GOURSAT'S THEOREM AND HOMOLOGICAL ALGEBRA
Joachim Lambek

(received February 7, 1964)

This expository note consists of two parts: In the first
we present a homological formulation of Goursat's theorem.
In the second we indicate how some rudimentary concepts of
homological algebra can be introduced with the help of this
form of Goursat's theorem. The second part is addressed to
those readers with an algebraic background who wish to be
initiated into homological algebra as painlessly as possible.
The ideas developed here are close to the spirit of [5, Chapter II,
§ 6], where further references may be found. In fact, these
ideas are very much in the air, and any originality in the
present note is purely coincidental.

PART I

Before stating Goursat's theorem, some preliminary
definitions are in order. If A and B are sets, a binary
relation between A and B isa triple p =(R, A, B), where
R 1is a subset of the cartesian product A x B, called the
graph of p. Now let A and B be groups; then p is called
a homomorphic relation provided R is a subgroup of A x B.
Well-known examples of homomorphic relations between A and
B are:

(2) homomorphisms of A into B,
(b) inverses of homomorphisms of B into A,
(c) congruence relations on A (in case A =B).
We write a p b to mean (a2, b) e R.
GOURSAT'S THEOREM. If p is any homomorphic

relation between groups A and B then the following factor-
groups are isomorphic:
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{aca]a, paeb} (beB|T  apb)

{acA | ap0}={b<Bl Opb '}

(The neutral element of a group has been designated as 0,
since we ultimately have abelian groups in mind.)

Historical note. Essentially this result was first published
in 1889 (see [3]). It has been rediscovered many times since,
for example by Shoda (see [6]). A recent discussion of this
theorem may be found in [4] where it is also shown how the
Jordan-Hdlder-Schreier Theorem may be deduced from it.
(It furthermore follows from [4] that a slightly modified form
of Goursat's Theorem remains valid in any class of algebraic
systems (i.e. sets with operations) provided among these
operations there is a ternary operation f(x, y, z) such that
identically

flx,y,y) = x, fly,y,2z) = z.

The modification consists in replacing normal subgroups by
congruence relations.)

We now present a2 homological formulation of Goursat's
Theorem, which is illustrated by the following diagram.

A B
A —™— B ——> (C

al Iﬁl I ly
b —— E —r s F

At K

THEOREM. Let X\, p, ', p', a, B, y be given
homomorphisms of groups such that

(1) Im A = Ker p, Im \' = Ker u',

and

(2) BoX =X o0a, yop =p' 0f;
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then

ImpB N ImA\' Ker (y o y)
Im (B o \) Ker B+ Ker p

(3)

COMMENTS. The group operation has been written + ,
without assuming commutativity. Since Ker f and Ker p are
normal subgroups of B, their sum is the normal subgroup
generated by them. Also Im(p o \) =f(Ker p) is a normal
subgroup of Im P =pB.

Ore usually renders (1) by saying that the rows of the
diagram are exact.

One usually renders (2) by saying that the squares [ and II
of the diagram are commutative.

We suggest that (3) be read thus:

The image ratio of I is isomorphic with the kernel ratio
of II. We write i(I) T k(II).

Proof. For beB and ee¢ E write bp e to mean that
there exists b' ¢ B such that

pb = pub' and Bb' =e and p'e=0.

The reader will have no difficulty in verifying that p is a
homomorphic relation between B and E. Now compute:

() & pbpe <> I, _pb = pb and p'(Bb') = 0
<> &, pub =pb' and ylpb) = 0
<=> be Ker (yop),

(ii) bp O <> @, g e(b-b') =0 and po’ = 0.

<=> be Ker p+ Ker g,
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iii) d = . ' o= ' = :
(1iii) stbpe <= zb'epr e and p'e 0
<= eeImpB  ~ ImA\',
(iv) Op e <= Eb' c B0 = pb' and Bb' = e and p'e =0

<=> e¢€fp(Kerpn) and p'e = 0
<=> e¢Im (BoA),
since p'(f Ker p) = y(p Kerp) = 0.

Applying Goursat' s Theorem to the relation p defined -
above, we immediately obtain (3).

We shall now show that conversely Goursat's Thoerem
may be deduced from the above result.

Let A and B be given groups, R a subgroup of A xB.
Then p =(R, A, B) is a homomorphic relation between A and

B. Put

C ={aea|Z apb},

beB
D ={a€Alap0},

1 -
C' = {beB IEIaeAapb} ,

D' = {beB |0pb} ,
and consider the following diagram:

A B
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Here a is the inclusion map, Ad =(d,0)€¢ R, for any de¢ D,
Ble, ¢') = ce A, forany (c,c')eR,
ple, ¢') = c¢' € B, forany (c, c')€eR.
We now verify (1) and (2); thus
(¢, c')eIm N <=> c€D and ¢' = 0
<> (¢, c')e Ker p,
and the exactness of the bottom row is obvious. Furthermore

(BoX)d =8(d,0) =d =(1o0a)d,

and the commutativity of the second square is obvious. By our
theorem we have (3). Now

Imp ~Imi =C~C =C,
Im(Boi) =D,
Ker (Oopn) = R,
Kerf+ Kerp = (0XxXD')+ (DXxO0)
= DXD!'.
Hence (3) asserts that
C/D T R/(DXD").

Because of the symmetry of the right hand side of this isomor-
phism, we have

Cc/D T C'/D,
and this is Goursat's theorem.

As a byproduct of this proof we obtain the following sup-
plementary result to Goursat' s Theorem.

COROLLARY. Both factor-groups in Goursat's Theorem
are isomorphic to R/{(a,b)e R I apO0 and 0p b}.
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Since it is not fashionable to have a proof without a result
proved by it, we state the following

INFORMAL METATHEOREM. The above theorem is
equivalent to Goursat' s Theorem.

To give a precise meaning to this statement one must go
into the axiomatics of categories, something which we shall not

do here.

We illustrate the power of Goursat's Theorem in its
homological form by giving a rapid construction of the so-called
connecting homomorphism.

Consider the following diagram, in which all rows and
columns are assumed to be exact and all squares are assumed
to be commutative.

0
'
A =B
i '
c - D - E -0
‘ ' 4
0O - F - G - H
4 4
I =7
+
0

We want to show the existence of a homomorphism B -1 so
that the sequence

A +» B--->1 -+ 7J

is exact. Thus let X =B/K, where K is the image of the
homomorphism A - B, and let Y be the kernel of the homo-
morphism I - J, then we want to show that X¥Y. (Why is
K normalin B? If we identify B with its image in E, K

is the image in E of the image of A —= D, that is of the kernel
of D -+ G. Since the latter is normalin D, K is actually
normal in E.)
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We may enlarge part of our diagram as follows, so that

again all rows and columns are exact and all squares are com-
mutative.

l 1

A—> B --->

Lsl 2

D—> E —

Le]

G— H

0
1)
]
N,
0 ---» X
v
X

---» 0

We now compute image and kernel ratios:
X = i(1) ¥ k(2) ¥ i(3) T k(4) .
Since the square labelled 4 was symmetrically situated in the
original diagram, we also have Y £k(4); hence XTY, as
was to be shown.
PART I

Given any exact sequence of right R-modules

L 4 T
0+-A-B-+-C-=0,

it is well-known (e. g. [5], p.148) that, for any left R-module M,
the canonically associated sequence

k@iM @1y
A®RM »B®RM - C®RM -0

is also exact. Moreover RM is called flat if this latter exact

sequence can be completed by sticking 0 - in front. We assume
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as known that any free module is flat [1, p.28]. Henceforth we
shall write (X) in place of ®R .

Let AR and RA‘ be given R-modules. We can find flat
modules FR and RF‘ and epimorphisms 7 : F -+ A and
m : F' = A', for example by taking F and F' to be free.
Putting K =Ker v and K' =Ker n', we obtain exact sequences

A 1
0~KSFLA=0, 0-K =F “A' =0,
where & and «' are the inclusion mappings. Now let

X:Ker(«@iA'), x =Ker(1A®x'),

and consider the following diagram:

0
)
0 - XX -+ X -+ 0

, } 6 ' 7 4

K@K — FQRK — AQRXK — 0
¢ 4 { 5 '

0 - KQF — FRF — AQF — 0
P2 } 3 ¢ b

0 - X — K@A" —~ FRQA' — ARA' — 0
31 } { )
X s 0 0 0

It follows from what has been said above that all rows and
columns in this diagram are exact. In particular, the second
undotted column is exact because F is flat. Moreover, one
readily sees that all squares in the diagram are commutative.

For example, the compound mapping of K &) K' into F & F'
is
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1 D« o (¥R 1)

[[]

<@ «'
one way, and

@1 o (1R« «Q «

the other.

Applying Goursat's Theorem in its homological form,
we have

Retaining only X, i(4) and X', we obtain the following well-
known result.

PROPOSITION. Let 0 »K~ F > A +0 be an exact
sequence of right R-modules with FR flat, and let

.n.l

’
0+K =F =A -0

be an exact sequence of left R-modules with _F' flat. Then

Ime @ 1,) ~ Im(1_ @«")
Im(« & «")

Kel’("’®1A,)§ gKer(1A®K').

Since Ker (¥ @ 1A' ) does not depend on the sequence
0+K—-F-=A -0 and Ker (1A & «') does not depend on

the sequence 0 =K' = F' - A' -0, both can depend only on
A and A'. One writes Tor (A, A') for this common value
(common up to isomorphism that is), and calls it the torsion
product of A with A'. (Actually, the usual definition of
torsion products uses projective in place of flat modules.)

We shall desist from developing any properties of the
torsion product here. Let us only point out that even when F

is not flat, the exact sequence

0+-K—+-F—-A-+0
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gives rise to an exact sequence involving ¥ , to wit

Tor (K, A') = Tor (F, A') = Tor (A, A'")
“K®A' -FRA -AR A" =0,

This is shown with the help of the connecting homomorphism of
Part I.

Finally let it be mentioned that the functor Ext (A, B),
for right R-modules A and B, may be introduced in an entirely
analogous manner, by starting with exact sequences

0+-K—=-P—-A-=0, 0-B-1/B-0,
where P is projective and I is injective.

While the results of Part I are valid for non-abelian
groups (and even more general systems, see [4]), in Part II
we have confined attention to R-modules, thus to abelian groups.
It is obvious though that Part II would remain valid for non-abelian
groups (take R to be the ring of integers), provided we had a
non-abelian functor corresponding to (X) . I am endebted to
Basil Rattray for the observation that the most natural attempt
to introduce a tensor product of two non-abelian groups leads
to the usual tensor product of their abelianizations.
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discovered the theorem of Part L.
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NOTES ADDED IN PROOF

1. Actually, Goursat's original theorem also asserted
the following (in the notation of the theorem stated at the begin-
ning of Part I): '"Moreover a p b if and only if the equivalence
classes of a and b correspond under this isomorphism."
While this additional fact is not used in the present paper, the
historical note in Part I is really about this augmented theorem.

2. If two commutative squares are suitably attached to a
third square so that all rows and columns are exact, one deduces
that their image ratios are isomorphic. It has come to my
attention that this isomorphism was used by B. Eckmann in his
lectures some years ago.

3. Here is another, more direct proof of the two-square
theorem:

ImBAIm \' Im B ~Ker p' = {@gb|u'pb =0}

il

{pb|yub =0} = p Ker(you),
Im{(BoX)= BIm\ = pKerp = B(Ker p+ Ker p) .

The result now follows from one of the classical isomorphism
theorems of group theory.
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