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Abstract. The VAST survey is a wide-field survey that observes with unprecedented instrument
sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel
scientific discoveries related to known and unknown classes of radio transients and variables.
Given the unprecedented observing characteristics of VAST, it is important to estimate source
classification performance, and determine best practices prior to the launch of ASKAP’s BETA
in 2012. The goal of this study is to identify light-curve characterization and classification
algorithms that are best suited for archival VAST light-curve classification. We perform our
experiments on light-curve simulations of eight source types and achieve best-case performance
of approximately 90% accuracy. We note that classification performance is most influenced by
light-curve characterization rather than classifier algorithm.
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1. Introduction
The Australian Square Kilometer Array Pathfinder (ASKAP) will observe the entire

visible radio sky, including previously unexplored regions of phase space, in a single day
with sub-mJy sensitivity at a 5-second cadence. Because no other telescope in operation
has those capabilities, ASKAP has the potential of advancing significantly the study
of known transients and variables, while also enabling the discovery of new objects and
object classes. The Variables and Slow Transits (VAST) survey science project of ASKAP
is focused on the development of new algorithms for the detection of transients with time-
scales as short as 5 seconds (Murphy & Chatterjee 2009). Source types of interest include
X-ray binaries, supernovæ, Extreme Scattering Events, Intra-Day Variables, novæ, and
dMe flare stars, and RSCVn. Source classification is a prerequisite for scientific study of
radio transients and variables.

The overall goal of our study is to evaluate state-of-the-art machine-learning methods
for archival classification of VAST light curves. Because VAST has no existing counter-
part with data to use for empirical evaluation, we simulate light curves for each of the
sources discussed above plus background sources, and study performance using different
classifiers, observing strategies, signal-to-noise ratios, and light-curve characterizations.

Here we present just a summary of results using a daily observational strategy (VAST
Wide; Murphy & Chatterjee 2009) which observes with an r.m.s. of 0.5mJy. Our results
show that we achieve approximately 90% classification accuracy using a Support Vector
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(a) Accuracy by feature representation (b) Accuracy by classifier and feature rep-
resentation

Figure 1. Classification accuracy.

Machine and a concatenation of different feature representations. These results and others
will be published as a VAST Memo in early 2012.

2. Classifiers and Light-Curve Characterizations
We selected standard classification algorithms that have proved successful in other

light-curve classification tasks (Richards et al. 2011 and Wachman et al. 2009). Specifi-
cally, we evaluated Support Vector Machine (SVM; Cortes & Vapnik 1995), Decision Tree
(J48; Quinlan 1986), and Random Forest (Breiman 2001) classifiers using implementa-
tions provided by the Weka data mining package (Hall et al. 2009). We have also worked
with other types of classifiers, including probabilistic classifiers such as Naive Bayes and
Logistic Regression. However, we found that SVMs, Decision Trees and Random Forests
produced superior results on these data.

Machine-learning methods for classification presume the existence of a structured data
set, where each example is a vector of “features.” Real light-curve observations may not
meet this requirement because light curves may contain different numbers of observations
taken at differing sampling rates. Thus, in a real setting, one must create representations
of the data that meet these requirements.

Our first feature set extracts statistics from the flux measurements of each light curve.
These are a subset of the “non-periodic statistical features” used by Richards et al. (2011)
and include moment statistics (e.g., mean, standard deviation, skew, kurtosis), flux per-
centile ratios, and shape statistics. We refer to this feature set as stat. Our second fea-
ture set, lsp, extracts coefficients from the Lomb-Scargle Periodogram representation of
each light curve (Scargle 1982). We actually extract power information from the top 20
frequencies. Our third feature set, wlet, extracts wavelet coefficients using the discrete
wavelet transform (DWT).

From the original time-domain observations, the statistical and two frequency space
characterizations, we create the following six feature sets for our experiments: tme (time-
domain flux measurements), stat, lsp, wlet, all-reps (concatenation of stat, lsp, and wlet),
and all (concatenation of tme, stat, lsp and wlet).
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3. Experimental Setup and Results
We simulated 200 400-day light curves per source type at signal-to-noise ratios (SNR) of

3, 5, 7 and 10 (each is a unit of standard deviation). For source types Intra-day Variables
and Extreme Scattering Events, SNR is defined in relation to the source’s quiescent flux.
For all other (transient) source types, SNR is defined with respect to the source’s peak
flux. For transient source types, the event occurs at time 0.

Our first result, in Fig. 1, shows accuracy by feature representation, averaged across
all other parameters (SNR and classifier). We measure accuracy using 10-fold cross val-
idation. The results show that the time domain observations alone yield the weakest
performance on average, and combining the feature representations (all and all-reps)
yields the best performance.

Fig. 1 shows accuracy per classifier and feature, averaged across SNR. SVM seems
to have the largest variability in performance, recording the lowest performance for the
tme feature, but the highest performance for the all-reps feature set. For the higher-
performing all-reps and all feature representations, the three classifiers perform simi-
larly. We conclude that feature representation more strongly informs performance than
classifier selection.

4. Conclusions
These results are part of ongoing work to estimate the classification performance of

VAST data prior to the arrival of commissioning data from ASKAP’s BETA. We have also
studied the impact of different VAST observational strategies, and estimated classification
performance per source type. We plan to publish those results along with the results in
this paper in a VAST Memo in early 2012. Our future plans are to refine our methods
and feature representations in order to optimize classification performance in the archival
setting.
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