
Canad. Math. Bull. Vol. 41 (3), 1998 pp. 257–260

NOTE ON THE SUPPORT OF SOBOLEV FUNCTIONS

THOMAS BAGBY AND P. M. GAUTHIER

ABSTRACT. We prove a topological restriction on the support of Sobolev functions.

THEOREM. Let k and n be integers such that 0 Ú k Ú n, and suppose that p Ù 1 and
p Ù k� 1. Then the only distribution in the Sobolev space W1,p(Rn) which is supported
by a k-cell is the zero distribution.

Here the Sobolev space W1,p(Rn) is the set of all distributions u on Rn such that u and
each of its first-order partial derivatives are represented by functions in Lp(Rn). A k-cell
is a homeomorph of the closed unit ball of Rk.

In case p Ù n this theorem is well known; in fact, in this case the Sobolev imbedding
theorem states that any distribution in W1,p(Rn) is represented by a continuous function
on Rn (and hence can be supported by a nowhere-dense compact set only if it is zero). On
the other hand, if 1 Ú p � n, Polking [P, Theorem 4] has shown that there is a nonzero
element of W1,p(Rn) whose support is a nowhere-dense compact set. It is possible to
characterize the compact subsets of Rn which support nonzero Sobolev functions, by
adapting certain concepts from classical potential theory (see [AH, Theorem 11.3.2] and
the references given there); however, our proof of the theorem above makes no use of
such results.

Our theorem is related to the theory of harmonic approximation developed by
Keldysh, Deny, and Havin, and discussed in the paper of Hedberg [H]. From [H, The-
orem 11.9] and the classical Runge property for harmonic functions proved by Walsh
[W, p. 541] [GH, Théorème 2.1.4] we deduce that for a compact set K ² Rn whose
complement Rn n K is connected, the following properties are equivalent:

(a) the only distribution u 2 W1,2(Rn) supported by K is the zero distribution.
(b) every continuous function on K can be uniformly approximated by functions

harmonic on Rn.
From this equivalence, and the theorem above when p ≥ 2, we obtain a uniform

approximation theorem: if k ≥ 1 or k ≥ 2, and k Ú n, then every continuous function
on a k-cell in Rn can be uniformly approximated by functions harmonic on Rn. In the
case k ≥ 1 this is included in the main theorem of [BCG]; and in the case k ≥ 2, n ≥ 3
this was proved by Keldysh and Lavrent’ev, and is included in the book of Landkof
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[L, Theorem 5.20]. The present paper gives in particular a simple proof of the Keldysh-
Lavrent’ev theorem, but we do not know if the analogous approximation theorem holds
for k-cells with k ½ 3.

It is a pleasure to acknowledge helpful discussions with Eric Bedford, Mohamad
Pouryayevali and Stephen Semmes concerning this paper.

We turn now to the preliminaries for the proof. We will use the notation ïd for d-
dimensional Lebesgue measure, and we assume that 1 Ú p Ú 1. We set Bd

r (a) ≥ fx 2
Rd : kx� ak Ú rg if a 2 Rd and r Ù 0, and we define Bd ≥ Bd

1(0). We let ß 2 C10 (Bn)
be a fixed nonnegative function with

R
ß dïn ≥ 1.

If u 2 W1,p(Rn) has compact support and ¢ Ù 0, we define u¢ ≥ u Ł ß¢, where
ß¢(x) � ¢�nß(xÛ¢). It is well known [EG, Section 4.2, Theorem 1] that u¢ 2 C1(Rn)
for each ¢ Ù 0; and that the function x 7! lim¢!0 u¢(x) is defined for ïn-a.e. point
x 2 Rn, is in Lp(Rn), and represents the distribution u. Moreover, the arguments used to
prove [GZ, Theorem 3.2] yield the following result (see also [M, Theorem 5]).

LEMMA 1. If u 2 W1,p(Rn) has compact support, then there is a sequence ¢j # 0
with the following property. If M is any subspace of Rn of dimension ‡, where 0 Ú ‡ Ú n
and ‡ Ú p, and M? is the orthogonal complement of M in Rn, then for ïn�‡-a.e. point
a 2 M?, the sequence fu¢jg is uniformly Cauchy on the ‡-plane through a and parallel
to M.

The following lemma is analogous to a well-known result of Moore [Mo]. For each
integer k ½ 2 we define Yk ≥ P [Q, where

P ≥ f(x1, . . . , xk) 2 Rk : x2
1 + Ð Ð Ð + x2

k�1 � 1, xk ≥ 0g,

Q ≥ f(x1, . . . , xk) 2 Rk : x1 ≥ Ð Ð Ð ≥ xk�1 ≥ 0, 0 � xk � 1g.

LEMMA 2. Fix k ½ 2. Suppose that for each j in an uncountable set J we have a
continuous injection fj: Yk ! Rk. Then the images fj(Yk) cannot be mutually disjoint.

To prove Lemma 2 we let

bP ≥ f(x1, . . . , xk) 2 Rk : x2
1 + Ð Ð Ð + x2

k�1 ≥ 1, xk ≥ 0g,

1k ≥ f(x1, . . . , xk) 2 Rk : x1 ≥ Ð Ð Ð ≥ xk�1 ≥ 0, xk ≥ 1g.

For each index j 2 J the distance dj from fj(Q) to fj(bP) and the distance ej from fj(1k)
to fj(P) are strictly positive. Since J is uncountable, we may assume without loss of
generality that there is a positive number ö such that dj ½ ö for all j 2 J , and in fact it
is no loss of generality to assume that ö ≥ 2. With this convention, we may also assume
that for each j the diameter of fj(Q) is less than 1/3 (this can be achieved by replacing fj
by a function gj, where gj ≥ fj on P, and gj(t) ≥ fj(Tjt) for t in Q, with Tj an appropriate
number in [0, 1]). It follows that ej � 1Û3 for each j. Using again the fact that J is
uncountable, we may assume that there is a positive numberõ � 1Û3 such that ej ½ õ for
all j 2 J . Using once more the fact that J is uncountable, we may assume that all points
fj(1k) lie in an open ball G of radius õÛ3, and in fact it is no loss of generality to assume
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that G is centered at the origin of Rk. Note that for each j we have fj(0) 2 fj(Q) ² Bk,
but the set fj(bP) does not intersect Bk.

For each j we let Wj be the componentof Bk\fj(P) which contains fj(0). From [I, Chap-
ter V, Theorem 4.6, p. 274] it follows that the set Bk nWj is not connected, and we refer
to its components as the complementary components of Wj. We see from the preceding
paragraph that the distance from the ball G to the set fj(P) is at least õÛ3, and hence one
of the complementary components Cj of Wj contains the ball G. We let Dj be a comple-
mentary component of Wj other than Cj.

To complete the proof of the lemma we now suppose that the images fj(Yk) are mutu-
ally disjoint.

Let i and j be any pair of distinct indices in J . We then have fi(0) 2 Cj (for otherwise
the connected set fi(Q) ² Bk would contain points in distinct complementary compo-
nents of Wj, and therefore would intersect Wj). It follows that the connected set Wi lies
in Cj, and hence Dj must be one of the components of the set Bk n (Wi [ Wj). Similarly,
Di must be one of the components of the set Bk n (Wi[Wj). But the sets Di and Dj cannot
be identical (since Bk \ ∂Di ² Wi and Bk \ ∂Dj ² Wj), and we conclude that Di and Dj

must be disjoint.
According to the preceding paragraph the sets fDjgj2J form an uncountable mutually-

disjoint family of nonempty open subsets of Bk, which is impossible. This completes the
proof of Lemma 2.

To prove the theorem, we let X ² Rn be the image of the closed unit ball in Rk under
a homeomorphism H, and we let u be any element of W1,p(Rn) which is supported in
X. If f¢jg is the sequence given in Lemma 1, we let ũ(x) � limj!1 u¢j (x) wherever this
limit exists. Since the support of u is contained in X, and the support of ß¢ is contained
in Bn

¢
(0) for each ¢ Ù 0, it is clear that ũ � 0 on Rn nX. We suppose that u is not the zero

element of W1,p(Rn), and hence the set E ≥ fx 2 Rn : ũ(x) is defined and nonzerog has
positive Lebesgue measure.

We next complete the proof in the case k ≥ 1. From Lemma 1 and the hypotheses of
the theorem we see that ũ is continuous on ïn�1-a.e. line parallel to the x1-axis. Thus we
may find a set E0 ² E such that ïn(E n E0) ≥ 0, and every point a 2 E0 is the center
of an open line segment, parallel to the x1 axis, contained in E. The set E0 has positive
ïn-measure, so by Fubini’s theorem the projection of E0 on the xn-axis is uncountable.
We thus see that the set E ² X contains an uncountable family of mutually disjoint
homeomorphs of the open unit interval, so H�1(X) ≥ [�1, 1] has the same property, and
this is impossible. This completes the proof of the theorem in the case k ≥ 1.

To complete the proof in case k ½ 2 we introduce the following notation: for each
point a 2 Rn we let P(a) be the (k�1)-plane which is parallel to the coordinate x1 Ð Ð Ð xk�1-
plane and contains the point a, and we let Q(a) be the line which is parallel to the xk-axis
and contains the point a; if r Ù 0, we set Pr(a) ≥ P(a)\Bn

r (a) and Qr(a) ≥ Q(a)\Bn
r (a).

From Lemma 1 and the hypotheses of the theorem we see that ũ is continuous on ïn�k+1-
a.e. (k�1)-plane parallel to P(0). Thus we may find a set E1 ² E such thatïn(EnE1) ≥ 0,
and for every point a 2 E1 there is some r Ù 0 such that Pr(a) ² E. Moreover, from
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Lemma 1 and the hypotheses of the theorem we see that ũ is continuous on ïn�1-a.e. line
parallel to the xk axis. Thus we may find a set E2 ² E1 such that ïn(E1 n E2) ≥ 0, and
for every point a 2 E2 there is some s Ù 0 such that Qs(a) ² E. The set E2 has positive
ïn-measure, so by Fubini’s theorem the projection of E2 on the xn-axis is uncountable.
We conclude that the set E ² X contains an uncountable family of mutually disjoint
homeomorphs of the set Yk, so H�1(X) ≥ Bk has the same property. This contradicts
Lemma 2, so the theorem is proved in all cases.
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