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Abstract A symplectic connection on a symplectic manifold, unlike the Levi-Civita connection on
a Riemannian manifold, is not unique. However, some spaces admit a canonical connection (symmet-
ric symplectic spaces, Kähler manifolds, etc.); besides, some ‘preferred’ symplectic connections can be
defined in some situations. These facts motivate a study of the symplectic connections, inducing a par-
allel Ricci tensor. This paper gives the possible forms of the Ricci curvature on such manifolds and gives
a decomposition theorem (linked with the holonomy decomposition) for them.
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1. Introduction and motivation

On a Riemannian or pseudo-Riemannian manifold, the Levi-Civita connection is defined.
The symplectic analogue is the following. Let (M, ω) be a symplectic manifold; a con-
nection D on M is said to be symplectic when

• D is torsion free, i.e. for every vector field x and y, Dxy − Dyx − [x, y] = 0; and

• the symplectic form is parallel for D, i.e. Dω = 0.

With such a connection D is associated its (1,3)-curvature tensor R and its Ricci
curvature tensor, here denoted by ric. Let us recall that ric is the bilinear sym-
metric form defined on each tangent space by ric(u, v) = trR(u, ·)v. Unlike in the
(pseudo-)Riemannian situation, the set of symplectic connections is an affine space of
infinite dimension (see § 2 (b) below). In some situations, however, there is a privileged
one.

In the case in which M is a symmetric symplectic space, for instance (in the natural
sense introduced in [10]; see also [2] for the symplectic case), it has a canonical connection,
which is symplectic. This connection is symmetric, so in particular its Ricci curvature is
parallel.
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In the case in which M is a (pseudo-)Riemannian manifold carrying a parallel sym-
plectic form (e.g. a Kähler manifold), the Levi-Civita connection is also symplectic with
respect to it.

On a general symplectic manifold, Bourgeois and Cahen introduced a variational prin-
ciple distinguishing so-called ‘preferred’ symplectic connections in [6]. The corresponding
field equations are

Dx ric(y, z) + Dy ric(z, x) + Dz ric(x, y) = 0.

In particular, symplectic connections the Ricci curvature of which is parallel, i.e. such
that D ric = 0, are therefore preferred. More generally, they have a specific interest
in this theory and were recently studied by Cahen, Gutt and Rawnsley in [7]. Note
also that the canonical connection of a symmetric symplectic manifold is thus pre-
ferred.

Riemannian manifolds the Ricci curvature of which is parallel, hereafter referred to as
Ricci parallel, are, at least locally, products of Einstein manifolds. Pseudo-Riemannian
Ricci-parallel manifolds admit an analogous, though slightly different, decomposition
(see [5]). We show here a similar result for Ricci-parallel symplectic connections (see the
Main Theorem in § 3). It shall be noticed that the algebraic part of the result is the
same as in the pseudo-Riemannian case, the geometrical consequence being weaker in
general.

The structure of the article is as follows. After some lemmas and remarks are given
in § 2, the Main Theorem is stated and commented on in § 3, and then proved in § 4.
Section 5 gives a refinement of the decomposition obtained in the Main Theorem and
studies the subfactors. Finally, § 6 provides some examples and final remarks.

Notation. On a symplectic manifold with a symplectic connection (M, ω, D), we will
denote by ric the Ricci tensor and by Ric the endomorphism induced by ric, i.e. the
endomorphism such that ric(·, ·) = ω(·, Ric ·).

We denote by H the holonomy group of (M, D), and classical Lie algebras are denoted
using Gothic script. For example, if p ∈ M, the symplectic Lie algebra sp(ωp) is the
algebra of the ωp-anti-self-adjoint endomorphisms of TpM; also h denotes the Lie algebra
of the holonomy group.

2. Elementary facts about symplectic connections

We need some basic facts in the following. Pointing them out here all in the same place
will also make symplectic connections more familiar.

(a) As hinted at above, the properties satisfied by a symplectic connection D are those
that define the Levi-Civita connection of a Riemannian or pseudo-Riemannian metric g

if you replace ω by g. On any symplectic manifold, such a connection exists but it is
not unique. The space of the symplectic connections associated with a given form ω is
parametrized by S3T ∗M; let us recall the following.
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Proposition 2.1. If D is a symplectic connection on (M, ω), then a connection ∆ is
symplectic if and only if

[(x, y, z) �→ ω(Dxy, z) − ω(∆xy, z)] ∈ S3T ∗M.

Proof. This is straightforward (see [9, p. 48]). �

(b) The curvature tensor R satisfies the usual algebraic properties:

• R(x, y) = −R(y, x);

• ω(R(x, y)z, t) = ω(R(x, y)t, z), i.e. all the R(x, y) are ω-anti-self-adjoint;

• R(x, y)z + R(y, z)x + R(z, x)y = 0, which is the ‘Bianchi identity’.

In the (pseudo-)Riemannian situation, an additional relation involving R and the metric
g then follows:

g(R(x, y)z, t) = g(R(z, t)x, y). (2.1)

It is not true with R and ω, ω being an alternate form. However, notice that, provided
all the R(x, y) for x, y ∈ TpM are anti-self-adjoint with respect to a bilinear symmetric
form g, we get (2.1) for R and g, whether g is degenerate or not. The proof does not
need non-degeneracy (see, for example, [11, p. 54]).

In particular, we get the following.

Lemma 2.2. If g is a parallel symmetric bilinear form on (M, D), R and g satisfy (2.1).

Note. Relation (2.1) between R and the metric g is one of the essential tools giving
the pseudo-Riemannian result [5]. So is it here: the Main Theorem is based on the fact
that R and ric satisfy (2.1), see the next remark.

(c) In the (pseudo-)Riemannian situation, ric is the only non-trivial invariant trace
of R. In the symplectic case, there is a priori another one: u, v �→ trω[ω(R(·, ·)u, v)].
However, it turns out that it is the same, up to a scalar; let us recall the (standard)
result.

Lemma 2.3. If (M, ω, D) is a symplectic manifold with a symplectic connection,

trω[ω(R(·, ·)u, v)] = −2 ric(u, v).

Proof. It follows from the Bianchi identity; as the result will be useful, let us recall
its proof.
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Let 2n be the dimension of M, p be a point in M, and (ei)2n
i=1 be a basis of TpM such

that ω =
∑

i�n e∗
i ∧ e∗

n+i. For a and b in TpM,

trω[ω(R(·, ·)a, b)] =
∑
i�n

ω(R(ei, en+i)a, b) − ω(R(en+i, ei)a, b)

= 2
∑
i�n

ω(R(ei, en+i)a, b)

= 2
(∑

i�n

ω(R(a, en+i)ei, b

)
+ ω(R(ei, a)en+i, b))

(the Bianchi identity)

= 2
(∑

i�n

ω(R(a, en+i)b, ei

)
− ω(R(a, ei)b, en+i))

= −2 tr[R(a, ·)b]

= −2 ric(a, b).

�

Important remark. The bilinear form ric is hence symmetric (this also holds for
a Levi-Civita connection, but not in general for a torsion-free affine connection). In
particular, Ric is ω-anti-self-adjoint.

With Lemma 2.2, if ric is parallel, it implies also that (2.1) holds for ric and more
generally for all the bilinear symmetric forms ω(·, Ric P (Ric2)·), where P is a polynomial.

(d) The endomorphism Ric in this framework. A final preliminary result is
necessary before stating the theorem. It is some standard linear algebra but has to be
precisely stated here.

Let p be a point of M; Ric being parallel, its minimal polynomial (i.e. the monic
generator of the ideal of the polynomials P of R[X] such that P (Ric) = 0) is defined
independently of the point. Now Ric|p ∈ sp(ω|p), so we can apply the following well-known
result to the complexified endomorphism RicC of TpM ⊗ C.

Lemma 2.4. Let (E, ω) be a complex vector space endowed with a non-degenerate
alternate form ω and U in sp(ω). The minimal polynomial µ of U then satisfies µ(X) =
±µ(−X). There thus exists an L ⊂ C such that L ∪ (−L) = {non-zero eigenvalues of U}
and L ∩ (−L) = ∅; with such an L,

E = ker Uα0
⊥
⊕

( ⊥
⊕

λ∈L
(ker(U − λ Id)αλ ⊕ ker(U + λ Id)αλ)

)
,

where αλ is the (common) power of (X − λ) and (X + λ) in µ. The decomposition is
orthogonal with respect to ω and each space ker(U ±λ Id) is ω-totally isotropic. Here α0

may be zero.
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Furthermore, Ric being real, its minimal polynomial µ is also invariant under complex
conjugation; so taking, for example, Λ = {eigenvalues of Ric} ∩ (R+ × iR+) ⊂ C, we get

µ =
∏
λ∈Λ

Pαλ

λ with

⎧⎪⎨
⎪⎩

P0 = X appearing if 0 ∈ Λ,

Pλ = (X − λ)(X + λ) if λ ∈ R
∗ ∪ iR∗,

Pλ = (X − λ)(X + λ)(X − λ̄)(X + λ̄) otherwise,
(2.2)

and the corresponding decomposition of TpM,

TpM =
⊥
⊕

λ∈Λ
ker(Pαλ

λ (Ric)). (2.3)

Remark. This is the finest ω-orthogonal decomposition of TpM that is stable under
the action of the centralizer of Ric. However, under this action and for example for
λ ∈ R

∗,

• ker(Pαλ

λ (Ric)) = ker(Ric −λ Id )αλ ⊕ker(Ric +λ Id )αλ , each factor being stable but
ω-totally isotropic;

• ker(Ric −λ Id)αλ and ker(Ric +λ Id)αλ are irreducible if and only if αλ = 1.

3. The Main Theorem

A Riemannian manifold with parallel Ricci curvature is, at least locally, a product of
Einstein manifolds (this is only a remark (see [5, pp. 2, 3])). Let us recall that a manifold
is Einstein if ric is proportional to the metric. In our situation, this notion makes no
sense, since ω is alternate and ric symmetric.

Nevertheless, being a local product of Einstein Riemannian manifolds can be stated
in other terms: ric is parallel and the minimal polynomial of Ric has simple roots in C

(the roots are moreover real, g being positive definite). That statement makes sense in
our symplectic situation. Is it true? Yes, except possibly for the root zero. It is the same
result as for a pseudo-Riemannian connection, the proof being quite different (see [5]).

Remark. Before stating the theorem, let us recall a straightforward fact linking
holonomy-stable subspaces with some foliations. If (M, D) is a manifold endowed with
a torsion-free connection D, if p is a point of M and if the holonomy group stabilizes a
subspace A of TpM, then A can be extended by parallel transport to a (parallel) dis-
tribution on M. The connection being torsion free, this distribution is integrable; the
leaves of the integral foliation are moreover totally geodesic.

The Main Theorem. Let (M, ω, D) be a symplectic manifold with a symplectic
connection the Ricci curvature ric of which is parallel and p ∈ M. Let µ be the minimal
polynomial of Ric and µ =

∏
λ∈Λ Pαλ

λ the decomposition (2.2) of µ given in § 2. For
simplicity of the statement, we set 0 ∈ Λ and allow α0 to be null. Let us also denote by
Mλ the (parallel) distribution ker(Pαλ

λ (Ric)), by Mq
λ the integral leaf of Mλ through a

point q, and simply by Mλ the leaf Mp
λ. Then we have the following.
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(i) For each λ �= 0, αλ is equal to 1 and α0 � 2.

(ii) Setting, for each λ, ωλ = ω|TMλ
and Dλ = D|TMλ

, (Mλ, ωλ, Dλ) is a symplec-
tic manifold with a symplectic connection. Now, the unique local diffeomorphism
M →

∏
λ Mλ preserving the integral foliations of the Mλ and equal to identity on

the Mλ identifies, in a suitable neighbourhood of p, M with
∏

λ Mλ. With this
identification,

(M, ω, D) �
(∏

λ

Mλ,
∏
λ

ωλ,

(∏
λ

Dλ

)
+ S

)
,

with S a (1,2)-tensor on M. Moreover, D and
∏

λ Dλ have the same Ricci curvature
and S satisfies the following properties.

• ω(S(·, ·), ·) is completely symmetric.

• S is a section of π∗
0(T 1

2 M0), where π0 is defined, at each point q, as the
canonical projection TqM = ⊕λTqMq

λ → TqMq
0.

• ∀(x, y) ∈ TqM, tr[z �→ DzS(x, y)] − tr[z �→ S(x, S(y, z))] = 0.

• Im Ric ⊂ ker S,

the last property being a consequence of the third one.

We prove the Main Theorem in § 4. We make some remarks here.

(a) As the decomposition
TpM = ⊕λMλ

is unique, so is the collection ((Mλ, ωλ, Dλ)λ∈Λ, S).

(b) Once it is supposed that ric is parallel, the first point of the theorem is a purely
‘pointwise’ consequence of the algebraic properties of the curvature tensor R. The second
one is a consequence of an adaptation of de Rham’s decomposition theorem of Rieman-
nian manifolds (see Proposition 3.1 below).

Point (i) will then give information on the factors Mλ given by point (ii); see § 5, in
particular Proposition 5.6 in § 5.2.

Proposition 3.1. Let (M, ω, D) be a symplectic manifold with a symplectic con-
nection and p ∈ M. Suppose that the restricted holonomy group H0 preserves an
ω-orthogonal decomposition

TpM =
⊥
⊕

0�i�k
Mi

of TpM. Then for each i, Mi induces by parallel transport a parallel, thus integrable,
distribution on M, also denoted by Mi.

Let (Mi) be the integral manifold through p of the distribution Mi. Then

(i) the (Mi, ωi, Di) = (Mi, ω|TMi
, D|TMi

) are symplectic manifolds with a symplectic
connection;
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(ii) the unique local diffeomorphism preserving the foliations induced by the Mi and
equal to identity on the Mi identifies, in a suitable neighbourhood of p, M to∏

i Mi; on this neighbourhood, ω =
∏

i ωi;

(iii) with this local identification M �
∏

i Mi, there is S a (unique) (1,2)-tensor on M
such that D = (

∏
i Di) + S.

Moreover, S satisfies the following conditions:

• ω(S(·, ·), ·) is symmetric;

• S =
∑

i Si where each Si is a section of π∗
i (T 1

2 Mi), where πi is defined, at each
point q, as the canonical projection TqM = ⊕jTqMq

j → TqMq
i ;

• for each i and each q ∈ Mi, Si
q = 0, i.e. S|(TMi)2 is null on Mi.

This proposition is, adapted to a symplectic connection, the local (and easy) part of
de Rham’s Theorem. Its proof will also be given in § 4. Two points of the Riemannian
theorem fail to be true here.

• The result is weaker—and a little deceptive—because (M, D) is not a product
for the affine structure: M �

∏
i(Mi, ωi) but D �=

∏
i Di. This is due to the non-

uniqueness of a symplectic connection on a symplectic manifold.

• For a Riemannian manifold M, TpM is the sum of a trivial subrepresentation of H

and of a sum of irreducible subrepresentations; a consequence is the uniqueness of
this decomposition. It is not the case here, since TpM may admit reducible inde-
composable factors. So there does not generally exist any canonical decomposition
of TpM under the action of H (or of H0).

Nevertheless, when (M, ω, D) is a symmetric symplectic space, a quite unexpected
decomposition result holds (see [4, Theorems 2.3 and 2.12]).

(c) In general, the local symplectomorphism (M, ω) →
∏

λ(Mλ, ωλ) of the Main The-
orem is not an isomorphism of affine structure from (M, D) on

∏
λ(Mλ, Dλ). However,

it is one when Ric is non-degenerate; the following decomposition then holds.

Corollary 3.2. Let (M, ω, D) be a symplectic manifold with a symplectic connection,
the Ricci curvature ric of which is parallel and non-degenerate. Let µ be the minimal
polynomial of Ric and let µ =

∏
λ∈Λ Pαλ

λ be the decomposition (2.2) of µ given in § 2.
Then

(i) for each λ, αλ is equal to 1 (and 0 �∈ Λ since ric is non-degenerate);

(ii) there exists a unique family ((Mλ, ωλ, Dλ))λ∈Λ of symplectic manifolds with a
symplectic connection such that

– for each λ, the minimal polynomial of RicMλ
is Pλ,

– (M, ω, D) is locally affinely symplectomorphic to
∏

λ(Mλ, ωλ, Dλ);
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(iii) if (M, ω, D) is moreover geodesically complete and simply connected, the isomor-
phism of point (ii) is global.

Proof. Points (i) and (ii) are simply the case ‘α0 = 0, M0 reduced to a point’ of the
Main Theorem: then S = 0, which gives points (i) and (ii). Point (iii) is an immediate
consequence of the global part of Wu’s Theorem (see [12] and § 5.1 in this paper) applied
to the pseudo-Riemannian manifold (M, ric). �

Alternative, self-contained proof. We can also easily understand autonomously
the reason it works. Indeed in that case, (M, ric) turns out to be a pseudo-Riemannian
manifold (which is moreover Einstein with constant 1 by definition). Ric being parallel,
the decomposition

TpM =
⊥
⊕

λ∈Λ
ker(Pαλ

λ (Ric))

is preserved by the action of the holonomy group. Applying Wu’s Theorem, the pseudo-
Riemannian generalization of de Rham’s Theorem (see [12]), we get that M is iso-
morphic to the Riemannian product of the factors Mλ. Besides, the symplectic con-
nection D is torsion free and satisfies D ric = 0, so it is the Levi-Civita connection
of the metric ric. Consequently, the Riemannian product is also an affine morphism
(M, D) �

∏
λ(Mλ, Dλ). �

(d) Conversely, if (Mi, ωi, Di)k
i=0 are symplectic manifolds with Ricci-parallel sym-

plectic connections, with Rici non-degenerate except for i = 0, then a manifold of the
type (∏

i

(Mi, ωi),
∏

i

Di + S

)
,

with S satisfying the properties listed in the Main Theorem, is Ricci parallel. This is an
immediate consequence of Proposition 2.1 combined with Lemma 4.3 below.

4. Proof of the Main Theorem

Proof of Proposition 3.1 of §3. We have to check that the Riemannian proof
(see [8, pp. 179 onwards]) remains valid or can be adapted at each step. Let us do it for
k = 2, the general case then comes by induction. We denote M1, M1, M2 and M2 by
A, A, B and B, respectively. For another point q of M, Aq (respectively, Bq) will stand
for the integral leaf of A (respectively, B) through q.

(i) At p, ω|A and ω|B are non-degenerate. Now A and B being integral leaves of parallel
distributions and ω being parallel, ω|TA and ω|TB are non-degenerate; let us denote them
by ωA and ωB. A is totally geodesic, so the restriction DA to TA of the connection D is
the connection induced by D on the submanifold A. Hence similarly for B. Eventually, as
Dω = 0, DAωA = 0 and (A, ωA, DA) is (locally) a symplectic submanifold of M, with
a symplectic connection (hence also for (B, ωB, DB)).
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(ii) The fact that M is locally canonically diffeomorphic to A×B is obvious and purely
differential (see the lemma on p. 182 of [8] for a formal proof). We can then take local
coordinates of M of the form ((ai)dA

i=1, (bi)dB
i=1) such that, at every point q,

Aq = span
(

∂

∂ai

)dA

i=1
and Bq = span

(
∂

∂bi

)dB

i=1
.

To prove that ω is equal to the product form ωA × ωB, we have to show: for each
(i, j, k),

L∂/∂bi

[
ω

(
∂

∂aj
,

∂

∂ak

)]
= 0.

It follows [8, Proposition 5.2, p. 182] from the fact that D is torsion free. Indeed for each
(i, j), D∂/∂bi

(∂/∂aj) = D∂/∂aj
(∂/∂bi). Now, as the distributions A and B are parallel,

D∂/∂bi
(∂/∂aj) ∈ A and D∂/∂aj

(∂/∂bi) ∈ B. Thus

D∂/∂bi

(
∂

∂aj

)
= D∂/∂aj

(
∂

∂bi

)
= 0. (4.1)

Then

L∂/∂bi

[
ω

(
∂

∂aj
,

∂

∂ak

)]

= (D∂/∂bi
ω)︸ ︷︷ ︸

=0

(
∂

∂aj
,

∂

∂ak

)
+ ω

(
D∂/∂bi

(
∂

∂aj

)
︸ ︷︷ ︸

=0

,
∂

∂ak

)
+ ω

(
∂

∂aj
, D∂/∂bi

(
∂

∂aj

)
︸ ︷︷ ︸

=0

)
= 0.

(iii) The properties of S. The product connection DA×DB on A×B is a symplectic
connection. Indeed, the local product structure of (M, ω) induces a local diffeomorphism
between Ap and Aq for each point q, preserving moreover ω and mapping DA on (DA ×
DB)|TAq

by definition of DA × DB. As DAω = 0 on Ap, (DA × DB)|TAq
ω = 0. So by

Proposition 2.1, there exists a (1,2)-tensor S on Aq such that

• D|TAq
= (DA × DB)|TAq

+ SAq ,

• ω(SAq (·, ·), ·) is symmetric.

Now, as shown above, at any point of M and for any indexes (i, j), D∂/∂bi
(∂/∂aj) =

D∂/∂aj
(∂/∂bi) = 0. The same equality is true for the product connection DA × DB, by

its definition. So, for all (i, j), S(∂/∂aj , ∂/∂bi) = 0. Therefore, as S is a tensor, S|q can
be written, pointwise at each point q, as

S|q = (πA)∗
(
S

Aq

|q

)
+ (πB)∗

(
S

Bq

|q

)
,

where πA is the projection TqM = Aq ⊕ Bq → Aq and similarly for πB . The result
follows. �
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In addition to Proposition 3.1, we will also use three more lemmas. Point (i) of the
Main Theorem is a consequence of an essential technical lemma we state here.

Lemma 4.1. Let p be a point of M, U ∈ sp(ω|p) (i.e. U is an ω-anti-self-adjoint
endomorphism of TpM), commuting with all the R(x, y) for x, y ∈ TpM. Let us take
a, b ∈ TpM with b ∈ Im U . The bilinear form ω(R(·, ·)a, b) is skew-symmetric; let us
denote by Aa,b the ω-self-adjoint endomorphism such that ω(R(·, ·)a, b) = ω(·, Aa,b·).
Then

Aa,b = −U ◦ R(a, c) = −R(a, c) ◦ U, where c is any antecedent of b by U.

Proof of Lemma 4.1. Let us simply write here A = Aa,b and let us take c such that
Uc = b. As U ∈ sp(ω|p), the bilinear form u : (x, y) �→ ω(x, Uy) is symmetric; as all the
R(x, y) are supposed to commute with U , notice they are all u-anti-self-adjoint:

u(R(x, y)z, t) = ω(R(x, y)z, Ut)

= ω(R(x, y)Ut, z)

= ω(UR(x, y)t, z)

= −ω(z, UR(x, y)t)

= −u(z, R(x, y)t).

Consequently, by Lemma 2.2 of § 2, (2.1) holds for u:

∀x, y, z, t, u(R(x, y)z, t) = u(R(z, t)x, y).

To prove the lemma it is sufficient to check that

∀x, y ∈ TpM, ω(x, Ay) = ω(x, U(R(a, c)y)).

Let x, y be any two vectors in TpM. Then

ω(x, Ay) = ω(R(x, y)a, b)

= ω(R(x, y)a, Uc)

= u(R(x, y)a, c) (by definition of u)

= u(R(a, c)x, y) (by (2.1))

= −u(x, R(a, c)y) (R(a, c) being u-anti-self-adjoint)

= −ω(x, UR(a, c)y) (by definition of u).

�

Let us also recall the following standard remark.

Lemma 4.2. Let E be a real or complex vector space, 〈·, ·〉 a reflexive, i.e. symmetric
or skew-symmetric form on E and U a 〈·, ·〉-anti-self-adjoint endomorphism of E. Let
U = S + T be the decomposition of U into its semi-simple and nilpotent parts (the
unique such decomposition with ST = TS). Then S and T are 〈·, ·〉-anti-self-adjoint.
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For point (ii) we will also need the following (standard) result.

Lemma 4.3. Let D and D′ be two symplectic connections on a symplectic manifold
(M, ω) and let S be the tensor such that D′ = D + S. Let us denote by ric and ric′

the Ricci curvatures induced by D and D′, respectively, and by Sx the endomorphism
S(x, ·). Then

ric′(x, y) = ric(x, y) − tr[z �→ (DzS)(x, y)] + trSxSy.

Proof. It is sufficient to give the proof with vector fields which are coordinate vector
fields for some normal coordinate system at some point p in M. For two distinct such
vectors u and v, Duv = Dvu, and, at p, Duv = 0. With such vectors, a straightforward
computation gives

R′(x, z)y = (D + S)z(D + S)xy − (D + S)x(D + S)zy

= R(x, z)y + (DxS)zy − (DzS)xy + SxSzy − SzSxy.

So
ric′(x, y) = ric(x, y) + tr[z �→ (DxS)zy − (DzS)xy − SxSzy + SzSxy].

Now we have the following.

• [z �→ SzSxy] = [z �→ S(z, S(x, y))] = SS(x,y). But ω(S(·, ·), ·) is symmetric, so in
particular,

ω(Suv, w) = ω(S(u, v), w) = ω(S(u, w), v) = −ω(v, S(u, w)) = −ω(v, Suw)

so the Su are in sp(ω), and are thus trace free. So tr[z �→ SzSxy] = 0.

• For the same reason, tr(DxS)y = 0. So by symmetry of S, tr[z �→ (DxS)zy] =
tr[(DxS)y] = 0.

• By symmetry of S, SxSzy = SxSyz.

The result follows. �

Proof of the theorem. (i) Let Ric = S + T be the decomposition of Ric into its
semi-simple and nilpotent parts. As S and T are polynomials in Ric, they are themselves
parallel. Let p be a point in M, and let us consider the endomorphism T acting on
TpM. Let us take b ∈ Im T , say b = T (c). By Lemma 4.2, T ∈ sp(ωp); T being parallel,
it commutes with all the R(x, y) for x, y ∈ TpM, we can therefore apply Lemma 4.1.
Combined with Lemma 2.3 this gives

∀a ∈ TpM, ric(a, b) = − 1
2 trω[R(·, ·)a, b] (Lemma 2.3)

= − 1
2 tr[R(a, c) ◦ T ] (Lemma 4.1).

But T is parallel so it commutes with R(a, c); thus, T being nilpotent, so is R(a, c) ◦ T .
So R(a, c) ◦ T is trace free, which means that ∀a ∈ TpM, ric(a, b) = 0, that is to say
b ∈ ker Ric. So we get (at any point)

Im T ⊂ ker Ric .
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That is the desired result. Indeed if µ is the minimal polynomial of Ric, you can write

µ = Xα0
∏
λ

(X − λ)αλ ,

where λ runs over the set of the non-zero eigenvalues of Ric and where α0 is the—possibly
null—power of X in µ. Then Ric is non-degenerate on ker[

∏
λ(Ric −λ Id)αλ ] so on this

space Im T = {0}, i.e. T = 0, i.e. all the αλ for λ a non-zero eigenvalue of Ric are 1. On
ker S = ker Ricα0 , T is equal to Ric so Im T ⊂ ker T , i.e. α0 � 2.

(ii) The decomposition and the tensor S are given by Proposition 3.1. Let us denote by
ric′ the Ricci curvature of the product connection D − S and let us prove that ric′ = ric.
Let us take (xλ

i )nλ
i=1, where nλ = dimMλ, local coordinates on each Mλ, in a neighbour-

hood of p; ((xλ
i )nλ

i=1)λ∈Λ are coordinates of M in a neighbourhood of p. Let q be a point
of M in such a neighbourhood and qλ its projection on Mλ, for any λ ∈ Λ.

• From the definition of the product connection, it follows that

ric′
|q

(
∂

∂xλ
i

,
∂

∂xλ
j

)
= ric′

|qλ

(
∂

∂xλ
i

,
∂

∂xλ
j

)

for all i, j.

• By (4.1) applied to the distributions Mλ and the coordinate vectors ∂/∂xλ
i ,

λ �= λ′ ⇒ ∀i, j, D∂/∂xλ′
i

∂/∂xλ
j = 0.

In particular, the vector fields ∂/∂xλ
i are D-parallel along any path tangent to

⊕λ′ �=λMλ′ . Now q and qλ are joined by such a path so, as ric is D-parallel by
assumption, the parallel transport along this path gives

ric|q

(
∂

∂xλ
i

,
∂

∂xλ
j

)
= ric|qλ

(
∂

∂xλ
i

,
∂

∂xλ
j

)

for all i, j.

Besides, by construction, D and D − S coincide on each TMλ, so also do their Ricci
curvatures ric and ric′ and therefore, for any λ and any (i, j),

ric′
|q

(
∂

∂xλ
i

,
∂

∂xλ
j

)
= ric|q

(
∂

∂xλ
i

,
∂

∂xλ
j

)
.

Finally, as the Mλ are mutually ric-orthogonal (by definition of the Mλ) and ric′-
orthogonal (by definition of the product connection), ric = ric′.

The first property of S comes from Proposition 2.1. Let us prove the factorization of S.
On the similar integral manifold Mq

λ through any q, for λ �= 0, the non-degenerate bilinear
form ricMq

λ
is parallel for the product connection (

∏
λ Dλ)|TMq

λ
and for the original

connection D of M. So these connections are both equal to the Levi-Civita connection of
ricMq

λ
. So S|TMq

λ
= 0. This gives, together with Proposition 3.1, the factorization of S.
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After Lemma 4.3 above in this section, S satisfies the third property if and only if D

and D − S have the same Ricci curvature, which has been shown.
This implies finally that Im Ric ⊂ ker S. To see this, we provide the following claim.

Claim 4.4. Let D′ be a symplectic connection on some integral manifold Mq
0 of

M0 = ker Ric2 through some point q, inducing the same Ricci curvature as D, and let S′

be the tensor such that D′ = D + S′. Then Im Ric ⊂ ker S′.

Let us indeed choose normal coordinates based at q. Then, for (x, y, z) any triple of
coordinate vectors and ric being parallel,

2 ric(D′
xy, z) = Lx ric(y, z) + Ly ric(x, z) + Lz ric(x, y),

by the same computations as those that give the expression of the Levi-Civita connection
of a metric g. So ric(D′

xy, z) is fixed, i.e. is equal to ric(Dxy, z). Therefore, ric(S′(·, ·), ·) =
0 or, equivalently, ω(S′(·, ·), Im Ric) = 0 by definition of Ric. By symmetry of S′, this is
again equivalent to S′(Im Ric, ·) = 0. So the claim holds, which completes the proof. �

5. Ricci decomposition and holonomy decomposition

5.1. A refinement of the decomposition given by the Main Theorem

The decomposition of (M, ω, D) appearing in the Main Theorem may be refined. Let us
introduce a definition.

Definition 5.1. A pseudo-Riemannian manifold is said to be weakly irreducible if the
holonomy group does not stabilize any non-degenerate proper subspace.

Remark. Obviously, the holonomy representation is weakly irreducible if and only if
it does not admit any decomposition into a direct orthogonal sum of stable subspaces.

De Rham’s Theorem on the decomposition of the Riemannian manifolds into a product
of irreducible ones admits a pseudo-Riemannian generalization, in fact nearly the best
that could be expected, i.e. the elementary factors are weakly irreducible. We recall the
result of [12, Appendix 1, p. 389].

Theorem 5.2 (de Rham, Wu). Let (M, g) be a geodesically complete, simply
connected Riemannian or pseudo-Riemannian manifold and p ∈ M. We suppose that
the maximal trivial subspace M0

p of H in TpM is non-degenerate. Then

(i) TpM admits a decomposition, unique up to order,

TpM =
⊥
⊕

0�i�k
M i

p,

and H the decomposition, H �
∏

1�i�k Hi, where each Hi acts weakly irreducibly
on each M i

p and trivially on the M j
p for j �= i;

(ii) M is isometric to the Riemannian product
∏

0�i�k Mi, where each Mi is the
maximal integral leaf through p of the parallel distribution M i generated by M i

p;
M0 is flat.
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If (M, g) is not supposed to be geodesically complete and simply connected, the same
result holds, for the full holonomy group H as well as for the restricted group H0, except
that the isometry of point (ii) is only local.

A consequence of this theorem in our situation is the following.

Proposition 5.3. Let (M, g) be a Riemannian or pseudo-Riemannian manifold and
p ∈ M. We suppose that the maximal trivial subspace M0

p of H in TpM is non-
degenerate, and denote by (M, g) �

∏
0�i�k(Mi, gi) Wu’s decomposition of M.

Suppose that (M, g) admits a parallel and non-degenerate symplectic form ω. Then
ωi, the restriction of ω to TMi, is non-degenerate and

(M, g, ω) �
∏

i

(Mi, gi, ωi).

Proof. We use here the notation introduced in Wu’s Theorem above. It is sufficient to
show that the M i

p are pairwise ω-orthogonal: the statement follows by parallel transport.
Let us denote by Ω the element of so(ric) such that ω = g(·, Ω·). By definition,

M0
p = {x ∈ TpM; H.x = {x}}.

So, with x ∈ M0
p ,

H · Ω(x) = Ω(H · x) (Ω is parallel, hence commutes with the action of H)

= Ω({x}) = {Ω(x)},

therefore Ω(x) ∈ M0
p , hence Ω(M0

p ) ⊂ M0
p , so, as Ω is non-degenerate, Ω(M0

p ) = M0
p .

By point (i) of Wu’s Theorem, for i � 1,

M i
p = (M0

p )⊥ ∩ {x ∈ TpM; ∀j �= i, Hj .x = {x}}.

So, similarly, for each i � 1, Ω(M i
p) ⊂ M0

p ⊕ M i
p. Now Ω ∈ so(ric) so

g(Ω(M i
p), M

0
p ) = −g(M i

p, Ω(M0
p )) = −g(M i

p, M
0
p ) = {0},

and so Ω(M i
p) ⊂ M i

p (with equality). By definition of Ω, the desired result follows. �

So, Wu’s holonomy decomposition provides a refinement of the Ricci decomposition
given by the Main Theorem, at least a refinement of the decomposition of the factor on
which ric is non-degenerate. Indeed, in this factor, ric, on the one hand, is parallel and
non-degenerate, so is a (pseudo-)Riemannian metric, and, on the other hand, the trivial
subspace of the action of the holonomy group is {0}, which is non-degenerate.

Corollary 5.4. Let (M, ω, D) be a symplectic manifold with a symplectic connection
D the Ricci curvature of which is parallel and non-degenerate. Then (M, ω, D) admits
a unique decomposition into a Riemannian product (with respect to ric, considered as a
metric), such that each factor is weakly irreducible. Moreover, this decomposition holds
also for ω:

(M, g, ω) �
∏

i

(Mi, gi, ωi)

with g standing here for ric, considered as the metric.
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Being unique and maximal, this decomposition is necessarily a refinement of that of
the Main Theorem. Naturally, point (i) of the Main Theorem still applies and Ric is
semi-simple on each factor (in fact, its minimal polynomial is one of the Pλ).

5.2. A more precise description of the weakly irreducible factors

Using the Main Theorem, we can now give a more precise description of the weakly
irreducible subfactors given by Corollary 5.4. By the remark below, these factors are
(pseudo-)Riemannian manifolds. We also introduce some vocabulary: paracomplex struc-
tures and related notions. Their names are chosen by analogy with the corresponding
complex structures; other terminology is also used (‘polarization’ for a paracomplex struc-
ture, for example).

Important remark. On these subfactors, as ric is parallel and non-degenerate, ric
is a (pseudo-)Riemannian metric and D is its Levi-Civita connection. Moreover, such a
manifold is obviously Einstein in that point of view, with Einstein constant 1. So, in the
following, symplectic manifolds with a symplectic connection such that ric is parallel and
non-degenerate will be viewed as Einstein non-Ricci flat manifolds admitting a parallel
symplectic form.

Definition 5.5. A paracomplex structure on a manifold M of dimension 2n is an
endomorphism field L on M, integrable, satisfying L2 = Id with dim ker(L − Id) =
dim ker(L + Id).

If (M, g) is pseudo-Riemannian, a paracomplex structure on M satisfying g(Lx, y) =
−g(x, Ly) is said to be parahermitian. If, moreover, DL = 0, it is said to be parakähler.

Remarks. A paracomplex structure therefore gives two complementary distributions
of dimension n: ker(L ± Id). Like L, these distributions are integrable. Equivalently, a
paracomplex structure is given, up to sign, by the data of two such integrable distributions
E and E′: L = ±(IdE ⊕ − IdE′).

For a parahermitian structure L, ker(L − Id) and ker(L + Id) are necessarily totally
isotropic, so the signature of the metric is necessarily (n, n).

Vocabulary. Let us also recall that a pseudo-Kähler manifold is a pseudo-Riemannian
manifold (M, g) admitting a g-orthogonal parallel complex structure J (in other words,
a Kähler manifold with indefinite metric).

Now, a Riemannian or pseudo-Riemannian manifold admitting a parallel symplectic
form is (pseudo-)Kähler or parakähler. The following proposition, using the Main Theo-
rem (§ 3), describes more precisely the situation when the manifold is Einstein non-Ricci-
flat. The matrices of the different involved objects are also given, to make the situation
clearer for the reader.

Notation. For each integer k, Jk will here denote the matrix(
0 Ik

−Ik 0

)
.
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Proposition 5.6. Let (M, g) be a weakly irreducible Einstein non-Ricci-flat Rie-
mannian or pseudo-Riemannian manifold and let p ∈ M. We suppose (M, g) admits
a parallel symplectic form ω. Then, denoting dim M by 2n, M is in one of the three
following situations.

(i) (M, g) has a parakähler structure L such that ω = λg(·, L·) with some λ in R
∗. In

that case, g is of signature (n, n) and there is a basis of TpM in which

Mat(g) =

(
0 In

In 0

)
, Mat(L) =

(
−In 0
0 In

)
, Mat(ω) = λ

(
0 In

−In 0

)
.

(ii) (M, g) has a (pseudo-)Kähler structure J such that ω = λg(·, J ·) with some λ in
R

∗. In that case, g is of signature (2p, 2q) with p + q = n and there is a basis of
TpM in which

Mat(g) =

(
I2p 0
0 −I2q

)
, Mat(J) =

(
Jp 0
0 Jq

)
, Mat(ω) = λ

(
Jp 0
0 −Jq

)
.

(iii) (M, g) has a pseudo-Kähler structure J and a parakähler structure L such that
JL = LJ and such that ω = αg(·, L·) + βg(·, J ·) with (α, β) ∈ R

∗2. In that case,
n is even, g is of signature (n, n), and, setting m = 1

2n, there is a basis of TpM in
which

Mat(g) =

(
0 I2m

I2m 0

)
, Mat(L) =

(
−I2m 0

0 I2m

)
, Mat(J) =

(
Jm 0
0 Jm

)
,

Mat(ω) =

(
0 αI2m + βJm

−αI2m + βJm 0

)
.

Proof. After a possible rescaling, we may suppose that g = ric. The decomposition
(2.3), given in § 2 (d), of TpM is stable under the action of H. So, by weak irreducibility
of M and as ric is non-degenerate, the minimal polynomial of the endomorphism Ric is
equal to a single factor Pαν

ν for some ν ∈ C
∗ (with the definition given in (2.2), § 2). By

point (i) of the Main Theorem in § 3, αν = 1.
Let us discuss the situation for the different possible values of ν.

(i) If ν is real. Let us set L = (1/ν) Ric; L is a parallel endomorphism of so(ric) with
minimal polynomial (X − 1)(X + 1), as αν = 1. If x, y ∈ ker(L − ε Id) with ε = ±1,
ric(x, y) = ε ric(x, Ly) = −ε ric(Lx, y) = − ric(x, y) so ker(L − Id) and ker(L + Id)
are both ric-totally isotropic (that remark is also contained in Lemma 2.4, § 2 (d)).
As TpM = ker(L − Id) ⊕ ker(L + Id) and ric is non-degenerate, these two spaces are
of dimension n and ric is of signature (n, n); so L is a parakähler structure. Finally,
there is a basis of TpM as announced in the proposition, with λ = (1/ν), and ω =
ric(·, Ric−1 ·) = λ ric(·, L−1·) = λ ric(·, L·) as L = L−1.
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(ii) If ν is purely imaginary. Let us set J = −(1/|ν|) Ric; J is a parallel endomor-
phism of so(ric) with minimal polynomial (X − i)(X + i) = X2 + 1, as αν = 1, so
J2 = − Id and J is a Kähler or pseudo-Kähler structure (whether ric is definite or
not). By the same computation as above or by Lemma 2.4, and extending ric to a
bilinear complex form on TpM ⊗ C, ker(J − i Id) and ker(J + i Id) are both ric-totally
isotropic; let n be their dimension (M is then of dimension 2n). The complex con-
jugation e �→ ē being a linear isomorphism of ker(J − i Id) to ker(J + i Id) and ric
being non-degenerate, the sesquilinear form h : (e, e′) �→ ric(e, e′) is non-degenerate on
ker(J − i Id) and on ker(J + i Id). Its signature on each of these spaces is the same, let
us denote it by (p, q). So if (ei)n

i=1 is an h-(pseudo-)orthonormal basis of ker(J − i Id),
and setting β = ((ei)n

i=1(ei)n
i=1),

Matβ(ric) =

(
0 Ip,q

Ip,q 0

)
and Matβ(J) =

(
iI 0
0 −iI

)
.

Now in the real basis (fi, f
′
i)

n
i=1 of TpM defined by

fi =
1√
2
(ei + ei) and f ′

i =
1

i
√

2
(ei − ei),

the matrices of ric, J and ω have the announced form, with λ = (1/|ν|). Besides,
ω = ric(·, Ric−1 ·) = λ ric(·, J ·) as J = −J−1.

(iii) Otherwise. Let us set

L =
1

2 Re ν
(Ric +|ν|2 Ric−1) and J =

1
2 Im ν

(Ric −|ν|2 Ric−1).

As αν = 1, a short computation gives

L2 − Id = J2 + Id = Pν(Ric) = 0.

As in the previous case, using the non-degenerate hermitian form h : e �→ ric(e, ē) of
TpM ⊗ C and the fact that J and L commute, and denoting by n the dimension of
ker(L − Id) ∩ ker(J − i Id), we obtain a basis (ei)2m

i=1 of ker(J − i Id) such that, setting
β = ((ei)m

i=1, (ei)m
i=1, (ei)2m

i=m+1, (ei)2m
i=m+1),

Matβ(ric) =

(
0 I2m

I2m 0

)
, Matβ(L) =

(
−I2m 0

0 I2m

)
,

Matβ(J) =

⎛
⎜⎜⎜⎝

iIm 0 0 0
0 −iIm 0 0
0 0 −iIm 0
0 0 0 iIm

⎞
⎟⎟⎟⎠ .

M is of dimension 4m and ric of signature (2m, 2m). As L and J are, moreover, in
so(ric)h, they are then, respectively, a parakähler and a pseudo-Kähler structure on
(M, ric). Note also that they commute.
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Now in the real basis ((fi)n
i=1, (f

′
i)

n
i=1, (fi)2n

i=n+1, (f
′
i)

2n
i=n+1) of TpM defined by

fi =
1√
2
(ei + ei) and f ′

i =
1

i
√

2
(ei − ei),

the matrices of ric, L, J and ω have the announced form, with α+iβ = (1/ν). Besides,
ω = α ric(·, L·) + β ric(·, J ·).

�

6. Some remarks and examples

6.1. An example with Ric2 = 0 and Ric �= 0

The Main Theorem requires that ric is non-degenerate to ensure that Ric has no nilpotent
part. This assumption is necessary; it can be seen in a very simple example borrowed
from [7, p. 40]. Take (M, ω) = (R2, dx ∧ dy) and, denoting the coordinate vectors by X

and Y , the connection defined by

DXX = DY X = DXY = 0, DY Y = xX.

In particular, X is stable by holonomy. By definition, D is torsion free and we check that

(DaX+bY ω)(X, Y ) = a(DXω)(X, Y ) + b(DY ω)(X, Y )

= a[LX(ω(X, Y )) − ω(X, DXY )] + b[LY (ω(X, Y )) − ω(X, DY Y )]

= 0,

so D is symplectic. Now R(X, Y )X = 0 and R(X, Y )Y = −X, so ric(Y, Y ) = −1,
ker ric = span(X) and D ric = 0. Actually, DR = 0, i.e. (M, ω, D) is even symmetric.
Now, Ric(X) = 0 and Ric(Y ) = X so Ric �= 0 and Ric2 = 0.

Remark. Examples where the minimal polynomial Pλ of Ric corresponds to a λ in
R

∗, iR∗ or C \ (R∗ ∪ iR∗) are numerous. They are the parakähler and (pseudo-)kähler
manifolds (see Proposition 5.6 in § 5.2). The next subsection gives symmetric examples
of the three types.

6.2. The low-dimensional cases

Let us recall the following fact.

Proposition 6.1. Let (M, g) be

• either a Riemannian or pseudo-Riemannian manifold of dimension three or less, or

• a ‘complex Riemannian’ manifold (i.e. a complex manifold with a complex
bilinear—warning: not sesquilinear—symmetric form g) of complex dimension three
or less,

then the (real) curvature tensor R of (M, g) is a linear function of ric.
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Table 1.

space dimension so(g)h sgn(ric)

SL(2, R)/R
∗ 2 RL (1,1)

SU(2)/SO(2) 2 RJ (2,0)
SL(2, R)/SO(2) 2 RJ (0,2)
SL(2, C)/C

∗ 4 RL + RJ (2,2)

Table 2.

space dimension so(g)h sgn(ric)

SL(3, R)/(SL(2, R) × R
∗) 4 RL (2,2)

SU(3)/(SU(2) × SO(2)) 4 RJ (4,0)
SU(1, 2)/(SU(1, 1) × SO(2)) 4 RJ (2,2)
SU(1, 2)/(SU(2) × SO(2)) 4 RJ (0,4)

A proof can be found in [1, pp. 47–49]. Consequently, a Ricci-parallel manifold of
low enough dimension, as required in the above proposition, is locally symmetric. So in
the Main Theorem, the weakly indecomposable subfactors of the factor on which ric is
non-degenerate are (locally) symmetric as soon as

(i) they are of dimension two, or

(ii) they are of dimension four and admit a pseudo-Kähler structure J and a parakähler
structure L; in this case, indeed, LJ = JL defines on M a complex structure
with respect to which the complex form h(·, ·) = g(·, ·) − ig(·, LJ ·) is C-bilinear,
symmetric (besides, after Proposition 5.6 of § 5.2, manifolds of this type are of (real)
dimension multiple of four, so dimension six is here not relevant).

Then Berger’s list—you can find its restriction to the symplectic case, with which we deal
here, in [3, pp. 267, 268]—provides the list of the relevant simply connected symmetric
spaces. We give each time the structure of the algebra so(g)h of the parallel endomor-
phisms, with the following convention: L denotes a parakähler structure (L2 = Id), J a
(pseudo-)Kähler structure (J2 = − Id). The spaces are denoted in Table 1 (see [2, p. 315]).

Remark. To obtain the full list of the simply connected, simple, symplectic symmetric
spaces of dimension four or less, one has to add the ones of dimension four and with
so(g)h = RL or so(g)h = RJ (see Table 2).

Acknowledgements. I thank M. Cahen for his quick answer to a technical question
and the referee for his careful reading of the manuscript, which has helped me to make
it clearer.

https://doi.org/10.1017/S0013091502000688 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000688


766 C. Boubel

References

1. A. L. Besse, Einstein manifolds (Springer, 1987).
2. P. Bieliavsky, Four-dimensional simply connected symplectic symmetric spaces, Geom.

Dedicata 69 (1998), 291–316.
3. P. Bieliavsky, Semi-simple symplectic symmetric spaces, Geom. Dedicata 73 (1998),

245–273.
4. P. Bieliavsky, M. Cahen and S. Gutt, A class of homogeneous symplectic manifolds,

in Geometry and nature (ed. H. Nencka and J.-P. Bourguignon), Contemporary Mathe-
matics, vol. 203, pp. 241–255 (American Mathematical Society, Providence, RI, 1997).

5. Ch. Boubel and L. Bérard Bergery, On pseudo-Riemannian manifolds whose Ricci
tensor is parallel, Geom. Dedicata 86 (2001), 1–18.

6. F. Bourgeois and M. Cahen, A variational principle for symplectic connections, J.
Geom. Phys. 30 (1999), 233–265.

7. M. Cahen, S. Gutt and J. Rawnsley, Symplectic connections with parallel Ricci
tensor, in Poisson geometry, pp. 31–41 (Banach Center Publications, Warsaw, 2000).

8. S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I (Interscience,
1969).

9. A. Lichnerowicz, Quantum mechanics and deformations of geometrical dynamics, in
Quantum theory, groups, fields and particles, pp. 3–82 (Reidel, Dordrecht, 1983).

10. O. Loos, Symmetric spaces (Benjamin, New York, 1969).
11. J. Milnor, Morse theory (Princeton University Press, Princeton, NJ, 1963).
12. H. Wu, Holonomy groups of indefinite metrics, Pac. J. Math. 20 (1967), 351–392.

https://doi.org/10.1017/S0013091502000688 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000688

