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NOTE ON THE SUPPORT OF SOBOLEV FUNCTIONS

THOMASBAGBY AND P. M. GAUTHIER

ABsTRACT. We prove atopological restriction on the support of Sobolev functions.

THEOREM. Letkandnbeintegerssuchthat O < k < n, and supposethat p > 1 and
p > k— 1. Then the only distribution in the Sobolev space Wy p(R") which is supported
by a k-cell isthe zero distribution.

Here the Sobolev space W, p(R") isthe set of al distributions u on R" such that u and
each of itsfirst-order partial derivatives are represented by functionsin L,(R"). A k-cell
is ahomeomorph of the closed unit ball of RX.

In casep > nthistheorem iswell known; in fact, in this case the Sobolev imbedding
theorem states that any distribution in Wy 5(R") is represented by a continuous function
on R" (and hence can be supported by anowhere-dense compact set only if itiszero). On
the other hand, if 1 < p < n, Polking [P, Theorem 4] has shown that there is a nonzero
element of Wy ,(R") whose support is a nowhere-dense compact set. It is possible to
characterize the compact subsets of R" which support nonzero Sobolev functions, by
adapting certain conceptsfrom classical potential theory (see[AH, Theorem 11.3.2] and
the references given there); however, our proof of the theorem above makes no use of
such results.

Our theorem is related to the theory of harmonic approximation developed by
Keldysh, Deny, and Havin, and discussed in the paper of Hedberg [H]. From [H, The-
orem 11.9] and the classical Runge property for harmonic functions proved by Walsh
[W, p. 541] [GH, Théoreme 2.1.4] we deduce that for a compact set K C R" whose
complement R" \ K is connected, the following properties are equivalent:

(8 theonly distribution u € Wi »(R") supported by K is the zero distribution.

(b) every continuous function on K can be uniformly approximated by functions
harmonic on R".

From this equivalence, and the theorem above when p = 2, we obtain a uniform
approximation theorem: if k = 1 or k = 2, and k < n, then every continuous function
on a k-cell in R™ can be uniformly approximated by functions harmonic on R". In the
case k = 1thisisincluded in the main theorem of [BCG]; and inthecasek = 2,n = 3
this was proved by Keldysh and Lavrent’ev, and is included in the book of Landkof
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[L, Theorem 5.20]. The present paper givesin particular a simple proof of the Keldysh-
Lavrent’ ev theorem, but we do not know if the anal ogous approximation theorem holds
for k-cellswith k > 3.

It is a pleasure to acknowledge helpful discussions with Eric Bedford, Mohamad
Pouryayevali and Stephen Semmes concerning this paper.

We turn now to the preliminaries for the proof. We will use the notation \y for d-
dimensional L ebesgue measure, and we assumethat 1 < p < co. Weset Bd(a) = {x €
RY:||x—al| <r}ifae RYandr > 0, and we define BY = B(0). Welet ¢ € C(B")
be afixed nonnegative function with [ p d\, = 1.

If u € Wyp(R") has compact support and ¢ > 0O, we defineu. = u * ¢., where
0-(X) = e "p(x/¢). It iswell known [EG, Section 4.2, Theorem 1] that u. € C>*(R")
for each ¢ > 0; and that the function x — lim._ou.(X) is defined for A,-a.e. point
x € R", isin Ly(R"), and represents the distribution u. Moreover, the arguments used to
prove [GZ, Theorem 3.2] yield the following result (see also [M, Theorem 5]).

LEMMA 1. If u € Wy p(R™) has compact support, then there is a sequencee; | 0
with the following property. If M is any subspace of R" of dimension ¢, where0 < ¢ < n
and ¢ < p, and M- is the orthogonal complement of M in R", then for \,_,-a.e. point
a € M*, the sequence {ug, } is uniformly Cauchy on the ¢-plane through a and parallel
to M.

The following lemma is analogous to a well-known result of Moore [Mo]. For each
integer k > 2 we define Y, = PU Q, where

P={(x1,....%) ER¥ 3¢+ +x2_; <1,% =0},
Q={(x,....%) ER*:xy = =x%_1=00<x <1}.

LEMMA 2. Fix k > 2. Suppose that for each j in an uncountable set J we have a
continuousinjection fj: Yy — RK. Then the images f;(Yx) cannot be mutually disjoint.

To prove Lemma 2 we let

bPZ{(Xl,...,Xk)ERk:xi+...+x£_1:1’Xk:0}’
1k:{(xlr---yxk)€Rk:X1:~~-:Xk_1:01xk:1}.

For eachindex j € J the distance d; from f;(Q) to f;(bP) and the distance g from f;(1)
to fj(P) are strictly positive. Since J is uncountable, we may assume without loss of
generality that there is a positive number p such that dj > p for al j € J, and in fact it
isno loss of generality to assumethat p = 2. With this convention, we may also assume
that for each j the diameter of f;(Q) is less than 1/3 (this can be achieved by replacing f;
by afunction g;, where g; = f; on P, and g;(t) = f;(T;t) for t in Q, with T; an appropriate
number in [0, 1]). It follows that < 1/3 for each j. Using again the fact that J is
uncountable, we may assumethat thereisapositivenumber o < 1/3suchthatg > o for
al j € J. Using once more the fact that J is uncountable, we may assumethat all points
fj(L¢) liein an open ball G of radius o /3, and in fact it is no loss of generality to assume
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that G is centered at the origin of R¥. Note that for each j we have f;(0) € f(Q) C B,
but the set f;(bP) does not intersect BX.

For eachj welet W, bethe component of BXf; (P) which containsf;(0). From [I, Chap-
ter V, Theorem 4.6, p. 274] it follows that the set BX \ W, is not connected, and we refer
to its components as the complementary components of W;. We see from the preceding
paragraph that the distance from the ball G to the set f;(P) is at least o/ 3, and hence one
of the complementary components C; of W contains the ball G. We let D; be a comple-
mentary component of W; other than C;.

To complete the proof of the lemma we now supposethat the images fj (Yy) are mutu-
aly digoint.

Letiandj be any pair of distinct indicesin J. We then havef;(0) € C; (for otherwise
the connected set f;(Q) C B* would contain points in distinct complementary compo-
nents of W, and therefore would intersect W,). It follows that the connected set W, lies
in C;, and hence Dj must be one of the components of the set BX\ (W U W). Similarly,
D; must be one of the components of the set BX\ (W, UW,). But the sets D; and D; cannot
beidentical (since BN aD; C W, and BXM aD; C W), and we conclude that D; and D;
must be digjoint.

According to the preceding paragraph the sets { D; }; form an uncountable mutually-
digioint family of nonempty open subsetsof B¥, which isimpossible. This completesthe
proof of Lemma?2.

To prove the theorem, we let X C R" be the image of the closed unit ball in R under
a homeomorphism H, and we let u be any element of W, 5(R") which is supported in
X. If {¢j} isthe sequence givenin Lemma 1, we let Ui(x) = lim;_., u,(x) wherever this
limit exists. Since the support of u is contained in X, and the support of ¢. is contained
inB2(0) for eache > O, itisclear that 1 = 0 on R™\ X. We supposethat u is not the zero
element of W; 5(R"), and hencethe set E = {x € R" : li(x) is defined and nonzero} has
positive L ebesgue measure.

We next complete the proof in the case k = 1. From Lemma 1 and the hypotheses of
the theorem we seethat Ui is continuous on \,_;-a.e. line parallel to the x;-axis. Thuswe
may find aset Ey C E such that \n(E \ Eo) = 0, and every point a € Ey isthe center
of an open line segment, parallel to the x; axis, contained in E. The set Ey has positive
An-measure, so by Fubini’s theorem the projection of Eg on the x,-axis is uncountable.
We thus see that the set E C X contains an uncountable family of mutually digoint
homeomorphs of the open unit interval, so H=1(X) = [—1, 1] hasthe same property, and
thisisimpossible. This completes the proof of the theorem in the casek = 1.

To complete the proof in case k > 2 we introduce the following notation: for each
pointa € R"welet P(a) bethe (k—1)-planewhichisparallel tothecoordinatex; - - - X 1-
plane and containsthe point a, and we let Q(a) bethe line which is parallel to the x,-axis
and containsthe point a; if r > 0, weset P;(a) = P(a)NBM(a) and Qr(a) = Q(a)NBN(a).
From Lemma 1 and the hypotheses of the theorem we seethat Ui is continuouson Ap_y+1-
ae. (k—1)-planeparallel toP(0). Thuswemay findasetE; C E suchthat A\,(E\E;) = O,
and for every point a € E; thereissomer > 0 suchthat P;(a) C E. Moreover, from
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Lemma 1 and the hypotheses of the theorem we seethat Ui is continuouson A_;-a.e. line
parallel to the X, axis. Thuswe may find aset E, C E; such that A\y(E; \ Ez) = 0, and
for every point a € E, thereissome s > 0 such that Qs(a) C E. The set E; has positive
An-measure, so by Fubini’s theorem the projection of E, on the x,-axis is uncountable.
We conclude that the set E C X contains an uncountable family of mutually digoint
homeomorphs of the set Yy, so H-1(X) = BX has the same property. This contradicts
Lemma 2, so the theorem is proved in all cases.
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