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Summary

Methods of genomic value prediction are reviewed. The majority of the methods are related to
mixed model methodology, either explicitly or implicitly, by treating systematic environmental
effects as fixed and quantitative trait locus (QTL) effects as random. Six different methods are
reviewed, including least squares (LS), ridge regression, Bayesian shrinkage, least absolute shrinkage
and selection operator (Lasso), empirical Bayes and partial least squares (PLS). The LS and PLS
methods are non-Bayesian because they do not require probability distributions for the data. The
PLS method is introduced as a special dimension reduction scheme to handle high-density marker
information. Theory and methods of cross-validation are described. The leave-one-out cross-
validation approach is recommended for model validation. A working example is used to
demonstrate the utility of genome selection (GS) in barley. The data set contained 150 double
haploid lines and 495 DNA markers covering the entire barley genome, with an average marker
interval of 2.23 cM. Eight quantitative traits were included in the analysis. GS using the empirical
Bayesian method showed high predictability of the markers for all eight traits with a mean accuracy
of prediction of 0.70. With traditional marker-assisted selection (MAS), the average accuracy of
prediction was 0.59, giving an average gain of GS over MAS of 0.11. This study provided strong
evidence that GS using marker information alone can be an efficient tool for plant breeding.

1. Introduction

The purpose of plant breeding is to improve the pro-
ductivity of agricultural crops per unit of farmland by
manipulating the genetic compositions of the target
populations. Since the origin of life, natural selection
has been constantly acting to produce the current di-
versity of living organisms on earth. Due to natural
selection, all species have more or less adapted to their
own local conditions. Agricultural crops have also
adapted to their own niches, but in this case the ad-
aptation has been directed by artificial selection im-
posed by humans. The key difference between natural
and artificial selection is that natural selection acts on
phenotypes of traits related to organismal fitness,
while artificial selection is based on specific pheno-
types of agronomic importance. More recently, the
efficiency of artificial selection can be increased by

incorporating genotypic information. This review will
focus on methods incorporating genotypic infor-
mation for plant breeding. Unlike phenotypic data,
genotypic data are not subject to changes due to en-
vironmental errors and more directly related to the
target genes for the traits of interest. With high-
density marker information, the genotypes of all
quantitative trait loci (QTLs) are partially or fully
observed. Selection of plants using genome-wide
QTLs can be more efficient than most other methods
of selection. Such a genome selection (GS) approach
is the state-of-art breeding technology in all plant
species. The following few sections will briefly review
the history of selection procedures and the application
of marker information for facilitating plant breeding.

(i) Phenotypic selection

Phenotypic selection is the simplest way to improve
the productivity of crops. By definition, the criterion
of phenotypic selection is the phenotypic value of a
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desired trait. The selection response is proportional
to the heritability of the target trait and the selec-
tion intensity, as indicated by the breeders’ equation
(Falconer & Mackay, 1996; Lynch & Walsh, 1998)

R=h2isP, (1)

where h2, i and sP are the heritability, the selection
intensity and the phenotypic standard deviation of the
trait, respectively. With the advent of modern tech-
nologies, other information has also been used to
select superior plants for breeding. However, pheno-
typic selection remains an important criterion in plant
breeding. Experienced breeders always choose plants
with desired morphological characters to breed, pro-
vided the plants have passed all other criteria of
selection.

(ii) Best linear unbiased prediction (BLUP)

Any information related to the genetic constitution
of the candidate plants may be used to predict the
breeding values of candidates. The heritability of the
trait is an indication of the extent to which the in-
dividual’s own phenotypic value predicts its breeding
value, the prediction being more accurate for traits
with higher heritability than traits with lower herit-
ability. Therefore, heritability of a trait is the accuracy
of breeding value prediction using phenotypic infor-
mation as the selection criterion. Phenotypic values of
other plants who are genetically related to the candi-
dates (e.g. parents, progeny and siblings), can also be
used to predict the breeding values of the candidate
plants because relatives and the candidate plant share
common genetic material (Fisher, 1918). This method
of selection is called pedigree selection (Chahal &
Gosal, 2002). Prior to the genome era, the combi-
nation of pedigree analysis with phenotypic selection
was the most widely utilized plant breeding method
(Moose & Mumm, 2008).

Sib analysis and progeny testing are special forms
of pedigree analysis because both take advantage of
information from relatives. Plants are related in many
different ways and the above two types of pedigree
analyses only count for a subset of these relatives. The
optimal way of pedigree analysis is to include all re-
latives. This requires a way to handle heterogeneous
genetic relationship among plants in the breeding
population. Data collected from experiments are
subject to unexpected environmental and human
errors, leading to missing values for some plots.
Therefore, even a well-balanced experimental design
may produce unbalanced data. The ordinary least
squares method is incapable of dealing with the het-
erogeneous genetic relationship and the unbalanced
data. The BLUP (Henderson, 1950) emerged as the
ideal tool for plant and animal breeders to solve both
problems.

Let y be a vector of phenotypic values for n in-
dividuals in a population. The linear mixed model for
y can be described as

y=Xb+Zc+", (2)

where b and X are the fixed effects and the design
matrix of the fixed effects, c and Z are the random
effects and the corresponding design matrix for the
random effects and e is the residual error vector with
an assumed N(0,R) distribution, where R is an nrn
covariance matrix for the residual errors. The fixed
effects represent systematic effects that should be
controlled to reduce the residual errors. The random
effects are defined as the genetic effects for plants in-
cluded in the data and/or plants not included in
the data but which contribute to the population
as ancestors. Let us assume cyN(0,AsA

2 ), where sA
2

is the additive genetic variance and A is the additive
relationship matrix for all the plants contributing
to the random effect c. The predicted breeding value
for a candidate plant is defined as a linear com-
bination of ĉc, say ĵj=LTĉc, where ĉc is the BLUP
of c estimated from the mixed model equation
(Henderson, 1975)

XTRx1X XTRx1Z

ZTRx1X ZTRx1Z+Ax1=s2
A

" #
b̂b

ĉc

" #
=

XTRx1y

ZTRx1y

� �
:

(3)

This mixed model equation explains why BLUP can
handle unbalanced data and deal with hetero-
geneous relationships. The mixed model uses the
general linear model (dummy variable) notation to
represent the analysis of variance (ANOVA) model
and connects the model effects with the data
through the design matrices, X and Z. These design
matrices represent the characteristics of the exper-
imental design and apply to all experiments, re-
gardless of whether or not the data are balanced.
The additive relationship matrix (A) is twice the
kinship matrix (H), A=2H, and it represents any
arbitrary kinships among the plants contributing c.
Note that the kinship matrix contains all pair-wise
co-ancestry coefficients among the plants (see next
section for the definition of co-ancestry coefficient).
If the plants are classified into full-sib or half-sib
families, the A matrix has a clear pattern that allows
simplified algorithms to be used to handle calcula-
tions involving it. If all plants are independent,
A=I, and the mixed model remains valid. Efficient
algorithms are available to estimate the variance
components and predict c (Calvin, 1993). Note that
the information required to perform BLUP includes
the phenotypic values (y) and the kinships of the
plants (H).
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(iii) Selection using realized kinship

What does the kinship matrix H mean? How useful
is it in predicting the breeding values of plants? For
any two individuals, i and j, the kinship (also called
co-ancestry coefficient) is denoted by Hij and thus
Aij=2Hij. Technically, there are two explanations for
Hij : (1) At any given locus, Hij represents the prob-
ability that a randomly sampled allele from i is
identical-by-descent (IBD) to a randomly sampled
allele from j. Therefore, it is the ‘average’ IBD value
at this locus for all pairs of individuals with the same
relationship. (2) Considering the same pair of in-
dividuals,Hij also represents the ‘average’ IBD values
for individual i and j across all loci in the genome. The
second explanation is more useful in the mixed model
equation because it complies with the infinitesimal
model of quantitative traits (Fisher, 1918). In the
genome era, genome-wide markers can be used to es-
timateH. The estimatedH using molecular markers is
called the realized kinship, denoted by ~HH. When the
marker density is infinitely high and the genome size is
infinitely large, the realized kinship is identical to the
theoretical kinship ~HH=H. Therefore, if H is known
for all individuals (pedigree information is available),
the realized kinship does not help at all in plant
breeding.

Three special situations make the realized kinship
useful. (1) If pedigree information is unavailable, then
we can use genome-wide markers to infer the realized
kinship and use ~HH in the mixed model equation to
perform BLUP (Queller & Goodnight, 1989; Lynch &
Ritland, 1999). (2) If a quantitative trait is controlled
by loci with heterogeneous effects (violating the in-
finitesimal model), the realized kinship estimated only
from these loci with large effects can improve the ac-
curacy of the BLUP prediction. This condition is
rarely, if ever met because it depends on knowledge of
the genetic architecture of the trait. (3) For plants
with small genomes, the realized kinship should be
different from the expected kinship. Sib analysis using
the realized kinship may allow the separation of the
genetic variance from the common environmental
variance because the realized kinship varies across
sibling pairs whereas the expected kinship is a con-
stant for all sibling pairs (Visscher et al., 2006).
Common environmental effects in plants are not as
common as in animals and humans, but they may
exist to some extent.

(iv) Marker-assisted selection (MAS)

MAS emerged as an efficient method to improve the
accuracy of selection in plant breeding programs
(Dudley, 1993). Contrary to BLUP, the success of
MAS relies on monogenic or oligogenic models
(Lamkeya & Lee, 1993). The monogenic model means

that the variance of a trait is controlled by the segre-
gation of a single major gene. If the trait is controlled
by a few major genes, the model is said to be oligo-
genic. MAS depends heavily on the result of QTL
mapping, especially interval mapping or single marker
analysis. The genetic model for interval mapping is

y=Xb+Wkak+", (4)

where ak is the effect of QTL k and Wk is a genotype
indicator variable. The subscript k means that all
markers have been evaluated and the kth marker
happens to have the largest effect. The molecular
breeding value for individual j is

ŷyj=Xj b̂b+Wjkâak, (5)

where âak is the estimated QTL effect. Selection can be
performed using this molecular breeding value. The
MAS scheme is effective under the monogenic model.
Lande & Thompson (1990) realized that if the trait is
controlled by one major gene plus numerous genes
with small effects, the observed phenotype for indi-
vidual j should also be used to predict the breeding
value for the candidate. Therefore, they proposed a
newMAS scheme through an index that combines the
molecular breeding value with the observed pheno-
type. The index is

Ij=b1yj+b2ŷyj, (6)

where weights, b1 and b2, are obtained using the
standard procedure of index selection (Smith, 1936;
Hazel, 1943). The polygenic information is contained
in y, although not explicitly expressed. The molecular
breeding value under the oligogenic model is

ŷyj=Xj b̂b+
Xp
k=1

Wjkâak, (7)

where p is the number of major genes detected via
QTL mapping and is usually a small number, typi-
cally less than five. Again, the Lande & Thompson
(1990) index is a better choice due to its ability to
capture the polygenic effect through yj.

(v) Genome prediction under the Q+K model

Association mapping deals with randomly sampled
individuals from a target population. Such a popu-
lation usually has a heterogeneous background, e.g. a
population with explicit or hidden structures.
Pritchard et al. (2000a, b) used the following model to
describe the phenotype:

y=Xb+Qd+Wkak+": (8)

The additional term d represents the structural effects
and Q is determined by the population structure.
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Such a model is called the Q model (Thornsberry et
al., 2001; Camus-Kulandaivelu et al., 2006). Yu et al.
(2006) extended the Q model by adding a polygenic
component using the realized kinship ~HH. The modi-
fied model is

y=Xb+Qd+Wkak+c+", (9)

where c is the polygenic effect with an assumed N
(0, ~AAs2

A) distribution and ~AA=2 ~HH is estimated from
genome-wide marker information. This model is
called the Q+K model, where Q stands for the
population structure and K stands for the kinship
(Yu et al., 2006). Since A is not available in wild
populations and populations without recorded his-
tory, ~AA is always needed. In the case where pedigree
information is known, the true A should be used.
Using ~AA while A is already available will do more
harm than good to the association study.

(vi) Whole GS

Whole GS is a method using genome-wide high-
density markers in a different way from the marker-
based analyses described above (Meuwissen et al.,
2001; Xu, 2003). Different markers are treated separ-
ately rather than pooled together as a polygene. The
GS model is

y=Xb+
Xp
k=1

Zkck+", (10)

where the number of markers p can be extremely large
to cover the entire genome rather than a few detected
from interval mapping. Each marker effect is assumed
to be N(0,sk

2) distributed with a marker-specific
variance. Putting all marker effects in a single vector
c={ck}k=1

p and letting Z={Zk}k=1
p be the genotype

indicator variable array for all markers, the above
model can be rewritten as

y=Xb+Zc+", (11)

where cyN(0,G) and G=diag{sk
2}. The correspond-

ing mixed model equation is

XTRx1X XTRx1Z
ZTRx1X ZTRx1Z+Gx1

� �
b̂b
ĉc

� �
= XTRx1y

ZTRx1y

� �
:

(12)

The estimated breeding value for individual j is

ŷyj=Xjb̂b+
Xp
k=1

Zjkĉck: (13)

The difference between this model and the models
described previously is that no polygenic effects are
included because they have been absorbed by the

genome-wide markers. As a result, pedigree infor-
mation is no longer relevant.

2. Methods of genome selection

(i) LS method

Let us reintroduce the model here for the LS method:

y=Xb+
Xp
k=1

Zkck+", (14)

where p is the number of markers included in the
model. This time p<n, where n is the sample size. This
constraint is needed because LS solution of the para-
meters requires the existence of (ZTRx1Z)x1. When
pon, the ZTRx1Z matrix is uninvertable. The LS
solution for the parameters is through solving the
following normal equation:

XTRx1X XTRx1Z
ZTRx1X ZTRx1Z

� �
b̂b
ĉc

� �
= XTRx1y

ZTRx1y

� �
: (15)

Note that ck is treated as a fixed effect and no distri-
bution is assigned to it. The question is how to deal
with the high-density markers of the whole genome.
The answer is to adopt a variable selection scheme to
eliminate markers with small effects, so that p is small
enough to be manageable. Forward selection is a
reasonable approach for selecting the markers. The
criterion for marker inclusion is quite arbitrary but
should not be too stringent. Professional computer
software is available to perform forward selection,
such as the REG and GLMSELECT procedures in
SAS. The latter is a more efficient version of model
selection and can deal with classification variables.
The program also provides an option to evaluate the
model through cross-validation (described later).

The LS method alone (without variable selection) is
not a choice for genome prediction because the con-
straint of p<n is rarely met for a population with a
high-density marker map. It can be useful to re-
evaluate the effects of markers that are selected using
other variable selection procedures, e.g. Lasso. In
fact, if p (the number of selected markers) is much
smaller than n, the LS method is preferred due to the
best linear unbiased property of the method.

(ii) Ridge regression

Ridge regression (Hoerl & Kennard, 1970) can relax
the restriction of p<n to a certain degree. It uses the
same linear model given in eqn (14), but adds a small
positive number l to the corresponding diagonal el-
ements of the normal equation:

XTRx1X XTRx1Z
ZTRx1X ZTRx1Z+Il

� �
b̂b
ĉc

� �
= XTRx1y

ZTRx1y

� �
, (16)
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where I is an identity matrix with the same dimension
as ZTRx1Z. Ridge regression is also called shrinkage
analysis with a common shrinkage factor l for all re-
gression coefficients. This shrinkage factor will cause
biased estimation of the regression coefficients, but
the small bias is paid off with reduced estimation er-
rors for the parameters. The shrinkage factor must be
provided by the investigators a priori or inferred em-
pirically from the data (Draper & Smith, 1998). The
REG procedure in SAS has a Ridge option to per-
form ridge regression analysis.

A more rigorous way to determine l is through
Bayesian analysis because ridge regression has a
Bayesian analogy. If we assign each regression co-
efficient to a normal prior, ckyN(0,Q2),8k=1, …, p,
where Q2 is a common prior variance, we obtain l=1/
Q2. Since Q2 can be estimated from the data under the
mixed model framework, we have l̂l=1=’̂’2, provided
that ’̂’2 is the estimated variance component. The
MIXED procedure in SAS is perhaps the most ef-
ficient program to perform variance component
analysis.

The common shrinkage prior can increase p indefi-
nitely by increasing l. However, as l grows, the de-
gree of shrinkage becomes stronger and eventually
all regression coefficients are shrunk to zero. Al-
though the model can handle an arbitrarily large p by
further shrinking the regression coefficients, a model
with all regression coefficients infinitely small is not
desirable, as such a model will not have any ability to
predict the phenotype. An optimal shrinkage scheme
is one that can selectively shrink the regression coef-
ficients. Markers with small or no effects should be
severely penalized whereas those with large effects
should not be shrunk at all. The following sections
provide a few common procedures with the selective
characteristics. Any one of them is acceptable as a
tool for GS.

(iii) Bayesian shrinkage

The Bayesian shrinkage analysis uses prior
cyN(0,G), where G=diag{sk

2} are marker-specific
prior variances. The mixed model equation
(Henderson, 1975),

XTRx1X XTRx1Z
ZTRx1X ZTRx1Z+Gx1

� �
b
c

� �
= XTRx1y

ZTRx1y

� �
(17)

is used to derive the posterior distribution for b and c.
Robinson (1991) showed that the posterior distri-
bution for b is

p(bj � � � )=N(bjmb,Vb), (18)

where

mb=[XT(ZGZT+R)x1X]x1XT(ZGZT+R)x1y (19)

and

Vb=[XT(ZGZT+R)x1X]x1: (20)

Conditional on b, the posterior distribution for c is

p(cj � � � )=N cjmc,Vc

� �
, (21)

where

mc=(Gx1+ZTRx1Z)x1ZTRx1(yxXb) (22)

and

Vc=(Gx1+ZTRx1Z)x1: (23)

Therefore, both b and c are sampled from their per-
spective normal posterior distributions in the Markov
chain Monte Carlo (MCMC)-implemented Bayesian
shrinkage analysis.

Let us assume that the covariance matrix of the
residual errors takes the simplified form R=Is2,
where s2 is the error variance. Assigning a scaled
inverse chi-square distribution to s2, i.e.
s2yInvxx2(t,v), the posterior distribution for s2 re-
mains scaled inverse chi-square,

p(s2j � � � )=Invxx2(s2jt+n,v+SS), (24)

where

SS=(yxXbxZc)T(yxXbxZc): (25)

The error variance s2 can be sampled from p(s2|…) in
the MCMC sampling process.

The Bayesian shrinkage analysis differs from
the mixed model variance component analysis in
that sk

2 is further assigned by a scaled inverse chi-
square distribution sk

2yInvxx2(t,v), where t and v
are hyper parameters provided by the investiga-
tors. Conditional on ck, the posterior distribution for
sk
2 is

p(s2
kj � � � )=Invxx2(s2

kjt+1,v+c2
k): (26)

When (t,v)=(0,0), the prior for sk
2 becomes 1/sk

2 , an
improper prior. Theoretically, this prior may cause
poor mixing of the Markov chain (ter Braak et al.,
2005), but in reality, it usually produces satisfactory
results. The uniform prior of sk

2 corresponds to
(t,v)=(x2,0), which generates results similar to the
maximum-likelihood analysis.

The Bayesian shrinkage method has been in-
corporated into the QTL procedure in SAS (Hu
& Xu, 2009). PROC QTL is a user-defined SAS pro-
cedure. Users need a regular SAS license and
the PROC QTL software (separate from the Base
SAS) to run the QTL procedure. Once the QTL soft-
ware is installed, users can call the QTL procedure
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the same way as calling other built-in SAS proce-
dures.

(iv) Lasso and related methods

(a) Lasso

The least absolute shrinkage and selection operator
(Lasso) was proposed by Tibshirani (1996) to handle
oversaturated regression models. It is a penalized re-
gression analysis with solution of the parameters ob-
tained via

cLasso= argmin
c

yx
Xp
k=1

Zkck

 !T"

r yx
Xp
k=1

Zkck

 !
+l

Xp
k=1

jckj
#
,

(27)

where l>0 is the shrinkage or penalization factor.
Note that b disappeared from the model, which is
accomplished via centralization and rescaling of y
and Z. If there is only one intercept in the model
(b is a scalar), the standardization is obtained by yj=
(yj*x�yy*)=s* and Zjk=(Zjk

*x �ZZk
*)=Sk

*, where the vari-
ables with a superscript * are the original variables
before the standardization. Such a simple standardi-
zation scheme is not available in general. A special
treatment is required for a general Xb. One can adopt
the procedure for removal of Xb in the restricted
maximum likelihood REML method (Patterson &
Thompson, 1971). In this procedure, we find a matrix
T=subset[IxX(XTX)x1XT] so that

TX=subset[IxX(XTX)x1XT]X

=subset[XxX(XTX)x1XTX]=0:
(28)

We define the model with the original data (before
standardization) by

y*=Xb+
Xp
k=1

Zk
*ck+"* (29)

and multiply both sides of the equation by matrix T
to obtain

Ty*=TXb+
Xp
k=1

TZk
*ck+T"*: (30)

Let y=Ty*, Zk=TZk* and e=Te*. We now have

y=
Xp
k=1

Zkck+" (31)

a model with b completely removed. The subset can
be chosen as any nxq independent rows of matrix
IxX(XTX)x1XT (Harville, 1977). The current Lasso
method does not have such a general treatment. The

optimal way to handle the general situation is to
modify the Lasso equation using

cLasso= argmin
c

yx
Xp
k=1

Zkck

 !T

Sx1

"

r yx
Xp
k=1

Zkck

 !
+l

Xp
k=1

jckj
#
,

(32)

where S=var(")=var(T"*)=TRTT.
Fast algorithms are available and have been

implemented in various software packages. The least-
angle regression (LARS) program can perform
the Lasso analysis (Efron et al., 2004). The
GLMSELECTprocedure in SAS also has an option to
provide Lasso variable selection. The Lasso algorithm
estimates all regression coefficients, but at least nxp
coefficients will have estimated values of exactly zero.
Therefore, Lasso is also a variable selection procedure.

(b) EM Lasso

Let us reintroduce the linear model here,

y=Xb+
Xp
k=1

Zkck+", (33)

where eyN(0,Is2) and thus y � N(Xb+Pp
k=1 Zkck, Is

2). Let b be assigned a uniform prior
and the prior for each ck is

p(ck)=Laplace(ckjl)=
l

2
exp xljckjð Þ: (34)

The joint log likelihood function of h={b,c} is

L(h)=x
1

2s2
Xb+

Xp
k=1

Zkck

 !T

Xb+
Xp
k=1

Zkck

 !

xl
Xp
k=1

jckj+const,
(35)

where

const=xn ln (s2)=2+n ln (l=2): (36)

Multiplying both sides of the equation by 2s2, we have

2s2L(h)=x Xb+
Xp
k=1

Zkck

 !T

Xb+
Xp
k=1

Zkck

 !

x2s2l
Xp
k=1

jckj+const: (37)

Redefining the shrinkage factor as l*=2s2l, we now
have the following function to maximize:

hLasso= argmax
h

x Xb+
Xp
k=1

Zkck

 !T"

r Xb+
Xp
k=1

Zkck

 !
xl*

Xp
k=1

jckj
#
,

(38)
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where hLasso={bLasso,cLasso} and cLasso is the Lasso
estimate of the QTL effects. Since

p(ck)=
Z
s2
k

N(ckj0, s2
k)Expon(s

2
kjl)

=Laplace(ckjl)=
l

2
exp (xljckj),

(39)

we have an alternative way to achieve the Lasso
estimates of the parameters through the hierarchical
model, ckyN(0,sk

2) and sk
2yExpon(l). Details of the

hierarchical model can be found in Park & Casella
(2008). Therefore, given G=diag{sk

2}, the mixed
model equation applies,

XTRx1X XTRx1Z
ZTRx1X ZTRx1Z+Gx1

� �
b
c

� �
= XTRx1y

ZTRx1y

� �
(40)

from which the posterior mean and posterior variance
for each component of h can be found. Let E(ck|…)
and var(ck|…) be the posterior mean and posterior
variance for ck and E(ck

2 |…)=E(ck|…)+var(ck
2 |…),

the M-step of the EM estimate for ck is

s2
k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+4l2E(c2

kj � � � )
q

x1

2l2 : (41)

The E-step is represented by calculating E(ck
2|…).

The residual error variance is obtained by

s2=
1

n
(yxXb)T yxXbx

Xp
k=1

ZkE(ckj � � � )
 !

: (42)

The EM Lasso algorithm has been coded in a SAS/
IMLprogram (Xu, 2010) and can be downloaded from
our personal website (http://www.statgen.ucr.edu).

(c) Bayesian Lasso

Bayesian Lasso (Park & Casella, 2008) is an MCMC-
implemented Bayesian version of the Lasso pro-
cedure. It has been applied to QTL mapping by Yi &
Xu (2008). The same hierarchical prior in the EM
Lasso is used for the MCMC-implemented Lasso
algorithm. In addition, the square of l is further as-
signed a Gamma prior, l2yGamma(a,b). The sam-
pling process is the same as that described in the
Bayesian shrinkage section for b, c and s2. The con-
ditional posterior distribution for nk=1/sk

2 is the in-
verse Gaussian, i.e.

p(nkj � � � )=Inv-Gauss nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2s2=c2

k

q
, l2

����
��

(43)

and the shrinkage factor l2 has a Gamma posterior
distribution,

p(l2j � � � )=Gamma l2 p+a,
Xp
k=1

s2
k=2+b

�����
 !

: (44)

The main advantage of the Bayesian Lasso over the
original Lasso method is that l does not have to be
predetermined; rather it can be treated as a variable
subject to Monte Carlo sampling. Bayesian Lasso for
QTL mapping has been implemented in the R pro-
gram (Yandell et al., 2007).

(v) Empirical Bayes

Empirical Bayes is a method to incorporate a data-
estimated prior distribution (Casella, 1985). Xu
(2007) first adopted the empirical Bayesian method to
map QTL. The linear model is rewritten as

y=Xb+f, (45)

where

f=
Xp
k=1

Zkck+": (46)

The expectation and variance–covariance matrix for
the data are E(y)=Xb and

V=
Xp
k=1

ZkZ
T
ks

2
k+Is2: (47)

With the scaled inverse chi-square distribution for
each sk

2yInvxx2(t,v), the log likelihood function for
b, G and s2 is

L(G)=x
1

2
ln jVjx 1

2
(yxXb)TVx1(yxXb)

x
1

2
(t+2) ln jGjxv

2
tr(Gx1): (48)

Note that this likelihood function does not involve c,
which is integrated out. An algorithm has been de-
veloped to estimate G, denoted by ~GG. With the G
matrix in the prior replaced by the data-estimated
value, c � N(0, ~GG), the mixed model equation,

XTRx1X XTRx1Z
ZTRx1X ZTRx1Z+ ~GGx1

� �
b̂b
ĉc

� �
= XTRx1y

ZTRx1y

� �
(49)

is then used to estimate the QTL effects in a single step
without iterations. The empirical Bayesian method
for QTL mapping has been incorporated into the
QTL procedure in SAS (Hu & Xu, 2009).

(vi) PLS

PLS (Wold, 1973) is used to find the fundamental re-
lationship between two matrices (Z and Y), and is a
latent variable approach for modelling the covariance
structures in the two spaces. The Z matrix in QTL
analysis is an nrp matrix determined by marker
genotypes. The Y matrix is an nr1 vector for the
phenotypes of a quantitative trait. In general, PLS can
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handle multiple traits, i.e., Y can be an nrq matrix
for q traits. The PLS method will try to find the mul-
tidimensional direction in the Z space that explains
the maximum multidimensional variance in the Y
space. PLS regression is particularly suited when the
matrix of predictors has more variables than the
number of observations, p>n, and when there is
multicollinearity among the Z values. In contrast,
standard regression will fail in these cases. In this
section, we review the special case when Y is a vector.
Technical details about PLS can be found in numer-
ous articles (Dijkstra, 1983; de Jong, 1993; Lindgren
et al., 1993) and books (Abdi, 2003). The method de-
scribed here closely follows Boulesteix & Strimmer
(2007).

Like the original Lasso method, the data need to
be standardized prior to the analysis. The model for
the standardized data is y=Zc+e. PLS constructs an
nrc latent components matrix as a linear transform-
ation of Z, i.e. T=ZW, where W is a prc matrix of
weights and c<p is the number of latent variables
provided by the investigators. The ith column of
matrix T is

Ti=W1iZ1+W2iZ2+ � � �+WpiZp, 8i=1, . . . , c:

(50)

The high-dimensional Z matrix is now projected to
the low-dimensional T matrix. We need to find the W
matrix using a way satisfying the special constraints
described below. Let us assume that we have already
found matrix W. The next step is to perform linear
regression of Y on T, as

y=Tg+"=ZWg+", (51)

where g is a cr1 vector of the regression coefficients
of y on T. We now put the two models together,

y=Zc+"
y=ZWg+"

	
(52)

and conclude that c=Wg. Therefore, given W and
T=ZW, we can perform multiple regression for
y=Tg+e with the LS solution

gLS=(TTT)x1TTy=(WTZTZW)x1WTZTy: (53)

The LS solution of g is then converted into the PLS
estimate of c,

cPLS=WgLS=W(WTZTZW)x1WTZTy: (54)

This approach is much like principal component
analysis (PCA), but the way to derive the W matrix is
different. In PCA, the latent matrix T is found only by
maximizing the variances in the predictors Z and ig-
noring the Y matrix. In the PLS method, the latent
matrixT is found by taking into account bothZ andY.

Let Wi and Wj be the ith and jth columns of matrix
W for i<j. The corresponding latent variables are
Ti=ZWi and Tj=ZWj. Three quantities are required
to derive the W matrix, which are

cov(Ti, y)=cov(ZWi, y)=
1

n
WT

i Z
Ty,

var(Ti)=var(ZWi)=
1

n
WT

i Z
TZWi,

cov(Ti,Tj)=cov(ZWi,ZWj)=
1

n
WT

i Z
TZWj:

(55)

The columns of matrix W are defined such that the
squared sample covariance between y and Ti is maxi-
mal, under the restriction that the latent components
are mutually uncorrelated. Moreover, the variance of
the latent variance is constrained to have a unity value.
Mathematically, the solution for W is obtained as

Wi= argmax
Wi

cov(Ti, y)rcov(y,Ti)½ �

= argmax
Wi

(WT
i Z

TyyTZWi)
(56)

subject to constraints

var(Ti)=WT
i Z

TZWi=1,
cov(Ti,Tj)=WT

i Z
TZWj=0:

	
(57)

The maximum number of latent components which
have non-zero covariance with Y is cmax=min(n,p).
The weight vector Wi is computed sequentially with
the order of W1,W2,…,Wc, where c is provided by the
users. Software packages are available for PLS. The
most comprehensive one is the PLS procedure in SAS.

PLS has been applied to GS using simulated data
(Solberg et al., 2009) and SNP data in dairy cattle
(Moser et al., 2009). These authors found that the
prediction accuracy of PLS is comparable to the
Bayesian method. There are fewer reports of PLS
application to genomic value prediction than the
Bayesian method. More studies on this topic are ex-
pected to appear soon in the literature. The earliest
report of the application of PLS to quantitative gen-
etics was the updated index selection procedure by Xu
& Muir (1992). The authors did not explicitly state
that the method is PLS, but the approach they used to
find the weights of the updated selection indices is
exactly the same as the PLS. Xie & Xu (1997) ex-
tended the PLS method to restricted multistage index
selection. Both studies gave the expressions of the
weights along with the detailed description of the
mathematical derivation. The constraints given in eqn
(57) are adopted from Xu &Muir (1992) and they are
different from the ones used in the SAS/PLS pro-
cedure. The PLS in SAS uses Wi

TWi=1 as a con-
straint, instead of Wi

TZTZWi=1. The final W
matrices obtained using the two constraint systems
are different, but the prediction of the genetic value
for any candidate individual remains the same.
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3. Cross-validation

The main purpose of GS is to predict the genomic or
breeding values of candidate plants. More attention is
paid to prediction rather than to hypothesis testing,
which, while related, are not necessarily the same. A
QTL may pass a threshold for hypothesis testing and
be declared as significant, but may have little predic-
tive value. Increasing the sample size can increase the
number of detected QTLs (Beavis, 1994), but it does
not necessarily increase the predictability of the
model. Therefore, model validation is fundamentally
important in GS. It is highly recommended that any
practical study in GS be accompanied by the result of
validation before consideration of publication.
Breeding companies will not adopt any new proce-
dures without some forms of validation.

(i) Prediction error

Let yj be the observed phenotypic value of individual
j in the population and

ŷyj=Xjb̂b+
Xp
k=1

Zjkĉck (58)

be its predicted value. If individual j has contributed to
the estimation of b and c, the error defined by yjxŷyj
is a residual error, not a prediction error. The residual
error can be arbitrarily small by increasing the num-
ber of markers in the model. A prediction error is
defined by the difference between the observed
phenotypic value and the predicted value for a new
individual who has not contributed to the estimation
of the parameters that are used to make the predic-
tion. If individual j is a new candidate plant and the
phenotypic value has not been observed yet, we can
predict the phenotype using the parameters estimated
from the current sample. The predicted value is

ŷyNew
j =XNew

j b̂b+
Xp
k=1

ZNew
jk ĉck: (59)

Later on the phenotype of this plant is measured with
a value yj

New. The error defined by yNew
j xŷyNew

j is
called the prediction error. The prediction error can
be reduced to some degree but cannot be eliminated.
The variance of the prediction errors is defined by

ŵw2=
1

m

Xm
j=1

yNew
j xŷyNew

j

� �2
: (60)

1 2 3 4 5 6 7

Fig. 1. Linkage map of 495 markers covering the seven chromosomes of the barley genome.
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All m individuals are new and none of their pheno-
types has contributed to the parameter estimation.
Assuming that mp‘, we can write the prediction
error variance as

w2
j=var(yNew

j xŷyNew
j )=var(yNew

j )+var(ŷyNew
j ), (61)

where var(yj
New)=s2 and

var(ŷyNew
j )=XNew

j var(b̂b)X(New)T
j +ZNew

j var(ĉc)Z(New)T
j

+2XNew
j cov(b̂b, ĉc)Z(New)T

j : (62)

Let ĥh= b̂b, ĉc
n o

and Wj
New={Xj

New,Zj
New}. In ordi-

nary LS analysis,

var(ĥh)=(WTW)x1s2: (63)

Therefore, the variance of the predicted value is

var(ŷyNew
j )=WNew

j var(ĥh)W(New)T
j

=WNew
j (WTW)x1W(New)T

j s2:
(64)

This leads to

w2
j=s2 1+WNew

j (WTW)x1W(New)T
j

h i
: (65)

Therefore,

w2=
1

m

Xm
j=1

w2
j=s2

r 1+
1

m

Xm
j=1

WNew
j (WTW)x1W(New)T

j

" # (66)

(1)

1 2 3 4 5 6 7

E
ff

ec
t

–0·1

0·0

0·1

0·2

0·3
(2)

1 2 3 4 5 6 7
–10

–5

0

5

10

(3)

1 2 3 4 5 6 7

E
ff

ec
t

–6

–4

–2

0

2

4
(4)

1 2 3 4 5 6 7
–4

–3

–2

–1

0

1

(5)

1 2 3 4 5 6 7

E
ff

ec
t

–0·4

–0·3

–0·2

–0·1

0·0

0·1

0·2

0·3
(6)

1 2 3 4 5 6 7
–0·6

–0·4

–0·2

0·0

0·2

0·4

(7)

Chromosome

1 2 3 4 5 6 7

E
ff

ec
t

–2·0

–1·5

–1·0

–0·5

0·0

0·5

1·0
(8)

Chromosome

1 2 3 4 5 6 7
–9

–6

–3

0

3

6

9

Fig. 2. Estimated QTL effects for eight quantitative traits in the barley experiment using the interval mapping approach.
The eight traits correspond to (1) Yield, (2) Lodging, (3) Height, (4) Head, (5) Protein, (6) Extract, (7) Amylase and
(8) Power. The seven chromosomes are separated by the vertical reference lines.
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Clearly w2os2 and the equality holds if and only if
n=‘. The prediction error variance is at least as
large as the (true, not the estimated) residual error
variance.

(ii) Model validation

To validate a model, more resources are required. We
can divide the sample into a training (learning) sample
and a testing sample with approximately equal size.
The training sample is used to estimate the para-
meters. The estimated parameters are then used to

calculate the prediction error variance in the testing
sample. The prediction error variance w2 has a unit
depending on the trait (squared unit of the trait). It is
usually transformed into a number between 0 and 1 so
that different trait analyses can be compared on the
same scale. Let us define

’̂’2=
1

m

Xm
j=1

ŷyNew
j x�yyNew

� �2
, (67)

where �yyNew=mx1
Pm

j=1 y
New
j is the average value of

the phenotypes in the testing sample. The R-square
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Fig. 3. LOD scores for eight quantitative traits in the barley experiment using the interval mapping approach. The eight
traits correspond to (1) Yield, (2) Lodging, (3) Height, (4) Head, (5) Protein, (6) Extract, (7) Amylase and (8) Power. The
horizontal reference lines are the permutation (1000 samples) generated critical values for the LOD score test at a=0.01.
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value is defined as (Legates & McCabe, 1999)

R̂R2=
’̂’2

ŵw2+’̂’2
=1x

ŵw2

ŵw2+’̂’2
, (68)

which has a domain 0fR2f1, with zero indicating no
predictability and 1 indicating perfect prediction. If
�yyNew=�̂yŷyyNew=mx1

Pm
j=1 ŷy

New
j , the denominator can be

rewritten as

ŵw2+’̂’2=
1

m

Xm
j=1

(yNew
j x�yyNew)2 (69)

In this case, the R-square is interpreted as the pro-
portion of phenotypic variance contributed by the
genomic variance.

(iii) K-fold cross-validation

The validation procedure described in the previous
section does not optimally use the resources. There
are n plants in the sample but only half of the n plants
are used to estimate the parameters and half of the n
plants used to validate the model. Thus, some re-
sources have been wasted using this true validation
procedure. If the training sample and the testing
sample are reversed in function, there is another vali-
dation scheme and this new scheme will produce a
different result. The two results may be combined to
calculate a new R-square. Such an R-square should be
more precise because it uses the whole sample. This
scheme is called cross-validation (Shao, 1993). There
are many different ways to perform cross-validation.
The half-half cross-validation is called twofold cross-
validation.

With the twofold cross-validation, we have in-
creased the sample size for the R-square calculation,
but have not increased the sample size for parameter
estimation. The parameters are estimated twice but the
two sets of estimated parameters are not combined.

Each is estimated separately, still using half of the
sample. There is no reason not to use a threefold
cross-validation, in which the sample is divided into
three parts : two parts are used to estimate the para-
meters and the remaining part is used to validate
the parameters. Each of the three parts is eventually
validated using parameters estimated from the
other parts. This time, the parameters are estimated
from 2/3 of the sample. Similarly, a fivefold cross-
validation uses 4/5 of the sample to estimate the
parameters and validates the prediction of the re-
maining 1/5 of the sample (Moser et al., 2009). In
general, people can choose any K-fold cross-
validation, where K is an integer between 2 and n.

(iv) Leave-one-out (n-fold cross-validation)

Leave-one-out cross-validation applies to the case
when K=n (Efron, 1983). We use nx1 plants to
estimate the parameters and predict the value for
the remaining plant. The complete cross-validation
requires n separate analyses, one for each plant. The
computation can be intensive for large samples, but it
is the optimal way to utilize the current resources,
and thus should be the most reliable cross-validation
approach.

Compared to other K-fold cross-validations, the
n-fold cross-validation has the smallest prediction
error variance. This is because it has the smallest
estimate errors for the parameters due to the maxi-
mum possible sample size (nx1) used. Theoretically,
the R-square value should also be the highest for the
n-fold cross-validation. Is the high R-square an over
estimate of the predictability? In practice, if we have
n plants in the current sample, we will never use a sub-
sample to estimate the parameters. Suppose that we
now have new plants with available DNA samples but
not the phenotypes. We are ready to predict the gen-
etic values of these plants for selection. The optimal
approach for predicting the breeding values of the
new plants is to use parameters estimated from all n
plants. The n-fold cross-validation uses nx1 plants to
estimate the parameter and nx1 is the nearest integer
to n. Therefore, the leave-one-out cross-validation
mimics most closely to the actual prediction in
practice.

4. Working example

(i) Barley experiment

The original experiment was conducted by |Hayes
et al. (1993, 1994). The data were retrieved from
http://www.genenetwork.org/. The experiment in-
volved 150 double haploids (DH) derived from the
cross of two Spring barley varieties, Morex and
Steptoe. There were 495 markers distributed along the

Table 1. Accuracies (R-squares) of MAS using the
least-squares method under two levels of Type I errors
(alpha values)

Trait

Alpha=0.01 Alpha=0.05

Number of
markers R2

Number of
markers R2

(1) Yield 20 0.5673 26 0.5511
(2) Lodging 28 0.5593 41 0.5093
(3) Height 40 0.6489 53 0.6404
(4) Head 27 0.7213 27 0.7213
(5) Protein 47 0.5869 64 0.5510
(6) Extract 33 0.4847 71 0.4768
(7) Amylase 59 0.5629 79 0.4556
(8) Power 31 0.5782 35 0.5739
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seven pairs of chromosomes of the barley genome,
with an average marker interval of 2.23 cM. The
marker map with the seven linkage groups is shown in
Fig. 1. Eight quantitative traits were recorded in 16
environments. The eight traits were (1) YIELD (grain
yield in MT/ha), (2) LODGING (lodging in %),
(3) HEIGHT (plant height in cm), (4) HEAD (head-
ing date after January 1), (5) PROTEIN (grain pro-
tein in %), (6) EXTRACT (malt extract in %),
(7) AMYLASE (alpha amylase in 20 Deg units) and
(8) POWER (diastatic power in Deg). The phenotypic
values of the 150 DH lines were the averages of the
16 replications for each trait.

(ii) MAS

MAS utilizes results of QTL mapping. Since the
marker density in the barley QTL mapping exper-
iment is sufficiently high (2.23 cM per interval), indi-
vidual marker analysis was performed using the QTL
procedure in SAS (Hu & Xu, 2009). We used the
permutation test (Churchill & Doerge, 1994) with
1000 permuted samples to draw the critical values for
the LOD score profile for each trait. The estimated
QTL effects are depicted in Fig. 2 for the eight traits.
The corresponding LOD scores are given in Fig. 3
along with the permutation-generated critical values
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Fig. 4. Estimated QTL effects for eight quantitative traits in the barley experiment using the empirical Bayesian
method. The eight traits correspond to (1) Yield, (2) Lodging, (3) Height, (4) Head, (5) Protein, (6) Extract, (7) Amylase
and (8) Power. The seven chromosomes are separated by the vertical reference lines.
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at the a=0.01 level. Large numbers of QTLs were
detected for each of the eight traits, with an average
number of 35 QTLs per trait (see Table 1). When the
LOD critical values were lowered down to a=0.05,
the average number of markers detected per trait
raised to 50.

We then used the results of the interval mapping
to select these significant QTLs. Using the multiple
regression method (ordinary LS), we re-estimated
the QTL effects and performed the leave-one-out
cross-validation analysis. The R-square values for
a=0.01 and a=0.05 are given in Table 1. The aver-
age R-square for a=0.01 and a=0.05 were 0.59
and 0.56, respectively. Therefore, lowering the critical

values decreased the predictability. The highest R-
square occurred for Head with an R-square of 0.72.
The trait extract had the lowest R-square of 0.48. The
conclusion was that MAS using the detected QTL will
be effective.

(iii) GS

We now use the empirical Bayesian method (Xu,
2007) to perform GS using all markers. The hyper-
parameters for each trait were set at (t,v)=(0,0),
corresponding to the Jeffreys’ prior (Jeffreys, 1939).
With the empirical Bayesian method, each marker
had an estimated effect and an LOD score but all
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Fig. 5. The LOD scores for eight quantitative traits in the barley experiment using the empirical Bayesian method. The
eight traits correspond to (1) Yield, (2) Lodging, (3) Height, (4) Head, (5) Protein, (6) Extract, (7) Amylase and (8) Power.
The seven chromosomes are separated by the vertical reference lines.
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effects were estimated in a single model. The estimated
effect profiles are depicted in Fig. 4. The correspond-
ing LOD score profiles are given in Fig. 5. From these
two figures, we can see clearly that the eight traits
are divided into two different types, polygenic traits
(Yield and Protein) and oligogenic traits (the re-
maining six traits). The partitioning of polygenic
traits and oligogenic traits cannot be achieved using
the interval mapping approach. The LOD scores of
individual markers for the two polygenic traits were
all smaller than the individual LOD scores for the six
oligogenic traits.

We used the leave-one-out cross-validation to
evaluate the accuracy of the empirical Bayesian
method. When all 495 markers were included in the
model, the R-square values ranged from 0.45 (for
Extract) to 0.82 (for Height). Clearly, GS is effective
for all eight traits. We also performed a variable
selection approach using the full model (including all
495 markers) to rank the markers from the highest
LOD score to the lowest LOD score. The number of
top markers included in the model ranged from 1 to
495. For example, when the top five markers were
used to evaluate the accuracy of GS, we only used
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Fig. 6. The R-square profiles plotted against the top markers included in the model for genome prediction for eight
quantitative traits in the barley experiment. The eight traits correspond to (1) Yield, (2) Lodging, (3) Height, (4) Head,
(5) Protein, (6) Extract, (7) Amylase and (8) Power. The co-ordinates of three interesting points are marked for each trait.
The three co-ordinates correspond to the R-square values for the top one marker, the optimal number of markers and
all markers.
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these five markers to predict the genomic values. The
R-square value for each trait formed an R-square
profile for each trait. Different traits have different
patterns for the R-square profiles. However, they all
show a common feature: each curve starts with a low
R-square, quickly increases to a maximum value and
then progressively decreases (Fig. 6). The maximum
R-square varied across different traits, but it was
higher than the one when all markers were used
for prediction. Table 2 provides a summary of the
R-square profile for each trait. If the top marker
was included in the model for prediction, only one
trait (Head) had a high prediction value (R2=0.66),
while Extract and Power each had a reasonable
predictability (R2=0.14 and R2=0.17). The maxi-
mum R-square ranged from 0.56 (Extract) to 0.84
(Height). The number of markers that generated the
maximum R-square values also varied across different
traits. The two polygenic traits, Yield and Protein,
required 123 and 165 markers, respectively, to reach
the highest accuracies for prediction. Heading date is
an oligogenic trait because the top five markers col-
lectively contribute 85% of the phenotypic variance.
Table 3 shows a comparison of the GS using the

empirical Bayesian method and MAS using the mul-
tiple regression method (ordinary LS method). The
GS had a higher R-square value than the MAS for
every trait. The average R-square values for MAS and
GS were 0.59 and 0.70, respectively, with an average
gain of 0.11.

By definition, GS uses all markers to predict geno-
mic values of candidate plants. However, some
marker selection remains beneficial. Once the optimal
number of markers is reached, including more mar-
kers appears to be slightly detrimental to GS. This
conclusion is consistent with that of the Che & Xu
(2010) study of flowering time in Arabidopsis. How-
ever, the decline of the accuracy by adding more
markers afterwards is not dramatic, provided the
marker effects are estimated using the empirical
Bayesian method.

5. Discussion

Genome-wide epistasis may play an important role in
agronomic traits. The GS tools reviewed above also
apply to epistatic models. The epistatic model simply
has a higher dimensionality than the additive model,
and requires a fast computational algorithm. Whether
or not epistatic effects are important depends on the
properties of the traits and plant species. The analysis
of Xu & Jia (2007) using data from a different barley
crossing experiment showed that epistatic effects are
not as important as additive effects. The cross in the
Xu & Jia (2007) study involved two different parental
lines and seven traits : (1) Heading date, (2) Height,
(3) Yield, (4) Lodging, (5) Kernel weight, (6) Maturity
and (7) Test weight. Four of the seven traits in the Xu
& Jia (2007) study were the same as four of the eight
traits in the current study. Because of the similarity
of the traits and plant species in the two data sets,
we do not expect to see more important roles of epi-
static effects than additive effects in this data set.

Table 2. Accuracies of genome prediction (R-squares) using the empirical Bayesian method for eight
quantitative traits in the barley experiment

Trait
R-square(1)
(1 marker)

R-square(495)
(495 markers)

R-square(opt.)
(optimal number)

Optimal number
of markers

(1) Yield 0.0042 0.4685 0.5865 123
(2) Lodging 0.0415 0.5394 0.6141 13
(3) Height 0.4357 0.8182 0.8389 33
(4) Head 0.6625 0.8095 0.8381 5
(5) Protein 0.0026 0.6206 0.7303 165
(6) Extract 0.1366 0.4495 0.5650 12
(7) Amylase 0.0943 0.4842 0.6274 11
(8) Power 0.1651 0.6674 0.7941 16

R-square (1): The R-square value for model including the top marker.
R-square (495): The R-square value for model including all markers.
R-square (opt.) : The R-square value for model including the optimal number of markers.
Optimal number: The number of markers that produces the maximum R-square value.

Table 3. Comparison of the accuracies of prediction
(R-squares) of MAS and GS

Trait MAS GS Gain (GS-MAS)

(1) Yield 0.5673 0.5865 0.0192
(2) Lodging 0.5593 0.6141 0.0548
(3) Height 0.6489 0.8389 0.19
(4) Head 0.7213 0.8381 0.1168
(5) Protein 0.5869 0.7303 0.1434
(6) Extract 0.4847 0.565 0.0803
(7) Amylase 0.5629 0.6274 0.0645
(8) Power 0.5782 0.7941 0.2159
Average 0.5886 0.6993 0.1106
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Unfortunately, the current version of the empirical
Bayes program cannot handle all pair-wise interac-
tions for 495 markers and thus we cannot test this
hypothesis. Part of the reasons for the unimportant
role of epistasis may be due the difficulty in detecting
epistatic effects (Hill et al., 2008) ; or the importance
of epistasis may vary among traits. Dudley & Johnson
(2009) used the epistatic model to predict the genomic
values for several quantitative traits in corn and
showed significant increases in predictability over
the additive model. Methods and software packages
for epistatic models are available (Yi & Xu, 2002; Yi
et al., 2003; Zhang & Xu, 2005) and have been re-
viewed in detail by Yi (2010).

All effective methods for GS are related to mixed
model methodology. The QTL effects are always
treated as random effects, either explicitly or im-
plicitly. Therefore, understanding the mixed model
methodology is fundamentally important in GS. The
biggest hurdle in the mixed model approach to GS is
computational speed. Efficient algorithms are always
required for increased marker density.

The corresponding technology of GS for discrete
traits or any traits deviating from normality is the
generalized linear mixed model (GLMM; McCulloch
& Neuhaus, 2005). However, many discrete traits may
be analysed as if they were quantitative (Rebai, 1997;
Kadarmideen et al., 2000), and yield similar results
from the analyses using the correct GLMM. If
investigators decide not to implement GLMM for
discrete trait analysis, data transformation is re-
commended prior to the analysis. For example, the
binomial trait defined as a ratio can be transformed
using the Box-Cox transformation (Yang et al., 2006)
or other simple transformations (Freeman & Tukey,
1950) prior to the analysis. GLMM is more appro-
priate for binary traits than other discrete traits be-
cause there is no appropriate transformation to make
binary traits normal.

With the current pace of technology development,
DNA sequence data will be available very soon for all
agricultural crops. Sequencing the genome for all in-
dividuals in a target population is no longer a dream.
With complete sequence data, pedigree analysis is no
longer necessary. Pedigree analysis is one of the most
difficult problems in GS. Once pedigree information
becomes irrelevant, a polygenic effect is no longer re-
quired in the model for genome prediction, as it will
be absorbed by the saturated markers. Therefore, GS
will be easier with complete sequence data than the
one with partial genomic information due to the ir-
relevance of pedigree information and the disappear-
ance of the polygenic effect.

This project was supported by the Agriculture and Food
Research Initiative (AFRI) of the USDA National Institute
of Food and Agriculture under the Plant Genome, Genetics
and Breeding Program 2007-35300-18285 to SX.
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