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Abstract

We deal with the dual Banach algebras L∞0 (G)
∗ for a locally compact group G. We investigate compact

left multipliers on L∞0 (G)
∗, and prove that the existence of a compact left multiplier on L∞0 (G)

∗ is
equivalent to compactness of G. We also describe some classes of left completely continuous elements
in L∞0 (G)

∗.
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1. Introduction and preliminaries

Let G be a locally compact group, and L∞(G) be the usual Lebesgue space as defined
in [6] equipped with the essential supremum norm ‖ · ‖∞. Let also L∞0 (G) be the
subspace of L∞(G) consisting of all functions f ∈ L∞(G) that vanish at infinity; that
is, for each ε > 0, there is a compact subset K of G for which

‖ f χG\K ‖∞ < ε,

where χG\K denotes the characteristic function of G \ K on G. For an extensive study
of L∞0 (G) see Lau and Pym [9]; see also Isik et al. [8] for the compact group case.

Let L1(G) be the group algebra of G defined as in [6] equipped with the convolution
product ∗ and the norm ‖ · ‖1. Remark that L∞(G) is the continuous dual of L1(G)
under the usual duality. For any φ ∈ L1(G) and g ∈ L∞0 (G) we have

1
1
φ̃ ∗ g ∈ L∞0 (G),

where 1 denotes the modular function of G and

φ̃(x)= φ(x−1)
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for all x ∈ G; see [9, Proposition 2.7]. So, for every n ∈ L∞0 (G)
∗ and g ∈ L∞0 (G), we

may define the function ng ∈ L∞(G) by

〈ng, φ〉 :=

〈
n,

1
1
φ̃ ∗ g

〉
for all φ ∈ L1(G). It is also well known from [9] that the space L∞0 (G) is left
introverted in L∞(G); that is, for each n ∈ L∞0 (G)

∗ and g ∈ L∞0 (G), we have ng
∈ L∞0 (G). This lets us endow L∞0 (G)

∗ with the first Arens product ‘·’ defined by

〈m · n, g〉 = 〈m, ng〉

for all m, n ∈ L∞0 (G)
∗ and g ∈ L∞0 (G). Then L∞0 (G)

∗ with this product is a Banach
algebra; see [9].

Let M(G) denote the measure algebra of G as defined in [6] endowed with the
convolution product ∗ and the total variation norm ‖ · ‖. Then M(G) is the continuous
dual of C0(G), the space of all continuous functions on G vanishing at infinity. For
any φ ∈ L1(G) and g ∈ L∞0 (G) we have

1
1
φ̃ ∗ g ∈ C0(G);

so, for every µ ∈ M(G) and g ∈ L∞0 (G), we may define the function µg ∈ L∞(G) by

〈µg, φ〉 :=

〈
µ,

1
1
φ̃ ∗ g

〉
for all φ ∈ L1(G). It follows that µg ∈ L∞0 (G); in fact, µg = ng for all extensions
n ∈ L∞0 (G)

∗ of µ ∈ C0(G)∗. This enables us to define m · µ ∈ L∞0 (G)
∗ for all

m ∈ L∞0 (G)
∗ by

〈m · µ, g〉 = 〈m, µg〉

for all g ∈ L∞0 (G); in fact, m · µ= m · n for all extensions n ∈ L∞0 (G)
∗ of µ ∈

C0(G)∗.
For each φ ∈ L1(G), we may consider φ as a linear functional in L∞0 (G)

∗ defined
by the usual way. So, there is a linear isometric embedding of L1(G) into L∞0 (G)

∗.
Also, observe that φ · ψ = φ ∗ ψ for all φ, ψ ∈ L1(G). It is well known that L1(G) is
a closed ideal in L∞0 (G)

∗; see [9]. Furthermore, an easy application of the Goldstine’s
theorem shows that L1(G) is weak∗ dense in L∞0 (G)

∗. For any n in L∞0 (G)
∗, the map

m 7→ m · n is weak∗–weak∗ continuous on L∞0 (G)
∗. For an element m in L∞0 (G)

∗,
the map n 7→ m · n is not in general weak∗–weak∗ continuous on L∞0 (G)

∗ unless m is
in L1(G); see Lau and Ülger [10] for details. For each m, n ∈ L∞0 (G)

∗, there exist two
nets (φα) and (ψβ) in L1(G) such that φα→ m and ψβ→ n in the weak∗ topology
of L∞0 (G)

∗, and therefore

m · n = weak∗ − lim
α

weak∗ − lim
β
φα ∗ ψβ .
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This implies that the restriction map P : L∞0 (G)∗→ C0(G)∗ is a homomorphism. For
any m, n ∈ L∞0 (G)

∗ we have

m · n = m · P(n).

Let us recall that an element u ∈ L∞0 (G)
∗ is called a mixed identity if

φ · u = u · φ = φ

for all φ ∈ L1(G). Denote by 30(G) the nonempty set of all mixed identities u with
norm one in L∞0 (G)

∗, and note that u ∈30(G) if and only if it is a weak∗-cluster point
of an approximate identity in L1(G) bounded by one or, equivalently, an extension
of δe from C0(G) to L∞0 (G) with norm one, where δe ∈ M(G) denotes the Dirac
measure at the identity element e of G; furthermore, u ∈30(G) if and only if ‖u‖ = 1
and

m · u = m

for all m ∈ L∞0 (G)
∗; that is, u is a right identity for L∞0 (G)

∗ with norm one; see
Ghahramani, Lau and Losert [5].

Let A be a Banach algebra; a bounded operator T :A→A is called a left
multiplier if

T (ab)= T (a)b

for all a, b ∈A. For any a ∈A, the left multiplier b 7→ ab on A is denoted by λa ;
also, a is said to be a left completely continuous element of A if λa is a compact
operator on A. Right multipliers and right completely continuous elements are defined
similarly.

Compact left or right multipliers on the second dual algebras L1(G)∗∗ and M(G)∗∗

have been studied by Ghahramani and Lau in [2–4]. In the same papers, they have
obtained some results on the question of existence of nonzero compact left or right
multipliers on L1(G)∗∗. Losert [11] has proved, among other things, that if G is
noncompact, then there is no nonzero compact left multipliers on L1(G)∗∗ or M(G)∗∗.
The authors [12] have recently studied right completely continuous elements of
L∞0 (G)

∗; they proved that L∞0 (G)
∗ has a certain right completely continuous element

if and only if G is compact.
Our aim in this paper is to study compact left multipliers on L∞0 (G)

∗. In Section 2
we prove that G is compact if and only if there is a nonzero compact left multiplier
on L∞0 (G)

∗. In Section 3 we study some classes of left completely continuous
elements in L∞0 (G)

∗. Finally, in Section 4 we investigate the relation between compact
left multipliers on L∞0 (G)

∗ and its right annihilator.

2. The existence of compact left multipliers on L∞0 (G)∗

We commence this section with the main result of the paper. First, let us recall that
a linear functional k ∈ L∞0 (G)

∗ is said to have compact carrier K if

k(g)= k(χK g) for all g ∈ L∞0 (G).
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THEOREM 2.1. Let G be a locally compact group. Then the following assertions
are equivalent:

(a) G is compact;
(b) there is a nonzero compact left multiplier on L∞0 (G)

∗;
(c) L∞0 (G)

∗ has a nonzero left completely continuous element.

PROOF. (a) ⇒ (b). Suppose that G is compact and m is the normalized left Haar
measure on G. Then

m · n = 〈n, 1〉m

for all n ∈ L∞0 (G)
∗ and so m is a nonzero left completely continuous element of

L∞0 (G)
∗.

(b)⇒ (c). Suppose that there is a nonzero compact left multiplier T on L∞0 (G)
∗.

Choose n ∈ L∞0 (G)
∗ with T (n) 6= 0. Then λT (n) : L∞0 (G)

∗
→ L∞0 (G)

∗ is compact.
Now, choose an element u of 30(G). Since m · u = m for all m ∈ L∞0 (G)

∗, it
follows that

λT (n)(u)= T (n) · u = T (n) 6= 0.

That is, T (n) is a nonzero left completely continuous element of L∞0 (G)
∗.

(c)⇒ (a). First, let us remark from Section 1 that for each n ∈ L∞0 (G)
∗ and x ∈ G,

the element n · δx of L∞0 (G)
∗ is defined by

〈n · δx , g〉 = 〈n, δx g〉

for all g ∈ L∞0 (G), where δx ∈ M(G) denotes the Dirac measure at x ∈ G and
δx g ∈ L∞0 (G) is defined by

〈δx g, φ〉 =

(
1
1
φ̃ ∗ g

)
(x) (x ∈ G).

Now, suppose that L∞0 (G)
∗ has a nonzero left completely continuous element m

and G is not compact. Let C be the family of all compact subsets of G directed by
upward inclusion. For each C ∈ C, there is an element xC in G with xC 6∈ C . Choose
u ∈30(G) and note that (u · δxC )C∈C is a bounded net in L∞0 (G)

∗. Since m is a left
completely continuous element of L∞0 (G)

∗ there is a subnet (xC(γ ))γ∈0 of the net
(xC )C∈C such that

‖m · (u · δxC(γ ))− n‖→ 0

for some n ∈ L∞0 (G)
∗. However, m · u = m and so

m · (u · δxC(γ )) = (m · u) · δxC(γ )

= m · δxC(γ )

for all γ ∈ 0. This shows that

‖m · δxC(γ ) − n‖→ 0.
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This together with ‖m · δx‖ = ‖m‖ for all x ∈ G imply that

‖m‖ = ‖n‖.

It follows that there exists g ∈ L∞0 (G) with ‖g‖∞ ≤ 1 such that

|〈n, g〉|> ‖m‖/2;

we may also assume that
‖gχG\S‖∞ = 0

for some S ∈ C. Furthermore, by [9, Proposition 2.6], there is k ∈ L∞0 (G)
∗ with

compact carrier K such that
‖k − m‖< ‖m‖/4.

Now, K−1S ∈ C. Thus, there is γ0 ∈ 0 such that

K−1S ⊆ D and ‖m · δxD − n‖ ≤ ‖m‖/4,

where D = C(γ0). Then χK (δxD g)= 0 in L∞0 (G); indeed, for every φ ∈ L1(G) we
have

〈χK (δxD g), φ〉 = 〈δxD g, χKφ〉

=

〈
δxD ,

1
1
(χK φ̃) ∗ g

〉
= 0;

this is because xD 6∈ D and that (1/1)(χK φ̃) ∗ g is a continuous function with
compact support contained in K−1S. In particular,

〈k · δxD , g〉 = 〈k, δxD g〉

= 〈k, χK (δxD g)〉

= 0.

Consequently,

|〈n, g〉| ≤ |〈k · δxD − n, g〉|

≤ |〈(k − m) · δxD , g〉| + |〈m · δxD − n, g〉|

≤ ‖m‖/4+ ‖m‖/4

we have |〈n, g〉| ≤ ‖m‖/2, a contradiction. 2

For I ⊆ L∞0 (G)
∗, the left annihilator of I is denoted by lan(I ) and is defined by

lan(I )= {ι ∈ I | ι · I = {0}},

and the linear span of all products in I is denoted by I 2.
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COROLLARY 2.2. Let I be a right ideal in L∞0 (G)
∗ such that lan(I )= {0} or I 2 = I .

If G is not compact, then there is no nonzero compact left multiplier on I .

PROOF. Suppose that T : I → I is a compact left multiplier. Fix m, n ∈ I . Then
T (m · n) is a left completely continuous element of L∞0 (G)

∗; indeed, for each
k ∈ L∞0 (G)

∗ with ‖k‖ ≤ 1 we have n · k ∈ I , hence

T (m · n) · k = T (m) · n · k

= T (m · n · k)

∈ {T (ι) : ι ∈ I, ‖ι‖ ≤ ‖m‖ ‖n‖}.

Since G is not compact, it follows from Theorem 2.1 that T (m · n)= 0. So

T (m) · I = {0},

and thus T (m) ∈ lan(I ). Therefore, T = 0 if lan(I )= {0}. Similarly, T = 0 if
I 2 = I . 2

Let us remark that Corollary 2.2 is applicable to any closed right ideal I of L∞0 (G)
∗

with a bounded approximate identity; so, it improves the case I = L1(G) due to
Sakai [13, Theorem 1].

3. Left completely continuous elements of L∞0 (G)∗

We commence this section with the following result which is needed in the
following.

PROPOSITION 3.1. Let G be a locally compact group. Then the following assertions
are equivalent:

(a) L∞0 (G)
∗ has a bounded approximate identity;

(b) L∞0 (G)
∗ has an identity;

(c) L∞0 (G)
∗
= L1(G);

(d) G is discrete.

PROOF. (a) ⇒ (b). Suppose that (a) holds. Let (uγ ) be a bounded approximate
identity for L∞0 (G)

∗, and let u be a weak∗ cluster point of (uγ ) in L∞0 (G)
∗.

Without loss of generality, we may assume that uγ → u in the weak∗ topology. Let
n ∈ L∞0 (G)

∗. Then the weak∗ continuity of the map m 7→ m · n on L∞0 (G)
∗ shows

that
uγ · n→ u · n

in the weak∗ topology of L∞0 (G)
∗. However,

uγ · n→ n

in the norm topology of L∞0 (G)
∗. So u · n = n.
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Now, for every φ ∈ L1(G), using the weak∗ continuity of the map k 7→ φ · k on
L∞0 (G)

∗ we conclude that
φ · uγ → φ · u

in the weak∗ topology of L∞0 (G)
∗. This together with that (uγ ) is a bounded

approximate identity for L∞0 (G)
∗ imply that

φ · u = φ.

It follows from the weak∗ density of L1(G) in L∞0 (G)
∗ that n · u = n.

(b)⇒ (c). It is well known from [9] that

L1(G)=
⋂
{u · L∞0 (G)

∗
| u ∈30(G)}.

So, the result follows from the fact that30(G)= {u0}, where u0 is the identity element
of L∞0 (G)

∗; indeed, any u ∈30(G) is a right identity for L∞0 (G)
∗, and so

u0 = u0 · u = u.

(c)⇒ (d). Let e denote the identity element of G and u be an extension of δe from
C0(G) to an element u of L∞0 (G)

∗. By assumption, there is φ ∈ L1(G) such that

〈u, g〉 :=
∫

G
φ(x)g(x) dx (g ∈ L∞0 (G)).

In particular, δe is absolutely continuous with respect to left Haar measure on G, and
therefore G is discrete; see [6].

(d)⇒ (a). This is clear. 2

COROLLARY 3.2. Let G be a locally compact group. Then G is discrete if and only
if any left multiplier on L∞0 (G)

∗ is of the form λm for some m ∈ L∞0 (G)
∗.

PROOF. Let e be the identity element of G and δe be the Dirac measure at e. If G is
discrete and T is a left multiplier on L∞0 (G)

∗, then T = λT (δe) trivially.
Conversely, suppose that any left multiplier on L∞0 (G)

∗ is of the form λm for some
m ∈ L∞0 (G)

∗. Then there is δ ∈ L∞0 (G)
∗ such that λδ is the identity operator on

L∞0 (G)
∗. In particular, δ is a left identity for L∞0 (G)

∗. Since L∞0 (G)
∗ always has

a right identity, it follows that L∞0 (G)
∗ has an identity element. So, G is discrete

by Proposition 3.1. 2

It is obvious that T |L1(G) is a compact left multiplier on L1(G) if T is a compact left
multiplier on L∞0 (G)

∗. Our next result shows that this is an ‘if and only if’ statement
for certain left multipliers T on L∞0 (G)

∗.

PROPOSITION 3.3. Let G be a locally compact group and φ ∈ L1(G). Then φ is a left
completely continuous element of L1(G) if and only if φ is a left completely continuous
element of L∞0 (G)

∗.
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PROOF. Suppose that λφ : L1(G)→ L1(G) is compact. Let (eγ )γ∈0 be an
approximate identity for L1(G) bounded by one. Then for any n ∈ L∞0 (G)

∗ with
‖n‖ ≤ 1, we have

‖φ · n − φ ∗ (eγ · n)‖1 = ‖(φ − φ ∗ eγ ) · n‖1
≤ ‖φ − φ ∗ eγ ‖1.

Since φ ∈ L1(G), it follows that

φ ∗ (eγ · n)→ φ · n.

Thus

{φ · n : n ∈ L∞0 (G)
∗, ‖n‖ ≤ 1} ⊆ {φ ∗ ψ : ψ ∈ L1(G), ‖ψ‖1 ≤ 1}−‖·‖1 .

This together with the fact that λφ : L1(G)→ L1(G) is compact show that

{φ · n : n ∈ L∞0 (G)
∗, ‖n‖ ≤ 1}−‖·‖1

is compact in L1(G). Consequently λφ : L∞0 (G)
∗
→ L∞0 (G)

∗ is compact. 2

REMARK 3.4. The ‘only if’ part of Proposition 3.3 does not remain valid for all left
multipliers on L∞0 (G)

∗; it is not true even for m ∈ L∞0 (G)
∗ instead of φ ∈ L1(G).

In fact, let G be a locally compact group which is neither discrete nor compact,
and choose u ∈30(G). On the one hand, since G is not discrete, it follows from
Proposition 3.1 that there is n ∈ L∞0 (G)

∗ such that n 6= u · n. Set

m := n − u · n,

then λm |L1(G) is zero on L1(G) and, hence, compact. On the other hand, since G is not
compact, it follows from Theorem 2.1 that λm : L∞0 (G)

∗
→ L∞0 (G)

∗ is not compact.

In the following, P(G) denotes the set of all positive functions in L1(G).

COROLLARY 3.5. Let G be a locally compact group. Then the following assertions
are equivalent;

(a) G is compact;
(b) any φ ∈ L1(G) is a left completely continuous element of L∞0 (G)

∗;
(c) any φ ∈ P(G) is a left completely continuous element of L∞0 (G)

∗;
(d) L∞0 (G)

∗ has a nonzero left completely continuous element in P(G);
(e) L∞0 (G)

∗ has a nonzero left completely continuous element in L1(G).

PROOF. Suppose that G is compact. Then any φ ∈ L1(G) is a completely continuous
element of L1(G); see Akemann [1, Theorem 4]. This together with Proposition 3.3
imply that φ is a completely continuous element of L∞0 (G)

∗. That is (a) implies (b).
Also, the implications (b) implies (c) implies (d) implies (e) are trivial. Finally,
(e) implies (a) by Theorem 2.1. 2
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The right annihilator of L∞0 (G)
∗ is denoted by ran(L∞0 (G)

∗) and is defined by

ran(L∞0 (G)
∗)= {r ∈ L∞0 (G)

∗
| L∞0 (G)

∗
· r = {0}}.

Let us remark that ran(L∞0 (G)
∗) is the weak∗ closed ideal

ker(P)= {n − u · n | n ∈ L∞0 (G)
∗
}

in L∞0 (G)
∗ for all u ∈30(G); see Isik et al. [8, p. 139].

THEOREM 3.6. Let G be a locally compact group. Then any left completely
continuous element m of L∞0 (G)

∗ has the form m = φ + r for some φ ∈ L1(G) and
r ∈ ran(L∞0 (G)

∗).

PROOF. Let m be a left completely continuous element of L∞0 (G)
∗. Since L1(G) is

an ideal in L∞0 (G)
∗ and λm : L∞0 (G)

∗
→ L∞0 (G)

∗ is compact, it follows that λm |L1(G)

is a compact left multiplier on L1(G). Thus, there exists φ ∈ L1(G) with λm = λφ on
L1(G); see Akemann [1]. So, if we set

r := m − φ,

then r · L1(G)= {0} and, therefore,

P(r) ∗ L1(G) = P(r) ∗ P(L1(G))

= P(r · L1(G))= {0}.

Since P(r) ∈ M(G), it follows that P(r)= 0. That is, r ∈ ran(L∞0 (G)
∗). 2

As an immediate consequence of Proposition 3.3 and Theorem 3.6, we have the
following corollary.

COROLLARY 3.7. Let G be a locally compact group, and let m be a left completely
continuous element of L∞0 (G)

∗. Then the following statements hold:

(i) P(m) ∈ L1(G);
(ii) m − P(m) ∈ ran(L∞0 (G)

∗);
(iii) u · m = P(m) for all u ∈30(G);
(iv) P(m) is a left completely continuous element of L∞0 (G)

∗.

In the following, let P0(G) denote the set of all positive functionals on the C∗-
algebra L∞0 (G); also, let 10(G) denote the set of all nonzero multiplicative linear
functionals on L∞0 (G), and note that 10(G)⊆ P0(G). Before we present our next
result, let us recall from Theorem 2.1 and its proof that G is compact if and only if
L∞0 (G)

∗ has a nonzero left completely continuous element in P0(G).

COROLLARY 3.8. Let G be a locally compact group. Then the following assertions
are equivalent:
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(a) G is finite;
(b) any m ∈ L∞0 (G)

∗ is a left completely continuous element of L∞0 (G)
∗;

(c) any m ∈ P0(G) is a left completely continuous element of L∞0 (G)
∗;

(d) any m ∈10(G) is a left completely continuous element of L∞0 (G)
∗;

(e) L∞0 (G)
∗ has a left completely continuous element in 10(G).

PROOF. The implications (a) implies (b) implies (c) implies (d) implies (e) are trivial.
To complete the proof, suppose that there is m ∈10(G) such that λm : L∞0 (G)

∗
→

L∞0 (G)
∗ is compact. Then P(m) is a nonzero multiplicative linear functional on

the Banach algebra C0(G); indeed, m ∈ P0(G) and hence ‖P(m)‖ = ‖m‖ 6= 0 by
[9, Lemma 2.5]. So, there is an element x ∈ G such that P(m) is a nonzero scalar
multiple of the Dirac measure δx at x ; see, for example, [7, Exercise 20.52]. By
Corollary 3.7, P(m) ∈ L1(G) and so δx ∈ L1(G). This shows that G is discrete;
see [6]. Now, we only need to recall from Theorem 2.1 that G is compact.

4. Compact left multipliers on L∞0 (G)∗ and ran(L∞0 (G)∗)

Before we state our next result, we need an elementary lemma.

LEMMA 4.1. Let G be a locally compact group and T : L∞0 (G)
∗
→ L∞0 (G)

∗ be a left
multiplier. Then T (L1(G))⊆ L1(G) and T (ran(L∞0 (G)

∗))⊆ ran(L∞0 (G)
∗).

PROOF. For each φ, ψ ∈ L1(G), T (φ ∗ ψ)= T (φ) · ψ . Since L1(G) is an ideal in
L∞0 (G)

∗ and L1(G)2 = L1(G), we have T (L1(G))⊆ L1(G).
Now, let r ∈ ran(L∞0 (G)

∗). Then T (r) · φ = T (r · φ)= 0 for all φ ∈ L1(G).
Hence,

T (r) · L1(G)= {0}.

So P(T (r)) ∗ L1(G)= {0} and, hence, P(T (r))= 0; that is, T (r) ∈ ran(L∞0 (G)
∗). 2

For a subalgebra A of L∞0 (G)
∗, we denote by Mcl(A) the set of all compact left

multipliers on L∞0 (G)
∗ with

T (L∞0 (G)
∗)⊆ A;

note that T |A is a compact left multiplier on A for all T ∈Mcl(A).

PROPOSITION 4.2. Let G be a locally compact group. Then the sets Mcl(L1(G))
and Mcl(ran(L∞0 (G)

∗)) are closed ideals in Mcl(L∞0 (G)
∗).

PROOF. Clearly, Mcl(L1(G)) and Mcl(ran(L∞0 (G)
∗)) are closed subspaces of

Mcl(L∞0 (G)
∗). Let S ∈Mcl(L∞0 (G)

∗) and T ∈Mcl(L1(G)). Then S ◦ T is a
compact left multiplier on L∞0 (G)

∗. Now, if n ∈ L∞0 (G)
∗, then T (n) ∈ L1(G) and,

hence, T (S(n)) ∈ L1(G); moreover,

S(T (n)) ∈ L1(G)

by Lemma 4.1. Therefore, T ◦ S, S ◦ T ∈Mcl(L1(G)). The other case is similar.

We conclude the paper with the following result.
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THEOREM 4.3. Let G be a locally compact group. Then Mcl(L∞0 (G)
∗) is the Banach

space direct sum of Mcl(L1(G)) and Mcl(ran(L∞0 (G)
∗)).

PROOF. Let T ∈Mcl(L∞0 (G)
∗) and choose u ∈30(G). Define the function

T1 : L∞0 (G)
∗
→ L∞0 (G)

∗ by
T1(n) := u · T (n)

for all n ∈ L∞0 (G)
∗, and set

T2 := T − T1.

Clearly T1 and T2 are compact left multipliers on L∞0 (G)
∗.

Now, fix n ∈ L∞0 (G)
∗, and note that T (n) is a left completely continuous element

of L∞0 (G)
∗. Invoke Theorem 3.6 to conclude that T (n)= φ + r for some φ ∈ L1(G)

and r ∈ ran(L∞0 (G)
∗). We therefore have

u · T (n)= φ ∈ L1(G)

and
T (n)− u · T (n)= r ∈ ran(L∞0 (G)

∗),

where u ∈30(G). That is T1 ∈Mcl(L1(G)) and T2 ∈Mcl(ran(L∞0 (G)
∗)).

Finally, if T ∈Mcl(L1(G)) ∩Mcl(ran(L∞0 (G)
∗)), then for each n ∈ L∞0 (G)

∗ we
have T (n) ∈ L1(G) ∩ ran(L∞0 (G)

∗) and, hence, T (n)= 0. 2
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