e. the symmetry plane
y = −0.5. More intense oscillations take place at greater Reynolds numbers, as shown by
the significant rise of 〈v′2〉 for x > 5 in figure 7(b,d). The maximum value in the wake
increase from 〈v′2〉max = 0.070 at Re = 3000 to 0.074 and 0.105 at Re = 8000 and 14 000,
respectively. Moreover, high levels of 〈v′2〉 last over longer distances in the wake at larger
Re (not shown in figure).

The Reynolds shear stress 〈u′v′〉 provides a relevant contribution to momentum transfer
across the flow, as well as to the production of turbulent kinetic energy. As shown in
figure 8(b, d), 〈u′v′〉 is mostly negative around the rectangle and exhibits high magnitude
levels in the core of the turbulent leading-edge shear layer and in the wake. The minimum
value, located where streamwise and vertical fluctuations are best anti-correlated, reaches
−0.053 and is located within the separation bubble at (3.21, 0.47) for Re = 3000, while
equals −0.045 and is located in the wake region at (6.89, 0.064) for Re = 14 000. Regions
of positive values for the shear stress 〈u′v′〉 are limited to the most upstream part of the
separation bubble below the shear layer and within the wake separation bubble.

To enable a quantitative comparison of the Reynolds stresses generated in each section
x at different Reynolds numbers, we compute the integrals of the Reynolds stress tensor
components, 〈u′

i u
′
j 〉, across the turbulent flow, from the rectangle wall to the outer edge of

the shear layer yΩ ,

γij(x)=
∫ yΩ

0

∣∣〈u′
i u

′
j

〉
(x, y)

∣∣ dy, (4.2)

where the absolute value ensures that γ12 is positive. The resulting integrals for the three
Re values investigated are reported in figure 10. Globally, a larger amount of 〈uu〉 rises
along the shear layer at higher Reynolds numbers. However, cross-stream Reynolds normal
stresses 〈v′2〉 and 〈w′2〉 do not experience a similar increase. Although higher vertical and
spanwise fluctuations occur near the leading edge by increasing the Reynolds number,
lower values of γ22 and γ33 are observed in the downstream half of the rectangle. The
same is true for the shear component γ12.

4.3. Mean momentum balance
Turbulence significantly affects the mean flow (see § 3) by redistributing momentum
through Reynolds stresses. This section quantifies this effect by analysing the mean
momentum balance. We highlight how the pressure gradient and the divergence of the
Reynolds stress tensor act to bend the shear layer, promote reattachment and sustain the
backflow. To isolate these effects, we reformulate the momentum equations in a streamline-
aligned coordinate system, which allows direct interpretation of turbulent momentum
transport across the mean dividing streamline.
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Figure 10. Integrals of the Reynolds stresses across the separated flow above the rectangle, (a) γ11, (b) γ22,
(c) γ33 and (d) γ12: dotted line, Re = 3000; dashed line, Re = 8000; and solid line, Re = 14 000.

Previous sections compared flow features across three different Reynolds numbers.
From this point forward, the analysis focuses on the case at Re = 14 000, where the flow
approaches an asymptotic high-Reynolds-number regime.

For the statistically two-dimensional and steady flow under consideration, the conserva-
tion equations for mean momentum in the streamwise and vertical directions reduce to

U j
∂Ui

∂x j
= −∂P

∂xi
− ∂

〈
u′

i u
′
j

〉
∂x j

. (4.3)

The left-hand side represents the mean advection of momentum that is balanced by the
gain or loss in mean momentum resulting from the action of the mean pressure field and
the Reynolds stresses. The viscous diffusion term is omitted from the mean momentum
balance, as it is negligible across most of the domain for the Reynolds numbers considered,
except in the initial part of the separated shear layer, where turbulence is still developing
and Reynolds stresses remain low. This simplification was verified by comparing its
magnitude to those of the pressure gradient and Reynolds stress divergence.

The effect of the mean pressure gradient force on the flow is first examined. Figure 11(a)
shows the vector field of the mean pressure gradient around the rectangle. The incoming
flow about y = −0.5 loses streamwise momentum because of the increasing pressure
levels near the stagnation point, (x, y)= (0,−0.5), and deviates vertically, gaining y-
momentum, under the influence of a favourable pressure gradient. Downstream the leading
edge, curved mean streamlines which circumvent the front corner are accompanied by a
transverse mean pressure gradient that is proportional to the centripetal acceleration. Peak
pressure gradients are thus observed near the leading edge, (x, y)= (0, 0), in the region
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Figure 11. Field lines of (a) the mean pressure gradient (−∂P/∂x,−∂P/∂y) and (b) the divergence of the
Reynolds stress tensor (−∂〈u′u′

j 〉/∂x j ,−∂〈v′u′
j 〉/∂x j ), with j = 1, 2. The colour represents the magnitude of

the vector field. Results are evaluated at Re = 14 000. The green line marks the dividing streamline originating
from the leading edge yψ .

where high velocities occur together with small radii of curvature of the streamlines. In
the shear layer, the pressure gradient field grows in intensity (indicated by a darker shade),
starting from the initial stages of the turbulent shear layer. The pressure gradient peak is
located at x ≈ 0.4 at Re = 14 000. Here, the pressure gradient force is directed towards the
shear-layer centreline, drawing fluid from the outside region. Downstream the centre of
the primary separation bubble, (x, y)= (2.17, 0.33), the mean pressure raises and slows
down the streamwise component of the mean flow. The presence of the impermeable wall
is felt by the mean flow moving downstream through a vertical adverse pressure gradient.
This downwash is observed starting from x ≈ 2.2.

The divergence of the Reynolds stress tensor, shown in figure 11(b), represents
the momentum changes due to turbulent transport within the flow. Turbulent motion
significantly affects the momentum distribution along the separated shear layers and in
the vicinity of the reattachment region. In the leading-edge shear layer, two peaks of
Reynolds stress divergence are observed on the upper and lower sides. On the upper side,
the divergence of Reynolds stresses removes streamwise (x) momentum while supplying
wall-normal (y) momentum. Conversely, on the lower side, x-momentum is gained while
y-momentum is drained. Due to the transport of mean momentum by turbulent motion,
fluid is pushed from the shear layer centreline to the free stream and the backflow region.
Turbulence is responsible for the spreading of the shear layer and for smoothing the
longitudinal velocity gradient between its two sides, similar to what is observed in plane
mixing layers (Castro & Haque 1987; Rogers & Moser 1994). The x-momentum lost in
the upper side is released in the lower side. As the shear layer spreads and approaches the
wall, turbulent transport extracts y-momentum from the region near the wall and promotes
flow reattachment.

To clarify the mechanisms regulating shear layer bending and reattachment, we analyse
the dominant terms in the mean momentum balance along the dividing streamline, yψ ,
which originates from the leading edge (see the green solid line in figure 11). For this
purpose, we examine the mean momentum balance in the streamline coordinate system
(τ, η, z) (Finnigan 1983), where τ is locally aligned with the mean velocity vector, z cor-
responds to the Cartesian z-axis, and η is orthogonal to both τ and z by the right-hand rule.
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Reformulating the mean momentum equations in the streamline coordinate system
offers several advantages. First, the terms in the transformed equations distinctly describe
transport along or normal to the streamlines, removing any ambiguity caused by
misaligned coordinates relative to the mean flow. In the second instance, it facilitates the
direct interpretation of the Reynolds shear stress as the turbulent momentum transport
across streamlines. Furthermore, the transformation emphasises quantities related to mean
flow acceleration and streamline curvature, which are relevant characteristics of distorted
shear flows. Finnigan et al. (1990) were the first to apply the streamline flow equations
developed by Finnigan (1983) to investigate flow over a hill. Recent studies employing
streamline coordinate analysis to capture the properties of external flows include those by
Morse & Mahesh (2021), Plasseraud, Kumar & Mahesh (2023) and Prakash et al. (2024).

The mean momentum equations are expressed in the streamline coordinate system as
follows:

Uτ
∂Uτ
∂τ

= −∂P

∂τ
− ∂

〈
u′
τu′
τ

〉
∂τ

− ∂
〈
u′
τu′
η

〉
∂η

+
〈
uτuτ

〉 − 〈
u′
ηu′
η

〉
La

+ 2

〈
u′
τu′
η

〉
R

,

U 2
τ

R
= −∂P

∂η
− ∂

〈
u′
τu′
η

〉
∂τ

− ∂
〈
u′
ηu′
η

〉
∂η

+ 2

〈
u′
τu′
η

〉
La

+
〈
u′
τu′
τ

〉 − 〈
u′
ηu′
η

〉
R

,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.4)

where viscous terms have been again neglected. In (4.4), the subscripts denote the
directional components of the velocity vector (e.g. Uτ is the mean velocity component
in the tangential τ direction). Here, La and R are the local radii of curvature of the η and
τ coordinate lines, respectively, and are defined by the following relations:

1
La

= 1
Uτ

∂Uτ
∂τ

, (4.5)

1
R

= 1
Uτ

(
Ω + ∂Uτ

∂η

)
. (4.6)

In the streamline and streamline-normal momentum equations (4.4), the left-hand side
represents advection along a streamline and the mean centripetal acceleration, respectively.
On the right-hand side, additional terms appear in the expression for Reynolds stress
divergence due to the curvilinear nature of the coordinate system adopted. For a detailed
derivation of the streamline-coordinate momentum equations, the reader is referred to
Finnigan (1983).

Figure 12 shows the terms from the streamline and streamline-normal momentum
equations along the dividing streamline yψ . The mean advection term is substantially
driven by the pressure gradient in both the tangential (τ ) and normal (η) directions.
Turbulence effects are confined to the early turbulent and reattachment regions, where
stress divergence terms gain relevance due to fluctuations production process and wall
impermeability. The following analysis focuses on the range 0< x < xr .

In the streamline balance (see figure 12a) the tangential pressure gradient supplies
τ -momentum in the early turbulent region (x < 1), compensating the negative peak
of transport due to Reynolds tangential stress, −∂〈u′

τu′
τ 〉/∂τ , and inducing a net

acceleration along the streamline. At greater streamwise distances, τ -momentum is
removed (Uτ ∂Uτ /∂τ < 0) under the influence of the adverse tangential pressure gradient.
When the flow approaches the wall (x > 3), turbulent transport terms deliver momentum,
balancing the pressure gradient at the mean reattachment location. Here, the Reynolds
stress gradient −∂〈u′

ηu′
η〉/∂η is the leading term, peaking at x � 4. Explicit effects of the
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Figure 12. Mean momentum balance evaluated along the dividing streamline yψ . The dotted vertical line
indicates the location of mean reattachment xr . (a) Terms in the streamline momentum equation. (b) Terms in
the streamline-normal momentum equation. (c) Vectors of the mean pressure gradient (blue arrows) and the
divergence of the Reynolds stress tensor (red arrows) along the dividing streamline yψ , outlined by the dashed
line.

curvature are represented by (〈u′
τu′
τ 〉 − 〈u′

ηu′
η〉)/La , which extracts tangential momentum

in the reattachment region.
As the trajectory of the dividing streamline indicates, fluid at the leading edge

initially experiences a negative centripetal acceleration, i.e. the local centre of curvature
lies in the direction of decreasing η. In examining the streamline-normal balance
(figure 12b), the contributions to the centripetal acceleration are dominated by two
main terms, the normal pressure gradient and the transport due to normal Reynolds
stress, −∂〈u′

ηu′
η〉/∂η. The magnitudes of both terms peak in the early turbulent region,

with turbulent transport providing a centrifugal contribution, −∂〈u′
ηu′
η〉/∂η > 0, and the

pressure gradient contributing centripetally, −∂P/∂η < 0. As the turbulent shear layer
evolves (x > 1), the turbulent transport term becomes negligible and the centripetal
acceleration along the curved streamline is dictated solely by the normal pressure gradient.
The pressure gradient term decreases in magnitude with the streamwise distance and
changes its sign to positive while approaching the wall, inducing a change in streamline
curvature (U 2

τ /R > 2) at x � 4. From reattachment onwards, the dividing streamline
flattens against the wall, exhibiting zero curvature 1/R ≈ 0. Here, the normal pressure
gradient balances the normal Reynolds stress gradient.

Figure 12(c) provides an overview of the acceleration terms from pressure and turbulent
stresses in the mean momentum balance along the dividing streamline. Notice that these
two contributions are invariant in Cartesian and streamline coordinate systems, provided
all terms emerging in the expressions are combined into a single vector. In general, the
Reynolds stress divergence counteracts the pressure gradient, working to increase the
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thickness of the separation bubble in the early turbulent region of the shear layer and
promoting the flow reattachment in the downstream region of the rectangle.

4.4. Reynolds-stress balances
This section investigates the production, redistribution, transport and dissipation of
the individual components of the Reynolds-stress tensor. While the previous study
by Chiarini & Quadrio (2021) has provided a detailed description of the dominant
mechanisms at Re = 3000, particularly the role of production in the separated shear
layer and intercomponent redistribution via the pressure–strain tensor, here we extend the
analysis to the highest Reynolds number case. Attention is given to the scaling and spatial
displacement of peak values, as well as changes in the relative weight between production,
dissipation and pressure–strain terms as the Reynolds number increases up to Re = 14 000.

The budgets for the Reynolds stresses can be written as

∂Tk,ij

∂xk
= Pij − εij +Πij, (4.7)

where the left-hand side term represents the mean, pressure, turbulent and diffusive
transport terms, all of which are combined and expressed as the divergence of the
Reynolds-stress flux Tk,i j . The Reynolds-stress flux is defined as

Tk,i j = Uk
〈
u′

i u
′
j

〉 + [〈
p′u′

i

〉
δ jk + 〈

p′u′
j

〉
δik

] + 〈
u′

ku′
i u

′
j

〉 − 1
Re

∂
〈
u′

i u
′
j

〉
∂xk

, (4.8)

where δij is Kronecker’s delta. The terms on the right-hand side of (4.7) correspond to the
production tensor Pij, the dissipation tensor εij and the pressure–strain tensor Πij. These
are defined as follows:

Pij = − 〈
u′

i u
′
k

〉 ∂U j

∂xk
− 〈

u′
j u

′
k

〉∂Ui

∂xk
, (4.9)

εij = 2
Re

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
. (4.10)

Πij =
〈

p′ ∂u′
i

∂x j

〉
+

〈
p′ ∂u′

j

∂xi

〉
. (4.11)

These terms can be combined to form the net source term Ψij = Pij − εij +Πij,
representing the overall source or sink of Reynolds stresses. In the region where 〈u′

i u
′
j 〉>

0, a negative value of Ψij (Ψij < 0) indicates a loss, whereas a positive value (Ψij > 0)
indicates a gain. For cases where 〈u′

i u
′
j 〉< 0, such as for 〈u′v′〉, the opposite is true, i.e.

Ψij < 0 denotes a source of the shear stress, corresponding to an increase in the magnitude
of the shear stress, and Ψij > 0 indicates a sink. Each term in (4.7) is indexed according to
the specific Reynolds stress component under consideration.

The non-zero components of the production tensor Pij are shown in figure 13. Note
that P33 is zero, as the mean spanwise velocity and its spatial derivatives are zero. The
production terms attain their highest values within the leading and trailing shear layers,
where the work of the Reynolds stress against the mean velocity gradient is enhanced
by intense turbulent fluctuations and high mean strain rates. In the leading-edge shear
layer, P11 acts as a source for 〈u′2〉, drawing energy from the mean flow, while P22 serves
as a sink for 〈v′2〉, transferring energy from the fluctuating motion to sustain the mean
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Re P11 P22 P12
(x, y) max (x, y) min (x, y) min

3000 (2.257, 0.588) 0.497 (2.170, 0.634) −0.045 (2.377, 0.545) −0.386
8000 (0.839, 0.423) 1.409 (0.715, 0.395) −0.387 (0.915, 0.430) −0.668
14 000 (0.408, 0.296) 2.476 (0.505, 0.331) −0.836 (0.514, 0.325) −0.885

Table 1. Peak values of production tensor terms at increasing Reynolds numbers.
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Figure 13. Production tensor terms (a) P11, (b) P22, and (c) P12 at Re = 14 000. The cross symbols mark the
locations of the maximum or minimum values of Pij.

vertical flow. This reversed energy exchange, from turbulence to mean flow, intensifies
with increasing Reynolds number. At Re = 3000, the negative peak of P22 is approximately
9 % of the maximum of P11. By Re = 14 000, the negative production level reaches 34 %.
The increased energy transfer from turbulence to the mean vertical flow likely contributes
to the weak Reynolds number sensitivity observed of the thickness of the main separation
bubble. As shown by Cimarelli et al. (2024), the separated region preserves its vertical size
across the analysed Re range. The large-scale oscillations in the lee of the body correspond
to a region where the production rate P22 is positive, driven by the vertical deceleration
of the mean flow (∂V/∂y < 0) and significant vertical fluctuations 〈v′2〉. The shear-stress
production term P12 is generally negative around the rectangle, except for small positive
values in the backflow region, where the adverse pressure gradient induces the separation
of the backward boundary layer. The negative values of P12, combined with 〈u′v′〉< 0 (see
figure 8d), indicate areas of positive production of 〈u′v′〉, and thus enhance the shear stress
magnitude. Table 1 shows the location and magnitude of peaks of the main components of
the production tensor. As the Reynolds number increases, all components exhibit a marked
intensification, with P11 growing from approximately 0.5 at Re = 3000 to nearly 2.5 at
Re = 14 000, and the peaks shifting upstream and closer to the wall. The component P22
becomes significantly more negative, while P12 also increases in magnitude, indicating
intensified shear production in the separated region.
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Re ε11 ε22 ε33
(x, y) Max (x, y) Max (x, y) Max

3000 (2.861, 0.504) 0.057 (2.981, 0.412) 0.049 (2.981, 0.412) 0.064
8000 (1.471, 0.513) 0.102 (1.519, 0.513) 0.079 (1.471, 0.513) 0.114
14 000 (0.813, 0.408) 0.146 (0.982, 0.443) 0.119 (0.813, 0.408) 0.179

Table 2. Peak values of dissipation tensor terms at increasing Reynolds numbers.
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Figure 14. Dissipation tensor terms (a) ε11, (b) ε22 and (c) ε33 at Re = 14 000. The cross symbols mark the
locations of the maximum values of εij.

Figure 14 displays the non-zero components of the dissipation tensor, εij, highlighting
regions of significant viscous dissipation within the flow. The dissipation ε12 is not shown
as negligible. High dissipation levels are concentrated within the leading-edge shear
layer, reaching peaks in the same locations of turbulence production. As the turbulent
shear layer develops downstream and approaches the wall near reattachment, dissipation
rates decrease. In comparison to the production and pressure-rate-of-strain tensors, the
dissipation terms exhibit relatively lower magnitudes. The peak values of dissipation
components, summarised in table 2, increase with the Reynolds number, albeit less
steeply than the production terms. The dissipation peaks for ε11 and ε33 nearly triple from
Re = 3000 to Re = 14 000, and their locations move upstream and downward, following
the earlier onset of transition in the shear layer.

In the Reynolds-stress equations (4.7), the pressure–strain tensor accounts for the
intercomponent energy transfer and the tendency towards isotropy of the fluctuating
motion. Figure 15 shows the pressure–strain tensor terms Πij. In the separated shear
layer, the pressure–strain correlation redistributes energy from the streamwise component
〈u′2〉 (Π11 < 0) into the cross-flow component 〈v′2〉 and 〈w′2〉 (Π22 > 0 and Π33 > 0).
This redistribution reaches a maximum in the early turbulent region of the shear layer.
As displayed in figure 16(a), showing the normal terms Πi i along the centreline of the
shear layer ysl , the energy transferred from 〈u′2〉 to 〈v′2〉 is larger than that transferred
to 〈w′2〉. Along ysl , the peak values Π22,max and Π33,max amount to 82 % and 26 %
of |Π11|max, respectively. In the energy budget for 〈w′2〉, there is no production term,
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Figure 15. Pressure–strain tensor terms (a) Π11, (b) Π22, (c) Π33 and (d) Π12 at Re = 14 000. The cross
symbols mark the locations of the maximum or minimum values of Πij.
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Figure 16. Pressure–strain normal terms Πi i evaluated along (a) the leading-edge shear layer centreline and
(b) in the near wall region, at y = 0.024: solid line, Π11; dashed line, Π22; and dotted line, Π33.

making Π33 the sole source of energy for the spanwise fluctuations. Thus, energy from
the mean flow is primarily transferred to 〈u′2〉, while 〈v′2〉 and 〈w′2〉 gain energy from
the streamwise fluctuations through the action of pressure fluctuations. Near the wall, the
impermeability condition causes the pressure–strain normal terms to dampen the vertical
velocity fluctuations and transfer energy from 〈v′2〉 to the wall-parallel components, 〈u′2〉
and 〈w′2〉. This process is associated with the strong vertical deceleration of vortical
structures in the turbulent shear layer as they impinge upon the wall, driven by the
reattaching mean flow. Figure 16(b) shows the profiles ofΠii close to the wall at y = 0.024,
the distance at which y+ = 10. Here, the overline denotes the streamwise average and the
superscript + indicates the normalisation with friction units. In this region, the pressure–
strain correlations are significant in the reattachment area, though their magnitude is lower
than in the separated shear layer. As the Reynolds number increases, the rate of energy
drained from 〈v′2〉 near the wall and redistributed decreases. At Re = 3000 (not shown in
the figure), a larger portion of energy is transferred to 〈w′2〉, but this imbalance decreases
with increasing Reynolds number, and at Re = 14 000, the energy exchange between 〈u′2〉
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Re Π11 Π22 Π33 Π12
(x, y) Min (x, y) Max (x, y) Max (x, y) Max

3000 (2.138, 0.602) −0.328 (2.122, 0.602) 0.247 (2.647, 0.545) 0.128 (2.576, 0.498) 0.286
8000 (0.801, 0.418) −0.840 (0.772, 0.418) 0.635 (0.934, 0.438) 0.255 (1.088, 0.456) 0.432
14 000 (0.446, 0.311) −1.446 (0.441, 0.311) 1.182 (0.609, 0.356) 0.369 (0.607, 0.337) 0.518

Table 3. Peak values of pressure-strain tensor terms at increasing Reynolds numbers.
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Figure 17. Distribution of the net source and sink terms, Ψij = Pij − εij +Πij overlaid with flux lines of Tij:
(a) Ψ11 and T11; (b) Ψ22 and T22; (c) Ψ33 and T33; and (d) Ψ12 and T12.

and 〈w′2〉 becomes nearly equal. For the off-diagonal termΠ12, it is commonly understood
that pressure fluctuations introduce a term in the 〈u′v′〉 budget proportional to −〈u′v′〉,
reducing the absolute value of the Reynolds shear stress (Monin & Yaglom 1975). This
reflects the natural tendency of turbulence to decay towards isotropy. Figure 15(d) shows
Π12 as positive within the core of the leading-edge shear layer, but exhibiting negative
values on the upper side for 2< x < 4. Changes in pressure–strain peaks, reported in
table 3, indicate a strengthened intercomponent energy redistribution with increasing
Reynolds number. In particular, Π11 exhibits increasingly intense negative values, while
Π22 and Π33 show stronger positive peaks. For Re< 14 000, approximately 75 % of the
energy removed from the streamwise component is redirected to the vertical component,
suggesting that the relative partitioning of turbulent kinetic energy within the evolving
shear layer is preserved as Re increases.

The combined sink and source terms for each of the Reynolds stress budgets (4.7), Ψij,
are analysed along with the lines of the Reynolds-stress flux vector Tij in figure 17. This
representation summarises locations of net source, sink and paths of Reynolds stress
transfer. In the 〈u′2〉 budget, energy is provided to the streamwise fluctuations directly
from the mean flow along the free shear layers, and it is removed by ε11 and Π11, with
Π11 being the dominant sink away from the wall. Fluctuations 〈u′2〉 generated in the
core of the leading-edge shear layer is primarily transported downstream towards the
wake while also spreading towards the lower and upper sides of the shear layer. On the
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upper side, the upward transfer of 〈u′2〉 is mainly driven by the turbulent transport term,
〈u′u′v′〉, balancing the energy loss due to Π11 in the outer region. On the lower side,
the downward transfer of 〈u′2〉 is induced by both the turbulent transport and advection,
〈u′2〉V . This downward transfer splits at x ≈ 2.8, feeding both upstream recirculation and
the downstream vortex shedding regions. In the separation bubble, a singularity point
where the 〈u′2〉 flux lines converge is identified at (1.60, 0.33), just along the boundary
of the backflow region yb. A second region where Ψ11 > 0 is observed in the flow
impingement area (2.5< x < 4) within the backflow region, resulting from the positive
contribution of Π11. Along the reattached boundary layer (x > xr ), 〈u′2〉 is fed back to the
mean flow, P11 < 0, or dissipated.

In the 〈v′2〉 budget, Π22 acts as the primary source within the leading-edge shear layer,
resulting in a net increase of 〈v′2〉 at the expense of 〈u′2〉. In the early stages of the
turbulent shear layer, negative production P22 is outweighed by the positive contribution
of Π22, except on the lower side of the shear layer, where Ψ22 < 0 for 0.1< x < 0.6 and
yb < y < ysl . In this area, 〈v′2〉 transported from the upper side of the shear layer is
either returned to the mean flow kinetic energy V V or dissipated by viscosity, ε22. In the
separated flow, flux lines curve downward to transfer 〈v′2〉 towards the wall, whereΨ22 < 0.
Here, Π22 is the dominant sink, affected by the wall impermeability constraint. A net rate
of gain (Ψ22 > 0) is obtained along the trailing-edge shear layer and in the wake region
where large-scale vertical oscillations occur. This excess of 〈v′2〉 is carried downstream by
advection, U 〈v′2〉, and across the wake by the turbulent transport term 〈v′v′v′〉.

The lines of 〈w′2〉 flux closely follow the mean velocity streamlines, indicating that
advection dominates the energy transfer process. The only other significant contributions
to the transport of 〈w′2〉 come from the turbulent fluxes, 〈w′w′u′〉 and 〈w′w′v′〉. The excess
of 〈w′2〉 (Ψ33 > 0), generated in the core of the leading-edge shear layer through energy
exchange with 〈u′2〉 (Π33 > 0), is transported downstream and downward to the lower
side of the shear layer, where it dissipates by viscous action, ε33. Near the wall, the net
energy gain provided by Π33 in the impingement region is partly transported downstream
along the reattached boundary layer (x > xr ) and partly flows through the backflow region
(x < xr ), reaching both the leading edge and the upstream part of the shear layer.

In the 〈u′v′〉 budget, negative Ψ12 corresponds to a gain where 〈u′v′〉< 0, thereby
increasing the magnitude of the shear stress. Hence, lines of 〈u′v′〉 flux are viewed as
carrying 〈u′v′〉 from regions where Ψ12 < 0 to regions where Ψ12 > 0, which is opposite
to the flux directions shown in figure 17(d). In the core of the leading-edge shear layer,
production P12 < 0 exceeds the pressure–strain Π12 > 0, resulting in a net production of
〈u′v′〉. This produced 〈u′v′〉 is partially carried downstream by advection and partially
outward by pressure and turbulent fluxes. The transport of 〈u′v′〉 in the upper side of the
shear layer and at the wall is balanced by Π12, which serves as a sink. In the recirculating
region, 〈u′v′〉 flux lines converges to a singularity point slightly downstream of the centre
of rotation of the main separation bubble, located at (1.95, 0.29) along yb.

5. Scalar transport
In addition to representing various physical phenomena, scalar fields provide a
complementary perspective on turbulent mixing. This section addresses the turbulent
transport of a passive scalar and presents the first detailed scalar transport budget for
the rectangular 5 : 1 cylinder, enabling direct comparison with momentum transport
mechanisms.
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Figure 18. Scalar fluxes (a,c) 〈u′θ ′〉 and (b,d) 〈v′θ ′〉 at (a,b) Re = 3000 and (c,d) 14 000. The cross symbols
indicate the locations of maximum and minimum values.

5.1. Turbulent scalar fluxes
At high Reynolds numbers, and thus at high Péclet numbers (Pe = ReSc), the turbulent
motion becomes more effective than molecular diffusion in mixing and transporting
the scalar. In these conditions, turbulent scalar fluxes, 〈u′

iθ
′〉, emerge as the primary

mechanism for scalar transport.
Figure 18 shows the streamwise, 〈u′θ ′〉, and vertical, 〈v′θ ′〉, scalar fluxes around

the rectangle at Re = 3000 and Re = 14 000. Negative streamwise scalar flux, 〈u′θ ′〉, is
observed in the leading-edge shear layer and near thewall in the reattached boundary
layer (x > xr ). For both Re cases, 〈u′θ ′〉min occurs near the trailing-edge flow separation
rather than in the leading-edge shear layer. As highlighted by Cimarelli et al. (2024) in
the analysis of scalar variance 〈θ ′θ ′〉, while streamwise velocity fluctuations reach their
highest values downstream of the early turbulent region of the shear layer, maximum scalar
fluctuations arise close to the wall. This is driven by large-scale vortices in the separated
flow, which transport low-concentration scalar fluid and impinge on the wall, where
θ = 1. Positive values of 〈u′θ ′〉 appear in the backflow region and the wake separation
bubble, with maximum values located near the separation point of the backward boundary
layer.

Vertical scalar flux is positive (〈v′θ ′〉> 0) around the rectangle, except within the
wake separation bubble. High-intensity regions of 〈v′θ ′〉 are found along the leading-edge
shear layer, in the reattachment region near the wall, and along the trailing-edge shear
layer. Due to the wall impermeability, vertical velocity fluctuations are dampened near
the wall, leading 〈u′θ ′〉max to occur in the early turbulent region of the shear layer. As
Reynolds number increases, the magnitude of scalar fluxes decreases and the gradients
near the wall become less steep, indicating reduced turbulence-scalar interaction in this
region.

5.2. Mean scalar balance
The role of turbulence in shaping the mean scalar distribution is encapsulated in the mean
scalar balance. The conservation equation for the mean passive scalar, Θ , in statistically

1019 A33-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
61

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10619


Journal of Fluid Mechanics

–0.5

0

0.5

1.0

1.5

–0.10 0.10–0.05 0.050

0 1 2 3 4 5 6 7

x

y

Figure 19. Scalar transport term −(∂〈u′θ ′〉/∂x + ∂〈v′θ ′〉/∂y) with flux lines of 〈u′θ ′〉 at Re = 14 000.

steady and spanwise homogeneous flows is given by

Ui
∂Θ

∂xi
= ∂

∂xi

(
− 〈

u′
iθ

′〉 + 1
Pe
∂Θ

∂xi

)
. (5.1)

The term on the left-hand side represents the rate of change of Θ due to advection, while
terms on the right-hand side describe the transport of Θ through turbulent and molecular
diffusion. In this analysis, the Péclet number (Pe = 9940) is sufficiently high to make
molecular diffusion negligible in regions away from the wall and outside the laminar
section of the separated shear layer. The rate of change in Θ due to advection is balanced
by turbulent transport.

Figure 19 shows the turbulent transport term −∂〈u′
iθ

′〉/∂xi from (5.1), where positive
values indicate a net addition of the mean scalar, while negative values denote scalar loss.
The superimposed lines of the scalar flux vector, 〈u′θ ′〉, display the spatial redistribution
of Θ , with scalar flux lines originating in regions of scalar removal and terminating in
regions of scalar supply.

The distribution of the turbulent transport term varies significantly across different
regions of the turbulent flow. In the leading-edge shear layer, turbulent motion carries Θ
from the lower side to the upper side, with a more intense transfer observed in the
early stages of turbulence development (x < 1). Scalar removed from the wall region is
redistributed into surrounding areas, specifically within the backflow region and along
the reattaching boundary layer. In the reattachment region (3< x < 5), the scalar flux is
strong enough to carryΘ toward the outer edge of the turbulent shear layer. In the upstream
portion of the backflow region (0< x < 1), turbulent transport drives Θ upward through
the turbulent shear layer. Downstream of the rectangle, the scalar flux draws Θ from the
trailing-edge shear layer and the core of the wake, redistributing it into the outer turbulent
region of the flow. This analysis highlights the primary role of the scalar fluxes 〈u′

iθ
′〉 in

enhancing scalar mixing across the separated flow and the wake, promoting more uniform
scalar distribution throughout these flow regions.

5.3. Scalar flux balances
To better understand how turbulent scalar fluxes are generated, redistributed, and removed,
we examine the transport equations for 〈u′

iθ
′〉. These balances provide a detailed view of

the mechanisms governing scalar-velocity correlations, which are responsible for turbulent
scalar transport. This section analyses the individual budget terms to identify the dominant
processes in separated and reattaching regions.

The balance equations of scalar flux 〈u′
iθ

′〉 for steady conditions are expressed as

∂Tk,iθ

∂xk
= Piθ − εiθ +Πiθ . (5.2)
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Figure 20. Production terms of scalar flux (a) P1θ and (b) P2θ at Re = 14 000. The cross symbols mark the
locations of the minimum value of P1θ and maximum value of P2θ . The green line denotes the dividing
streamline originating from the leading edge, yψ .

In analogy to (4.7), the left-hand side collects the spatial transport terms arising from
advection, pressure, turbulence, and molecular diffusion, represented as the divergence of
the flux Tk,iθ ,

Tk,iθ = Uk
〈
u′

iθ
′〉 + 〈p′θ ′〉δik + 〈

u′
ku′

iθ
′〉 − 1

ReSc

〈
u′

i
∂θ ′

∂xk

〉
− 1

Re

〈
θ ′ ∂u′

i

∂xk

〉
. (5.3)

On the right-hand side of (5.2), Piθ denotes the production term, representing the rate of
generation of 〈u′

iθ
′〉 through turbulent interactions with mean scalar and mean velocity

gradients. The term εiθ represents destruction, which quantifies the mean rate at which
〈u′

iθ
′〉 is reduced by molecular diffusivity of momentum and scalar. This term is zero in

isotropic turbulence and is usually neglected in non-isotropic turbulence at high Reynolds
numbers or under the assumption of local isotropy (Launder 1976). Finally,Πiθ represents
the pressure-scalar gradient correlation and it may be viewed as the counterpart of the
pressure-strain term in the 〈u′

i u
′
j 〉 budget equations. However, since the sum of the Πiθ

terms may not be zero, the pressure-scalar gradient correlation does not necessarily
redistribute scalar flux among components. These terms are defined as follows:

Piθ = − 〈
u′

i u
′
k

〉 ∂Θ
∂xk

− 〈
u′

kθ
′〉 ∂Ui

∂xk
, (5.4)

εiθ =
(

1
Re

+ 1
RePr

) 〈
∂u′

i

∂xk

∂θ ′

∂xk

〉
, (5.5)

Πiθ =
〈

p′ ∂θ ′

∂xi

〉
. (5.6)

Together, these terms form the net source term Ψiθ = Piθ − εiθ +Πiθ representing the net
scalar flux that is lost or gained. Similar to Ψij, the role of Ψiθ as a source or sink depends
on the sign of 〈u′

iθ
′〉. Each term in (5.2) is indexed to indicate the direction of the scalar

flux under consideration (i = 1 for 〈u′θ ′〉 or i = 2 for 〈v′θ ′〉).
Figure 20 shows regions of positive and negative production rates of scalar flux, Piθ , for

the flow at Re = 14 000. The scalar flux 〈u′θ ′〉 is primarily generated within the leading-
edge shear layer. In this area, negative values of P1θ act as a source since 〈u′θ ′〉< 0.
Near the wall, in the backflow region, positive values of P1θ correspond to zones where
〈u′θ ′〉> 0 and hence are sources of 〈u′θ ′〉. The minimum value P1θ,min = −0.67 is found
at (x, y)= (0.40, 0.30). The term P2θ acts as a source for 〈v′θ ′〉 above the rectangle,
with peak intensity along the shear-layer centreline, with P2θ,max = 0.24 at (x, y)=
(0.49, 0.34), and in the reattachment region (2.2< x < 5).

To elucidate the production mechanism of scalar fluxes, the individual contributions
to P1θ and P2θ are examined. Each production term is expressed as the sum of two
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Figure 21. Production terms of (a) 〈u′θ ′〉 and (b) 〈v′θ ′〉 evaluated along the reattaching streamline yψ : solid
line, Piθ ; dashed line, Piθ,a ; and dotted line, Piθ,b.

components, representing the effects of mean scalar gradients and mean velocity gradients
interacting with turbulent motions, as follows:

Piθ = − 〈
u′

i u
′
k

〉 ∂Θ
∂xk︸ ︷︷ ︸

Piθ,a

− 〈
θ ′u′

k

〉 ∂Ui

∂xk︸ ︷︷ ︸
Piθ,b

. (5.7)

Figure 21 illustrates the two terms Piθ,a and Piθ,b along with the total production rate Piθ ,
evaluated along the dividing streamline yψ . The production term P1θ is evenly affected
by the mean scalar and velocity gradients (P1θ,a ≈ P2θ,b) along the free shear layer (x <
3) and in the reattached flow region (x > 4). In contrast, the dominant contribution to
P2θ arises from P2θ,a , driven by the interaction of the wall-normal scalar gradient with
vertical Reynolds stress, −〈v′2〉∂Θ/∂y. The contribution due to the mean velocity gradient
term, P2θ,b, results in a loss of 〈v′θ ′〉 within the shear layer and becomes negligible in the
reattached region. This opposing effect reduces the magnitude of P2θ .

Assuming the Reynolds number is high enough, the small scales can be considered
locally isotropic, making the destruction terms εiθ negligible compared with Piθ and Πiθ .
However, this assumption does not fully account for the energy transfer to higher
wavenumbers, a process that requires some level of destruction (Younis, Speziale & Clark
1995). Furthermore, DNS results from Rogers, Mansour & Reynolds (1989), obtained
for a fully developed turbulent channel flow, indicate that εiθ can act as a production
term under certain conditions. Figure 22 shows the destruction terms εiθ for the case
under consideration. These terms are approximately an order of magnitude smaller than
Piθ and Πiθ , and the colourbar limits have been adjusted accordingly for clarity. In
the streamwise balance, ε1θ is a sink for 〈u′θ ′〉, since −ε1θ > 0 (or −ε1θ < 0) where
〈u′θ ′〉< 0 (or 〈u′θ ′〉> 0). The minimum value, ε1θ,min = −0.015, occurs along the shear-
layer centreline ysl at (0.51, 0.35). For the vertical balance, ε2θ predominantly leads to a
loss of 〈v′θ ′〉 around the rectangle, except for a localised zone along ysl (0.2< x < 0.6)
where ε2θ < 0 is observed, see figure 22(c) for the detailed view. This negative region, with
ε2θ,min = −0.0087 at (0.37, 0.28), corresponds to positive values of 〈v′θ ′〉, indicating a
production of scalar flux due to viscous effects. It is worth noting that this localised gain
in scalar flux contributes significantly less than other sink and source terms in the same
regions. For instance, at the location of ε2θ,min, P2θ = 0.103.

With the viscous destruction negligible, the pressure-scalar gradient correlations Πiθ
provide the mechanism that limits the growth of the scalar fluxes by counteracting the rate
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Figure 22. Destruction terms of scalar flux (a) ε1θ and (b) ε2θ at Re = 14 000. The cross symbols mark the
locations of the minimum values of εiθ . (c) Detailed view of the distribution of ε2θ .
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Figure 23. Pressure-scalar gradient correlation of scalar flux (a) Π1θ and (b) Π2θ at Re = 14 000. The cross
symbols mark the locations of the maximum value of Π1θ and minimum value of Π2θ .

of production of 〈u′
iθ

′〉. Figure 23 shows the distribution of Πiθ . The streamwise term
Π1θ is found to oppose to P1θ discussed previously, serving as a sink of 〈u′θ ′〉 along
the free shear layer and in the reattachment zone. The positive peak P1θ,max is found at
(0.43, 0.31). RegardingΠ2θ , the centreline ysl approximately divides a gain region (Π2θ >
0) on the upper side of the shear layer from a loss region (Π2θ < 0) on the lower side. In
the latter, the negative peak occurs at (0.43, 0.31), with P2θ,min = −0.34.

The net sources of the streamwise and vertical scalar fluxes, Ψ1θ and Ψ2θ , are analysed
along with lines of the spatial flux vector Tiθ shown in figure 24. Regions where Ψiθ > 0
(Ψiθ < 0) indicate sources for the scalar flux if 〈u′

iθ
′〉> 0 (〈u′

iθ
′〉< 0), corresponding to

areas of net increase in scalar flux magnitude. In the shear layer and wake, where 〈u′θ ′〉 is
predominantly negative, the transport lines of scalar flux in figure 24(a) indicate flux 〈u′θ ′〉
being carried from source regions (Ψ1θ < 0) on the upper side of the shear layer to the low-
er side and into the wake, moving opposite to the direction indicated by the arrows in the
figure. Within the backflow region, the excess of 〈u′θ ′〉 generated near the wall is transport-
ed upstream towards the leading edge of the rectangle and upward, beginning at x ≈ 1.5.
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Figure 24. Distribution of the net source terms of the scalar flux, Ψiθ = Piθ +Πiθ − εiθ overlaid with flux
lines of Tiθ : (a) Ψ1θ and (b) Ψ2θ .

For the vertical flux budget, the flux 〈v′θ ′〉 gained in the upper side of the shear layer
Ψ2θ > 0 is redistributed downward towards the the lower side and into the wake, where
it is ultimately removed. In the near-wall region, in particular within 2< x < 5, a strong
source of 〈v′θ ′〉 is evident, associated with the impingement of turbulent vortices formed
in the shear layer. The flux 〈v′θ ′〉 generated near the wall is subsequently transported to
the lower side of the shear layer, where it is drained (Ψ2θ < 0).

6. Assessment of eddy viscosity and eddy diffusivity models
Finally, this section evaluates common turbulence modelling assumptions by comparing
DNS results with eddy-viscosity and eddy-diffusivity closures. This a priori assessment
highlights and quantifies the limitations of common models in capturing complex features
of separating and reattaching flows, by quantifying and localising their departures from
the DNS reference.

In eddy-viscosity turbulence models, the Reynolds stresses 〈ui u j 〉 and scalar fluxes
〈uiθ〉, which appear as unknowns in the Reynolds-averaged Navier–Stokes equations (4.3)
and mean passive scalar conservation equation (5.1), are modelled based on the eddy-
viscosity and gradient-diffusion hypotheses (Boussinesq’s hypothesis). These approaches
express the Reynolds stresses and scalar fluxes in terms of the mean velocity and scalar
gradients, respectively, as follows:〈

u′
i u

′
j

〉 − 2
3

kδij = −2νT Sij, (6.1)〈
u′

iθ
′〉 = −αT

∂Θ

∂xi
, (6.2)

where k = (1/2)〈u′
i u

′
i 〉 is the turbulent kinetic energy, and νT and αT are scalar coefficients

known as the eddy viscosity and eddy diffusivity, respectively. The eddy-viscosity
hypothesis implies that the deviatoric Reynolds stress, 〈u′

i u
′
j 〉 − (2/3)kδij, is proportional

to the mean rate of strain, whereas the gradient-diffusion hypothesis postulates that the
turbulent scalar flux is aligned with the gradient of the mean scalar field.

These hypotheses provide a practical closure for the governing equations, making
them widely adopted in engineering applications due to their simplicity and ease of
implementation. However, their limitations are well documented in the literature (Spalart
2000). In particular, their predictions often lack accuracy in complex flows, such as
those involving separation and reattachment, where non-equilibrium effects and anisotropy
play significant roles. For instance, in separated turbulent flows, eddy-viscosity models
may predict the onset of separation adequately, but may fail in describing the flow
downstream of the separation line. This inadequacy can have significant repercussions
in the prediction of the aerodynamic performance of bluff bodies, as highlighted by
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Menter & Kuntz (2004) and Rumsey (2009). The main shortcomings include: under-
prediction of eddy viscosity in the shear layer of separation bubbles, leading to
insufficient mixing and delayed reattachment; inaccurate modelling of flow recovery
after reattachment (Johnson, Menter & Rumsey 1994); poor representation of laminar-
to-turbulent transition mechanisms (Crivellini, Ghidoni & Noventa 2023); difficulties in
capturing backflow regions (Patrick 1987); and unreliable predictions of heat transfer
distribution in the presence of significant adverse pressure gradients (Barnett & Carter
1986).

If the eddy-viscosity and gradient-diffusion hypotheses are accepted as adequate
approximations, determining suitable formulations for νT and αT becomes critical.
Although DNS does not incorporate an explicit eddy viscosity, it provides high-fidelity
data that can be used to compute an equivalent eddy viscosity for benchmarking turbulence
models. In this study, we adopt the following definition, also used in the work by Spalart
et al. (2015):

νT = −
〈
u′

i u
′
j

〉
Sij

2SijSij
. (6.3)

where νT can be physically interpreted as the optimal value required to capture the correct
turbulent kinetic energy production, −〈u′

i u
′
j 〉Sij, which is critical for the consistency of

the mean flow energy balance.
The eddy diffusivity, αT , is commonly related to the eddy viscosity via the turbulent

Schmidt number, σT :

αT = νT

σT
, (6.4)

where σT quantifies the relative efficiency of turbulent transport of momentum and
scalar quantities. Typical values for σT range from 0.7 to 0.9, although lower values
(e.g. σT ≈ 0.4) are occasionally used in specific configurations (Chambers, Antonia &
Fulachier 1985). Experimental evidence suggests that assuming a constant σT can be
overly simplistic, particularly in flows with heat transfer and adverse pressure gradients
(Barnett & Carter 1986).

To derive an effective eddy diffusivity from DNS data, the following definition is
employed:

αT = −
〈
u′

iθ
′〉∂Θ
∂xi

∂Θ

∂xi

∂Θ

∂xi

. (6.5)

This formulation ensures the same production rate of scalar variance 〈θ ′θ ′〉, given by
−2〈u′

iθ
′〉∂Θ/∂xi . Consequently, a spatially varying and flow dependent turbulent Schmidt

number σT can be computed based on the effective νT and αT as

σT = νT

αT
. (6.6)

Closures for vector quantities, such as turbulent scalar fluxes in (6.2), require matching
of both magnitude and direction between modelled and actual fluxes. For tensor quantities,
such as in (6.1), proportionality implies that the tensors act identically on their shared
eigenvectors, differing only by a scaling factor. Specifically, if 〈u′

i u
′
j 〉 − (2/3)kδij and −Sij

are proportional, their eigenvectors eR
i and eS

i should be equal, and their eigenvalues λR
i
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Figure 25. Alignment between the Reynolds stress tensor 〈u′
i u

′
j 〉 and the mean rate-of-strain tensor Sij.

(a) Distribution of the angle β between the principal axes of 〈u′
i u

′
j 〉 and Sij. (b) Visualisation of principal

axes of 〈u′
i u

′
j 〉 (black arrows) and Sij (red arrows). (c) Probability density function of β in the turbulent flow

region. The dashed line indicates the abscissa β = π/6, corresponding to a validity threshold. (d) Ratio of the
tensors eigenvalues (λR

1 λ
S
2 )/(λ

S
1λ

R
2 ).

and λS
i should be related by a proportionality constant Cλ, i.e.

λR
1

λS
1

= λ
R
2

λS
2

= Cλ. (6.7)

To assess the validity of the eddy-viscosity hypothesis, a check of the relative alignment
between the principal axes of the Reynolds stress tensor 〈u′

i u
′
j 〉 and those of the mean

rate-of-strain tensor Sij is displayed in figure 25(a–c). Note the deviatoric component of
a tensor (〈u′

i u
′
j 〉 − (2/3)kδij) shares the same principal axes as the full tensor (〈u′

i u
′
j 〉).

Additionally, for two symmetric tensors, such as 〈u′
i u

′
j 〉 and Sij, their principal axes form

orthogonal pairs, ensuring that the angle between the corresponding principal axes are the
same. Since eigenvectors are defined up to a scalar multiple and their sign is therefore
arbitrary, a consistent sign convention is adopted: each eigenvector is flipped, if needed, to
produce a positive dot product with a fixed reference direction, i.e. the x-axis. This ensures
consistency and avoids ambiguities in alignment analysis across different computations.
The angle β is then defined as the angle between the principal axes of the tensors 〈u′

i u
′
j 〉

and Sij, given by

β = arccos

∣∣eR
1 · eS

1

∣∣∣∣eR
1

∣∣ ∣∣eS
1

∣∣ . (6.8)

Figure 25(a) shows the spatial distribution of β, where values near zero indicate
alignment between principal directions of 〈u′

i u
′
j 〉 and Sij, consistent with the eddy-

viscosity hypothesis. Conversely, larger β values indicate misalignment and reduced
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validity of the hypothesis. As a rule-of-thumb, angles smaller than π/6 are used here
to indicate approximate alignment, as suggested by Schmitt (2007). This corresponds
to cos(β) > 0.866, implying a limited deviation from perfect alignment (cos(β)= 1).
While this threshold has no strict physical meaning, it offers a practical reference for
interpreting alignment in turbulence modelling frameworks. As shown in figure 25(b),
small angles are observed in the core of the shear layer and in the wake. The alignment
deteriorates significantly near the wall and in the backflow region. This supports the
suggestion by Simpson et al. (1981) that the Reynolds shear stress in the backflow
region should be modelled based on the turbulence structure rather than local mean
velocity gradients. Indeed, the mean velocity profiles in the backflow result from time-
averaging the large turbulent fluctuations and are not indicative of the underlying causes
of the turbulence. To provide unbiased results, the probability density function (p.d.f.)
of the angle β is measured in the turbulent region (0< x < 7.5 and −0.5< y < yΩ ),
as shown in figure 25(c). The p.d.f. highlights a dominant peak at β = 0, confirming
strong alignment in a large portion of the subdomain considered, with additional peaks at
β � 0.35 and π/4, reflecting misaligned regions in the near-wall and shear layer zones.
In addition to evaluating eigenvector alignment, the proportional relationship between
the two tensors is assessed by analysing the ratio of their eigenvalues. Figure 25(d)
shows the ratio (λR

1 λ
S
2 )/(λ

S
1λ

R
2 ), which should equal unity if the proportionality condition

described by (6.7) holds. The observed deviations from unity across the flow domain
indicate that 〈u′

i u
′
j 〉 − (2/3)kδij and −Sij are not strictly proportional, even in regions

where eigenvector alignment is satisfactory. This highlights that while alignment trends
partially support the hypothesis, proportionality breaks down in large portions of the
separated flow region, suggesting limitations of the eddy-viscosity assumption in capturing
complex flow dynamics.

The gradient-diffusion hypothesis is evaluated by comparing the orientation of the
scalar flux 〈u′

iθ
′〉 relative to the mean scalar gradient −∂Θ/∂xi , shown in figure 26. The

alignment between these two vectors is quantified by the angle γ , computed as

γ = arccos
−〈u′θ ′〉 · ∇Θ
|〈u′θ ′〉| |∇Θ| . (6.9)

Smaller values of γ indicate better agreement with the gradient-diffusion hypothesis.
Figure 26(a) reveals that γ rarely approaches zero, even in zones with moderate alignment.
In the free shear layer, large values of γ occur, while downstream of the rectangular region
(x > 6), 〈u′

iθ
′〉 and −∂Θ/∂xi exhibit nearly opposite directions, indicating significant

misalignment. This misalignment is also evident near the wall in figure 26(b) and indicates
significant deviations from the gradient-diffusion hypothesis. The p.d.f. of γ , shown
in figure 26(c), exhibits a broader distribution compared with β, with a lower peak at
γ � π/3. Non-zero values of the p.d.f. persist over a wide range of angles higher than
π/6, suggesting the inadequacy of the hypothesis over extensive regions of the flow.

Figure 27 presents the distribution of eddy viscosity νT , eddy diffusivity αT and the
turbulent Schmidt number σT , derived a priori from DNS data using (6.3), (6.5) and (6.6),
respectively. High values of eddy viscosity νT (figure 27a) are observed in the downstream
portion of the shear layer, with significant growth in the wake and maxima for x > 6. Non-
negligible positive values also appear in the backflow region. Conversely, νT assumes
negative values in the near-wall region of the reattachment zone (2.3< x < 5) and within
the separation bubble in the wake. These negative values indicate reversed momentum
transport with respect to that aligned with Sij. The eddy diffusivity αT (figure 27b)
shows high values above the reattachment zone and in the wake for y > 0. In the wake,
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Figure 26. Alignment between scalar flux 〈u′
iθ

′〉 and mean scalar gradient −∂Θ/∂xi . (a) Distribution of
angle γ between 〈u′

iθ
′〉 and −∂Θ/∂xi . (b) Orientation of 〈u′

iθ
′〉 (black arrows) and −∂Θ/∂xi (red arrows).

(c) Probability density function of γ in the turbulent flow region. The dashed line indicates the abscissa
β = π/6, corresponding to a validity threshold.
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Figure 27. Contours of (a) eddy viscosity νT , (b) eddy diffusivity αT and (c) turbulent Schmidt number σT
computed from DNS data at Re = 14 000.

a region of negative αT appears, corresponding with the area of intense vertical velocity
fluctuations induced by the shedding of large-scale vortices from the trailing edge. The
turbulent Schmidt number σT (figure 27c) exhibits significant spatial variability around
the rectangle, highlighting the limitations of assuming σT as constant in the flow. Regions
with high σT non-uniformity are found in areas of complex flow, such as zones of flow
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recirculation and the wake. Simple models, such as the Reynolds analogy (σT = 1), fail to
accurately represent the detailed transport behaviour in this flow configuration.

In conclusion, flows involving separation and passive scalar transport, as in the
present case, demand advanced turbulence models for accurate representation in
RANS frameworks. Specifically, these models must independently account for turbulent
momentum flux and scalar flux components to capture the intricate transport mechanisms
and spatial variability characteristic of separated turbulent flows.

7. Conclusions
The turbulent flow and scalar transport around a 5 : 1 rectangular cylinder involve several
complex phenomena, including fixed point laminar separation, shear layer formation and
evolution, flow reattachment, recirculating bubble formation, boundary layer development
post-reattachment, and wake formation. The general picture of these flow characteristics
is gained through a detailed statistical analysis.

Observation of the principal mean strain-rate along the shear layer enables the
identification of distinct Sλ decay laws in the transitional and turbulent regimes. This
allows for the location of turbulence onset in the shear layer at different Reynolds numbers.
Also, Reynolds stress distribution is investigated in a Reynolds number effect perspective:
it is the x-distribution of Reynolds stress integrals, rather than their intensity, that varies
with Re. The mean momentum balance is analysed in both the Cartesian frame and in
a curvilinear coordinate system, where coordinates are aligned and orthogonal to the
mean streamlines. The momentum balance along the streamline dividing the recirculating
bubble from the outer flow highlights the influence of pressure and the divergence of
Reynolds stress in shaping the streamlines. The two terms induce both the initial curvature
and flow reattachment, thereby defining the boundary of the separation bubble. The
Reynolds stress budgets provide a detailed description of the sources, transport paths,
redistribution among different components and dissipation of each tensor component.
The leading-edge shear layer is the location where these phenomena are most intense.
There, the production of 〈u′2〉 and 〈u′v′〉 occurs at the expense of the mean flow. Turbulent
energy is partially lost through a corresponding sink of 〈v′2〉, feeding the mean vertical
flow and partially dissipated in the same region. Additionally, pressure–strain interactions
redistribute turbulent fluctuations, transferring energy from the dominant streamwise
component 〈u′2〉 to the cross-flow components 〈v′2〉 and 〈w′2〉. Paths of scalar transport
indicate that Θ is drawn by turbulent fluxes from the wall through the shear layer and
up to the external flow region, alternating between areas of mean scalar removal and
mean scalar release. Unlike velocity fluctuations, which reach large values only in the
free-shear layer, high-magnitude scalar fluctuations also arise close to the wall. This is
driven by large-scale vortices in the separated flow, which transport low-concentration
scalar fluid and impinge on the wall, where Θ = 1. Budgets of the individual turbulent
scalar fluxes show that the net source terms of 〈u′θ ′〉 and 〈v′θ ′〉 are largest in the leading-
edge shear layer (0< x < 1) and at the reattached boundary layer (2< x < 5), due again
to the impingement of turbulent vortices formed in the shear layer.

Modelling flows of this complexity using eddy viscosity and eddy diffusivity approaches
may exhibit inaccuracies. An a priori analysis is conducted to examine the misalignment
between the mean strain-rate tensor and the deviatoric component of the Reynolds stress
tensor, and between the mean scalar gradient and the turbulent scalar fluxes. Although the
principal axes of Sij and 〈u′

i u
′
j 〉 − (2/3)kδij exhibit good alignment, with the misalignment

angle β generally below π/6 above the cylinder, to be proportional the two tensors must
have eigenvalues related by a proportionality constant. This condition is not satisfied in
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the shear layer or, more broadly, in the separated flow region. The alignment between
−∂Θ/∂xi and 〈u′

iθ
′〉 is generally poor around the body. The p.d.f. of the misalignment

angle γ shows that most values lie well beyond the threshold for validity, with a peak
near π/3. There are regions where the a priori turbulent stress and turbulent scalar flux
point in the opposite direction compared with fully resolved, direct numerical simulation
results. Due to the variability of the a priori νT and αT distributions, the turbulent Schmidt
number varies widely, ranging from −2 to 2. Therefore, turbulence models are required to
go beyond the eddy diffusivity and eddy viscosity concepts of most present methods for
accurately predicting flows involving separation and reattachment phenomena.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10619.
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