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DIFFERENTIAL ALGEBRAIC FUNCTION FIELDS DEPENDING
RATIONALLY ON ARBITRARY CONSTANTS

KEIJI NISHIOKA

§1. Introduction

The general solution of an algebraic differential equation depends
on the initial conditions, though it is in general too difficult to make
explicit the shape of the relationship. Painlevé studied in [8] algebraic
differential equations of second order with the general solutions de-
pending rationally on the initial conditions and the solvability of such
equations. Giving the precise definition of the notion “rational depend-
ence on the initial conditions”, Umemura [10] revived and generalized
rigorously the discussion of Painlevé in the language of modern algebraic
geometry. The theorem of Umemura is as follows; Let K be a differ-
ential field extension of complex number field C generated by a finite
number of meromorphic functions on some domain in C. Let y be the
general solution of a given algebraic differential equation over K. Sup-
pose that y depends rationally on the initial conditions. Then it is
contained in the terminal K, of a finite chain of differential field exten-
sions: K = K, C K, C--- C K,, such that each K, is strongly normal
over K,_..

In [5] the author defined the following: Let K be an ordinary differ-
ential field of characteristic zero. A differential field extension L of K
is said to depend rationally on arbitrary constants if there exists a differ-
ential field extension M of K such that L and M are free over K and
LM = MC,,, where C,, denotes the field of constants of LM. Two
notions ‘“‘the rational dependence on the initial conditions” and “the ra-
tional dependence on arbitrary constants” are equivalent. The later
originates directly in the author’s [4] (see also Matsuda [3]). The objec-
tive of this paper is to prove the following:
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THEOREM. Let K be an algebraically closed ordinary differential field
of characteristic zero. Let R be a differential field extension of K generated
by a single element which is differentially algebraic over K. Then the
following are equivalent:

(i) Cr = Cyx and R depends rationally on arbitrary constants;

(ii) there exists a strongly normal extension of K which contains R.

This tells us that the length of the chain needed in the conclusion
of Umemura’s theorem is at most 2. It will be worthy to remark a well-
known fact that if K contains nonconstants any differential field exten-
sion of K that is a finitely generated field extension of K contains an
element y with R = K{y) (for instance see Ritt [9]).

The proof of Theorem will be divided into 4 steps. We utilize some
basic facts in Kolchin [2] without warning and discuss entirely from
differential-algebraic viewpoint.

§2. The proof of Theorem

The deduction of (i) from (i) is a straightforward result from Lemma
1 of [7] (see below). So it is sufficient to prove (i) under the condition
(ii). Let U be a universal differential field extension of K. For any in-
termediate differential field L between K and U we denote by C, the
field of constants of L. Here we recall the definition of strongly normal
extensions: A finitely generated differential field extension IV of K is
called a strongly normal extension of K if Cy = C; and there exists a
differential subfield M of U containing K such that M is differentially
isomorphic to IV over K, M and N are linearly disjoint over K and
MN = MC,, (cf. Proposition 1 of [1]). We extract Lemma 1 of [7] for
reader’s convenience:

LEMMA. Let L and M be two intermediate differential fields between
K and U. Suppese M is a finitely generated differential field extension of
L which is contained in LC,. Then M = LC,,.

Now let us return to the proof of our theorem. By assumption of
Theorem there is an element y of R with R = K{y) and tr.deg R/K is
finite. Assume (i). Then there exists a finitely generated differential
field extension E of K such that E and R are linearly disjoint over K
and ER = EC;;. We have generators e = (e;),.:<, of E over K: E = K{e).
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Step 1. There exists a finitely generated differential field extension
E, of K such that E, and R are linearly disjoint over K, C;, = Cy and

EIR = EICE1R'
Proof. Since y is in ER = ECy;; = K{e)Cy,, we have the repre-
sentation:

y =2 ax/3 b, 1=5j=Zq
where the a’s and b’s are elements of Cyg, the x’s are elements of K{e}

which are linearly independent over Cz; and b, does not vanish for some
i. Since a; and b, lie in ER, we have the representations:

aj= Zajhyh/}: bjh,yh, léhér
by = 2lcuyl2 dpnya, 1<h<r

where the y’s are elements of R which are linearly independent over K
and a,,, b, cj, dj, are elements of K{e} such that for any j there are
J» and j, with b;,d;;, + 0 and ¢, = 0 for some A. By w we denote the
wronskian of (x;). Then tbe linear independence of (x;) over constants
implies w # 0. Note that w is an element of K{e}. By Kolchin [2] there
exists a differential homomorphism ¢ of K{e} to U over K such that
#(b;,,d,;,) # 0 for any j, g(we,s) 0 and Cryep, = Cr. It is readily seen
from the universality of U that there exists a differential field extension
E, of K such that E, is differentially isomorphic to K{ge) and E, and
R are linearly disjoint over K. Then ¢ can be extended to a differential
homomorphism of R{e} to E,R over R. We denote this by the same
symbol ¢. Since ¢w # 0 we see (¢x,) are linearly independent over
constants. Noting also ¢b, is defined and nonzero because (y,) are linearly
independent over E; and gc;;, # 0 we have

$21byx; = 2. ¢bdx; # 0.
And
Y= ¢y = 2. da,px,[3. pb;¢x,
is contaired in E,Cy,; since ¢a, and ¢b, belong to Cg . Thus we con-

clude R is contained in E,C; and so E,R = E,Cy ;.

Step 2. There exists a finitely generated differential field extension
E, of K such that E, and R are linearly disjoint over K, Cy, = Cy, E,R
= E,Cz,rz and E, contains an element z which is a generic differential
specialization of y over K.
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Proof. Take a generic differential specialization z of y over K with
the property that K(z) and E,R are linearly disjoint over K. This is
possible according to the universality of U. Let L denote the algebraic
closure of K{z) in U. Then LE, and LR are linearly disjoint over L.
In fact L and E,R are linearly disjoint over K and so E,R and E,L are
linearly disjoint over E,. Hence R and LE, are linearly disjoint over K.
This implies our assertion. Clearly LE,R = LE,Cg,,. Similarly to Step 1
we can find a finitely generated differential field extension F of L such
that LR and F are linearly disjoint over L, C, = C, = C; and FR =
FC.,. Take a differential subfield F; of F which is a finitely generated
differential field extension of K and satisfies R = F,C;z. Then F, and R
are linearly disjoint over K, Cp, = C, and F\R = F,C,, by virtue of
Lemma. As E, we may take F;{(z). The verification of required prop-
erties is easy.

By the finite generatedness of E, Cy, is finitely generated over
Cx in the ordinary sense. Hence we have elements u = (v,),.,, with
Cp,n = Cx(u) and the representation:

y = HW/fw),
where f, and f are in E,fu], f + 0. We may write

U; = gg(y)/g(y) ’
where g, and g are in E,{y}, g #+ 0. By substitution we get

g(f(Wlf(w) = h(w/f(w),

where h is in E,Ju] and d is a natural number. Let X be the set of all
¢ in C% that are specializations of u over C, and V be the set of all ¢
in X with f(c)h(c) 0. Then X is an irreducible affine wvariety, V is
open and dense in X. In fact noting K is algebraically closed we see
C., = Cy is also algebraically closed. Hence

E2[u] = Ez ®0K CK[U] .

From this we have a representation fh = } a,p,, where the a, are in E,,
linearly independent over Cy, the p, are in Cg[u]. Using this representa-
tion we find that ¢ is an element of V is equivalent to that fh(c) # 0
and therefore that p,(c) 0 for some j. This shows V is open in X.
Denote by E, the differential field extension of K generated with z and
all y(c), ¢ being in V. Then E, is a differential subfield of E, with the
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finite transcendence degree over K since the generators are all differ-
entially algebraic over K and FE, is a finitely generated differential field
extension of K. The element y(c) of E, is a differential specialization of
y over K associated with the specialization ¢ of u over C;. Note that
any element ¢ of V is characterized by f(c) += 0, g(y(c)) + 0.

Step 3. E;R = E,Cy.

Proof. The field E (uw), the quotient field of E,®., Cxlu], is the
function field of the irreducible variety X’ determined from X by base
extension C, — E,. Let us show that V is dense in X’. Let ¢ be a
regular function on X’. Then we can express as ¢ = ), a;t;,q, in E,{;
in Ci[u], the a; being linearly independent over C,. For any ¢ in V we
have #(c) = > a;it(c). If t(c) =0 then t(c) =0 for all i. Each ¢, would
be identically 0 on X and hence 0 on X’. Thus { = 0 on X’. This shows
V is dense in X’. Let F be the algebraic closure of E, in E,, We re-
gard E, as a field with operators in the sense of [1], where as operators
we take Der (E,/E,). Then F is the field of constants of E, Since E,
and E,(u) are linearly disjoint over E,, we may set Du, = 0 for each i
and each derivative D in Der (E,/E,), and E,(u) becomes a field extension
of E(u) in the sense of [1]. For any D in Der (E,/E,) we have Dy(c) =0
and

f(©)Df\(c) — fe)Df(c) = 0

holds for each ¢ in V. From this and the fact V is dense in X’ it follows
fDf, — iDf =0

holds in E,(x). Thus Dy = 0 and hence y is in F(u) since F(u) is the
field of constants of the field E,(u) with operators Der (E,/E;) according
to Lemma 1 of [1]. Thus FR is included in FCg,, and by Lemma it fol-
lows FR = FC,z. We assume F is normal over E, by enlarging F if
necessary. We have C, = Cy recalling Cj, = C;. By defining ru, = u,
for each i and any ¢ of G(F/E,), the Galois group of F over E,, we find
F(u) is normal over E,(u) and the Galois group is identified with G(F/E,).
Now from 7zy(c) = ¥(c) € E, it follows

f©zfie) — filo)rfle) = 0

holds for any ¢ in V, hence
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fefi — fitf =0

holds in F(u) because V is dense in X’. This shows zy = y and y lies
in E,(w).

By Step 3 we may assume from the first that £ has the finite tran-
scendence degree over K, C; = C; and E has an element z which is a
generic differential specialization of y over K. Take an E, among such
E’s with the least transcendence degree over K. Define M from E, in
the same manner as we defined E, {rom E,. Then the degree of E, over
M is finite. We use the same notations such as u, f,, f, g, & Let F be
a normal algebraic extension of M which contains E,. As before we sup-
pose F(u) is normal over E,(v) and identify the Galois group G(F(uw)/E(u))
with G(F/F,). Then

y = Alf = F¥lF*,

where f¥ = f, [[cz1¢f, [* = [].of € Flu], < G(F/E,). Since f* is left in-
variant under any ¢ it is contained in M(u) and therefore in M[u]. This
is derived from the fact F and M(u) are linearly disjoint over M. By
MR = MCy, = M(u) it follows fi = yf* belongs to M[u]. Similarly we
obtain the representation:

u, = g,/lg = g¥lg*,

where gFf =g, [l.».78, 8* = [l.cge M{y}, re G(F/E,). And from the
fact F and M(u) = M{y} are linearly disjoint over M it follows that g*
and g¥ are contained in M{y}. By the definitions of f* and g* every
element ¢ of V is characterized by f*(c) = 0, g*(y(c)) #+ 0. Take a differ-
ential field extension IV of K such that N and M are differentially iso-
morphic and linearly disjoint over K and N contains R.

Step 4. N is a strongly normal extension of K.

Proof. There are a finite number of elements (c,); <» <» Of V for which
M=K{z,2, ,2,9,2, = ¥c,). We can write N=K{(y, 9%, ", Yns
where each y, is a generic differential specialization of z, over K. Since
N and M are linearly disjoint over K we see z, is a differential special-
ization of y, over M and y, is a differential specialization of y over M.
From g*(z,) #+ 0 we get g*(y,) #+ 0. Define v, = (v,,) by

Upy = g?(yh)/g*(yh) .
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Then (z,, ¢,) is a differential specialization of (y,, v,) over M and (¥, v,)
is a differential specialization of (y, u) over M. All v, are elements of
Cuqw- The equality yf* = fF implies y.f*(v,) = f#(v,) and so y, is con-
tained in M(v,). This derives MN = M(u, v, ---,v,) and completes the
proof of Theorem.
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