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This expository note consists of two par ts : In the first 
we present a homological formulation of Goursat ' s theorem. 
In the second we indicate how some rudimentary concepts of 
homological algebra can be introduced with the help of this 
form of Goursat ' s theorem. The second part is addressed to 
those readers with an algebraic background who wish to be 
initiated into homological algebra as painlessly as possible. 
The ideas developed here a re close to the spirit of [5, Chapter II, 
§ 6]i where further references may be found. In fact, these 
ideas a re very much in the a i r , and any originality in the 
present note is purely coincidental. 

PART I 

Before stating Coursât1 s theorem, some prel iminary 
definitions a r e in order . If A and B are sets , a binary 
relation between A and B is a tr iple p = (R, A, B), where 
R is a subset of the cartesian product A x B, called the 
graph of p. Now let A and B be groups; then p is called 
a homomorphic relation provided R is a subgroup of A x B. 
Well-known examples of homomorphic relations between A and 
B a re : 

(a) homomorphisms of A into B, 

(b) inverses of homomorphisms of B into A, 

(c) congruence relations on A (in case A = B). 

We write a p b to mean (a, b) € R. 

GOURSAT» S THEOREM. If p is any homomorphic 
relation between groups A and B then the following factor-
groups are isomorphic: 
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{ a € A | 3 a p b } { b « B | 3 . a p b} 
D € t5 ^j a € A 

{ a e A | a p 0 } = {b* B | O p b " } 

(The neutral element of a group has been designated as 0, 
since we ultimately have abelian groups in mind. ) 

Historical note. Essentially this result was first published 
in 1889 (see [3]). It has been rediscovered many times since, 
for example by Shoda (see [6]). A recent discussion of this 
theorem may be found in [4] where it is also shown how the 
Jordan-Holder-Schreier Theorem may be deduced from it» 
(It furthermore follows from [4] that a slightly modified form 
of Goursat' s Theorem remains valid in any class of algebraic 
systems (i. e. sets with operations) provided among these 
operations there is a ternary operation f(x, y, z) such that 
identically 

f(x, y,y) = x, f(y,y,z) = z. 

The modification consists in replacing normal subgroups by 
congruence relations. ) 

We now present a homoiogicai formulation of Goursat' s 
Theorem, which is illustrated by the following diagram. 

x n 
A » B > C 

• 1 ' 4 n [-< 
D » E » F 

X' u' 

T H E O R E M . L e t X, u, X» , JJL' , a, p , v be given 
homomorphisms of groups such that 

(1) ImX = Ker u, Im V = Ker ul , 

and 

(2) p o X = X1 o a, v o \L = |±f o p ; 
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then 

I m p ^ h i \ ' ^ Ker (y o u) 
( ' Im (|3 o X) " Ker (3 + Ker u 

COMMENTS. The group operation has been written + , 
without assuming commutativity. Since Ker p and Ker j± are 
normal subgroups of B, their sum is the normal subgroup 
generated by them. Also Im((3 o \) = p(Ker u) is a normal 
subgroup of Im p = pB. 

One usually renders (1) by saying that the rows of the 
diagram are exact. 

One usually renders (2) by saying that the squares I and II 
of the diagram are commutative. 

We suggest that (3) be read thus: 

The image ratio of I is isomorphic with the kernel ratio 
of II. We write i(I) ^k(II). 

Proof. For b € B and e € E write . b p e to mean that 
there exists b' « B such that 

jj.b = jab1 and pb1 = e and \x* e = 0 . 

The reader will have no difficulty in verifying that p is a 
homomorphic relation between B and E. Now compute: 

( i ) 3
e € E b P 6 < ^ Z b ' € B ^ = K b ' a n d ^ ( f 3 b î } = ° 

<==> 3 b f jib * ub* and y(ub) = 0 

<=> b € Ker (v o JJL) , 

(ii) b p 0 <=> 3 u(b-b f ) = 0 and pb1 = 0 . 

<=> b € K e r u- + Ker p , 
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(iii) 3 b p e <=> 3 , 6bf = e and u1 e = 0 
b * B b ' c B 

<=> e € Im (3 f~\ Im X1 , 

(iv) O p e <=> 3 0 = ubf and (3b1 = e and u1 e = 0 

<=> e c (3(Ker JJL) and pif e = 0 

<=> e « Im (p oX) , 

s ince JJL1 (p Ker u) = v(u Ker |±) = 0 . 

Applying Goursat' s Theorem to the relat ion p defined 
above, we immediate ly obtain (3). 

We shall now show that converse ly Goursat1 s Thoerem 
may be deduced from the above result . 

Let A and B be given groups, R a subgroup of A x B . 
Then p = (R, A , B) i s a homomorphic re lat ion between A and 
B. Put 

C = { a c A | 3 b € B a p b} , 

D - { a € A | a p 0} , 

C1 = { b c B | 3 a p b } , 
a € A 

Dl = { b c B | 0 p b} , 

and consider the following diagram: 

D » R > Cf 

>!' 4̂  ^ 
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Here or is the inclusion map, \d = (d,0) € R, for any d c D, 
p(c, c' ) = c c A , for any (c , cr ) * R , 
u(c, c' ) = c f « B , for any (c , c1 ) € R . 

We now verify (1) and (2); thus 

(c, c' ) € Im X <=> c € D and cr = 0 

<=> (c , c' ) € Ker u , 

and the exac tness of the bottom row is obvious. Furthermore 

(P o \) d = p(d, 0) = d = (1 o a) d , 

and the commutativity of the second square i s obvious. By our 
theorem we have (3). Now 

I m p A l m i = C ^ s C = C , 

I m ( p o X ) = D , 

Ker (0 o u) = R , 

Ker p + Ker u - ( 0 x D ' ) + ( D x 0 ) 

s -O X D * . 

Hence (3) a s s e r t s that 

C /D ~ R / ( D x D * ) . 

Because of the symmetry of the right hand side of this i s o m o r ­
phism, we have 

C / D S C ' / D ' , 

and this i s Goursat1 s theorem. 

A s a byproduct of this proof we obtain the following sup­
plementary result to Goursat' s Theorem. 

COROLLARY. Both factor-groups in Goursat' s Theorem 
are i somorphic to R / { ( a , b ) € R | a p 0 and 0 p b} . 
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Since it is not fashionable to have a proof without a result 

proved by it, we state the following 

INFORMAL META THEOREM. The above theorem is 
equivalent to Goursat ' s Theorem. 

To give a precise meaning to this statement one must go 
into the axiomatic s of categories , something which we shall not 
do here . 

We i l lustrate the power of Goursat ' s Theorem in its 
homologicai form by giving a rapid construction of the so-called 
connecting homomorphism. 

Consider the following diagram, in which all rows and 
columns a re assumed to be exact and all squares a re assumed 
to be commutative. 

c 
I 
F 

I 

I 
0 

_» 

_* 

_» 

A 

D 

G 

J 

0 

1 
•* ' B 

- E 

- H 

We want to show the existence of a homomorphism B - I so 
that the sequence 

A -+ B - - - » I -> J 

is exact. Thus let X = B/K, where K is the image of the 
homomorphism A -> B, and let Y be the kernel of the homo­
morphism I -* J, then we want to show that X ^ Y . (Why is 
K normal in B ? If we identify B with its image in E, K 
is the image in E of the image of A -* D, that is of the kernel 
of D -* G. Since the lat ter is normal in D, K is actually 
normal in E. ) 
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We may enlarge part of oar diagram as fo l lows , so that 
again ail rows and columns are exact and all squares are c o m ­
mutative. 

0 
t 
i 

0 ~ — * X 

I 1 i 
B ----> X - - - * 0 

E > 0 

1 
H 

We now compute image and kernel rat ios: 

X = i ( l ) ^ k(2) ~ i{3) ~ k(4) . 

Since the square labelled 4 was symmetr ica l ly situated in the 
original d iagram, we a l so have Y =*k(4); hence X ^ Y , as 
was to be shown. 

PART H 

Given any exact sequence of right R-module s 

0 - A -*B - C ->0 , 

it i s wel l -known (e. g. [5] , p. 148) that, for any left R-module M, 
the canonical ly assoc ia ted sequence 

A ® M -* B ® M - ^ C ® M - ^ 0 
R R R 

i s a l s o exact . Moreover WM is cal led flat if this latter exact 
R 

sequence can be completed by sticking 0 -* in front. We a s s u m e 

D » 

i 4 
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as known that any free module is flat [ i , p. 28]. Henceforth we 
shall write ® in place of ® . 

Let A and A1 be given R-modules. We can find flat 
R R 

modules F and F1 and epimorphisms it : F -•* A and 
R R 

Trt : F ! -*- A1 , for example by taking F and F ! to be free. 
Putting K = Ker ir and K* = Ker TT! , we obtain exact sequences 

0 - * K ^ F ^ A - * 0 , 0 -* K' ^ F ! ^ A1 -* 0 , 

where AT and xx a re the inclusion mappings. Now let 

X = Ker [AC ® 1 ^ ) , X = Ker ( 1 A ® ^ ) , 

and consider the following diagram: 

0 

I 

0 .-* X1 — X1 — 0 

* 6 i 7 1 

K ® Kf —* F ® K' ~* A ® Kf --<* 0 

* 4 4 5 | 

0 —* K ® Ff —* F ® Ff -** A ® Ff -*• 0 

; 2 * 3 i i 

0 -* X —* K ® A1 —* F ® A1 -<* A ® A1 —* 0 

• 1 * 1 * 
X — 0 0 0 

It follows from what has been said above that all rows and 
columns in this diagram are exact. In par t icular , the second 
undotted column is exact because F is flat. Moreover, one 
readily sees that all squares in the diagram are commutative. 
For example, the compound mapping of K ® K' into F ® F' 
is 
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(1 ®x" ) o (*-® 1) = *@*" 

one way, and 

K ® 1) o (1 ® A " ) = ^ O V 

the other. 

Applying Goursat1 s Theorem in i ts homological form, 
we have 

X = k( l ) = i(2) ^ k(3) ^ i(4) = k(5) ^ i(6) ~ k(7) = X* 

Retaining only X, i(4) and X! , we obtain the following we l l -
known resul t . 

PROPOSITION. Let 0 -* K ^ F ^ A -* 0 be an exact 
sequence of right R-moduies with F flat, and let 

R 

«' ir' 
0 - K 1 - F ' - A ' - 0 

be an exact sequence of left R-modules with F' flat. Then 

I m ( ^ © 1 ) /~\ Im(l ® A " ) 
to"®Vï: tofrc®*') = K e r ( i A ® - ) 

Since Ker (AT © lAt ) does not depend on the sequence 

0-*K-*F->A-*0 and Ker (1 ® A" ) does not depend on 
.A 

the sequence 0 -* K! -*• F ! -*• A1 -*•(), both can depend only on 
A and AT . One wr i tes Tor (A, A1 ) for this common value 
(common up to i somorphi sm that i s ) , and ca l l s it the tors ion 
product of A with A1 . (Actually, the usual definition of 
tors ion products uses projective in place of flat modules . ) 

We shall des i s t from developing any propert ies of the 
tors ion product here . Let us only point out that even when F 
i s not flat, the exact sequence 

0 -*K - F -*A -* 0 
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gives rise to an exact sequence involving ® , to wit 

Tor (K. A1 ) - Tor (F, A! ) - Tor (A, Af ) 

- K © A» - F ® A< -* A ® A! - 0 , 

This i s shown with the help of the connecting homomorphism of 
Par t I. 

Finally let it be mentioned that the functor Ext (A, B), 
for right R-modules A and B, may be introduced in an entirely 
analogous manner , by starting with exact sequences 

0 - K - P - * A - * 0 , 0 -> B - i /B - 0 , 

where P is projective and I is infective» 

While the resul t s of Par t I a re valid for non-abelian 
groups (and even more general sys tems, see [4]), in Par t II 
we have confined attention to R-modules, thus to abelian groups. 
It is obvious though that Par t II would remain valid for non-abelian 
groups (take R to be the ring of integers) , provided we had a 
non-abelian functor corresponding to (§) . I am endebted to 
Basi l Rattray for the observation that the most natural attempt 
to introduce a tensor product of two non-abelian groups leads 
to the usual tensor product of their abelianizations. 
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POSTSCRIPT 

Peter Hilton informs me that he has independently 
d i scovered the theorem of Part I. 

The following additional r e f e r e n c e s , concerning the last 
paragraph only, have been pointed out to the author: 

I. F l e i s c h e r , A note on subdirect products, Acta Math. 
Acad. Sci. Hungar. 6 (1955), 463-465 . 

A. Frohl ich, Non-abel ian homoiogical a lgebra, Proc . 
London Math. Soc. 1 1 ( 1 9 6 1 ) , 239-75 , and 12 (1962), 
1-28, 739-68 . 

T. MacHenry, The tensor product and the 2nd nilpotent 
product of groups, Math. Z. 7 3 ( 1 9 6 0 ) , 134-145. 

' , The tensor product of non-abel ian groups and 
exact sequences , Arch. Math. 11((1960), 166-170 . 
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NOTES ADDED IN PROOF 

1. Actually, Goursat1 s original theorem also asser ted 
the following (in the notation of the theorem stated at the begin­
ning of Part I): "Moreover a p b if and only if the equivalence 
c lasses of a and b correspond under this isomorphism. ,! 

While this additional fact is not used in the present paper, the 
historical note in Par t I is really about this augmented theorem. 

2. If two commutative squares a re suitably attached to a 
third square so that all rows and columns a re exact, one deduces 
that their image rat ios a r e isomorphic. It has come to my 
attention that this isomorphism was used by B. Eckmann in his 
lectures some years ago. 

3. Here is another, more direct proof of the two-square 
theorem: 

I m p A l m X » = I m p n K e r f i ' = {pb |n ! | 3b=0} 

- { pb | vnb = 0} = p Ker(v o u) , 

I m ( p o X ) = p i m X = p Ker a = (3(Ker u + Ker p) . 

The resul t now follows from one of the c lass ica l i somorphism 
theorems of group theory. 
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