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NOTE ON CONTINUOUS AND PURELY FINITELY
ADDITIVE SET FUNCTIONS

BY
WILFRIED SIEBE

ABSTRACT.  The Sobczyk-Hammer respectively Yosida-Hewitt decom-
position ([17], [19]) generates the class of continuous respectively purely
finitely additive charges. In this paper, attention is limited to hereditable
properties for these classes. It is proved that the property of continuity is
preserved with respect to extensions and that if all extensions of a charge
to a charge on a given field are continuous, then the original charge is
continuous. An analogous heredity theorem for purely finite additivity
holds true in the monogenic case.

1. Preliminaries. Let us now establish the setting for the work which follows. A
charge on a field U of subsets of a set is a real-valued nonnegative finitely additive
function defined on AU. A measure is a countably additive charge whose domain is a
o-field of subsets of a set. A charge p on a field U (in a set ) will be called continuous
if, and only if, given € > 0, there exists a partition {B,, ..., B,} of { into a finite
number of pairwise disjoint members of U such that w(B;) < e for every i. A charge
. is said to have the Darboux property if, and only if, for any B € U and any a with
0 = a = w(B) there exists a set C € AU such that C C B and p(C) = a. A set
A € W is an atom for w if, and only if, w(A) > 0 and for any E € U, E C A, either
W(E) = 0 or W(E) = w(A). A charge p is nonatomic if, and only if, there are no atoms
for . If 2 is a subfield of U, then p|  will denote the restriction of p on » . A
charge v on U is called purely finitely additive if, and only if, v has no countably
additive minorant (that is to say v = k implies k = 0 for any countably additive charge
k on AU where = denotes the natural partial ordering on the set ba (2, AU) of all bounded
additive set functions on ). Finally, we denote by ba' (U, v, AU') respectively
ca® (2, A, Z') the set of all extensions of a charge v on a field U to a charge on a field
U’ where U is a subfield of U’ respectively of a measure A on a o-field 2 to a measure
on a o-field 2’ where 2 is a sub-o-field of X'.

2. Extensions and restrictions. A. Sobczyk and P. C. Hammer have proved that
any charge on a field U can be decomposed uniquely into a continuous part and a part
which can be written as a sum of at most two-valued charges on AU ([17], [16]). We
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show that the property of continuity is preserved with respect to extensions and that if
all extensions of a charge to a charge on a given field are continuous, then the original
charge is continuous. In the presence of extreme extensions the same holds true for
measures — this may fail in the absence of extreme points.

THEOREM 1. Let AW, WU’ be fields of subsets of a set Q with W C W' and let v be a
charge on . It holds that v is continuous if, and only if, every p. € b'a (U, v, U")
is continuous.

PROOF. It suffices to prove that v is continuous if every p € ba* (U, v, U') is
continuous. By theorem 1 in [14] the extreme points of ba' (U, v, U’') can be
characterized by the following approximation property (*): A charge p on U’ has the
property (*) if, and only if, given € > 0 and A" € U’, there exists a set A in U with
w(A'AA) < e for the symmetric difference A'AA. Let p be an extreme extension of v,
whose existence is guaranteed by a corollary to theorem 1 in [14], and which by
assumption on ba* (U, v, A') is continuous. The technique in the proof for lemma 3.1
of [3] shows that already p |4 is continuous.

For nonatomic measures, a parallel theorem to Theorem | can be obtained. Note that
for measures being continuous is the same as being nonatomic.

THEOREM 2. Let AU, W' be o-fields of subsets of a set Q withW C W' and v a measure
onW. Let ca, (O, v, W) denote the subset of extreme points of ca® (U, v, W'). Then,
if ca, (U, v, W'Y is nonempty, it holds that v is nonatomic if, and only if, every
w € ca' (U, vU') is nonatomic.

Notice that w € ca, (U, v, ') if, and only if, for every A’ € U’ there is a set
A € AU with w(A’AA) = 0 (see [14]) and apply the same technique as in the proof for
Theorem 1.

There are cases in which a nonatomic charge on a field can be extended to a charge
which fails to be nonatomic. Thus, for nonatomic charges only a partial analogue of
Theorem 1 holds true:

THEOREM 3. Let WU, W' be fields of subsets of a set ) with W C U’ and let v be a
charge on . Then v is nonatomic, if every p € ba* (U, v, U’) is nonatomic.

A theorem of D. Maharam ([10], Theorem 2) states that a charge w on a o-field is
continuous if, and only if, w has the Darboux property. Thus, the following partial
analogue of Theorem 1 with respect to the Darboux property is true:

THEOREM 4. Let WU, W' be o-fields of subsets of a set Q) with U C W' and let v be
a charge on . It holds that v has the Darboux property if, and only if, every p. €
ba' (U, v, WU") has the Darboux property.

It should be mentioned that in the theorem of D. Maharam just cited in general, the
predicate continuous cannot be replaced by the predicate nonatomic: In [12] the
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existence of a charge on a o-field has been shown which is nonatomic and without the
Darboux property.

It has been proven by K. Yosida and E. Hewitt ([19]) that any charge w on a field
of subsets of a set can be written uniquely as a sum . = A + .’ of a countably additive
part A and a purely finitely additive part p'. Translated to the case of purely finitely
additive charges Theorem 1 fails as the following example shows: Let X be a set of
cardinality N, let U respectively U’ denote the system {A C X|A countable or X\A
countable} respectively the power set of X. Then, by a theorem of S. Ulam ([18]) the
measure p on U defined by p(A) = 0 respectively 1 if A respectively X\A is countable
(A € U) only admits of purely finitely additive extensions to a charge on U'. The
monogenic case yields a positive result:

THEOREM 5. Let U, U’ be fields of subsets of a set Q) withW C AU'. Let v be a charge
on W and p.' a purely finitely additive charge on W' such that ba™ (U, v, W) = {un'}.
Then v also is purely finitely additive.

PrOOF. Let v, be a countably additive charge on U with v = v, whose extension to
a measure on the o-field A” (U) generated by U will be denoted by ¥,. To prove v, =
0 notice that U" C (A’ (U));, holds for the completion (A” (U));, of A” (U) with respect
to ¥, because for any A’ € U’ and € > 0 there exist sets A;, A, € AU such that A, C
A’ C Ay and p' (A)4)) < ¢, implied by the chain v.y- = p' = v¥*5- which holds true
for the interior respectively exterior charge vy respectively v* with respect to v as the
following argument will show (the interior respectively exterior charge v respectively
v* with respect to v is defined by v«(T) = sup v(M) respectively v* (T) = inf v(M)

MCT TCM

for any T C ): First, vy (E) = n' (E) = 17*€ (‘E) for all E € U'. Suppose ng;‘, there
isaset Eg € U with vy (Ey) < v* (Ey). Then v respectively b defined by v (E) =
ve (E N Eg) + v* (E N (Q\Ey)) respectively ¥ (E) = v* (E N Ey) + vy (E N(ONE))
for all sets E in the field A(U U {E,}) generated by U U {E,} are two extensions of
v to a charge on A(U U {E,}) ([9], p. 269) with v(E,) < ¥ (E,) in contradiction to the
monogenicity of p' with respect to U. Thus, the charge v, admits of an extension to
a countably additive charge v{ on U" with v; = ' and therefore v; = 0. The minorant
property v{ = ' can be shown by a more canonical indirect argument.

3. Limits of sequences. (1) A characterization of the predicate purely finitely
additive by K. Yosida and E. Hewitt shows that this property is preserved with respect
to limits of sequences of charges whose common domain is a o-field: Let (w,),ex be
a sequence of purely finitely additive charges on a o-field U in a set () and ., a charge
on U with w, (A) = p, (A) for all A € U. Then w, is also purely finitely additive.

PrROOF. Let A be a measure on A and € > 0. It suffices to show the existence of a
set Ay € AU such that py (NAy) = 0 and A(A,) < € ([19], Theorem 1.18): Choose
positive real numbers ¢, (n € N) with £,_, ¢, < €. By Theorem 1.19 in [19] there

https://doi.org/10.4153/CMB-1986-064-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1986-064-6

410 W. SIEBE [December

are sets A, € AU with w,(\A,) = 0 and N(A,) < ¢, for all n € N. The set
Ui~ Ay € U fulfills the requirements.

(2) Whereas nonatomicity is preserved with respect to limits of sequences of measures
under the topology of setwise convergence (notice that for nonatomic measures w, and
a measure W on a o-field 9 such that p,(A ) = po(A) for any A € 4 the measure p
= 37_, 1/2" w, is also nonatomic and p, is absolutely continuous with respect to
— then apply Theorem 2.4 of [7], thus p, also is nonatomic) no analogous heredity
results hold true in the case of charges concerning the predicates nonatomic and
continuous as can be seen by direct arguments (for the nonatomic case, e.g., choose
the field U and the charge " on AU as in the second part of the example in [16], p. 450.
Let ., be defined by w,(B) = N(B N A,) for any B € U where \ denotes the Lebesgue
measure and A, = [0, 1/4+ 1 /(9 + n)] U (3/4 — 1/(9 + n), 1] foralln € N. Then
W, is a nonatomic charge on U(n € N) such that w,(B) — p'(B) for any B € AU).

4. Remarks. (1) Theorem 4 is no longer valid if it is translated to the case of fields:
Define S = [0,1), let U be the field which is generated by {{a, b)|a,b € Q with
0=a<b=1},U' the o-field of Borel sets in S, and v the restriction of the Lebesgue
measure A on U. Then every w € ba* (U, v, U’) is continuous and thus has the
Darboux property by the above theorem of D. Maharam in contrast to v.

(2) The following example shows that Theorem 2 does not hold in the absence of
extreme points in ca* (U, v, U'): Let U’ be the o-field of Borel sets in the reals R,
define U = {A C R| A or R\A is countable}, and let v be the measure on AU defined
by v(A) = Oresp. 1 if A resp. R\A is countable. Then ca® (U, v. U') coincides with
the family of all nonatomic probability measures on U’. ca, (U, v, AU') is empty —
this can be seen from the characterization of extreme extensions of a measure following
Theorem 2.

There are structures under which ca: U, v, U") is nonempty: For example, let S be

a compact Polish space (i.e. a compact space with a countable base), M a separable
metric space, U’ respectively & the o-field of Borel sets in S respectively M, f a
continuous mapping of S into M, and v a measure on AU with U = f~' (% ). Then,
(because of the regularity of Borel measures on Polish spaces, see [1]) ca® (U, v, U")
C rca* (S), where rca' (S) denotes the positive cone of the space rca(S) of all
real-valued countably additive regular set functions on the Borel sets in S. Let rca(S)
be provided with the weak™* topology of the conjugate space of the Banach space C(S)
of all real-valued bounded continuous functions on S (under the supremum norm). Then
ca® (U, vAU') is a compact subset of rca(S): Choose a sequence (W,),ecx in ca* (U,
v,U") converging to p' € rca*(S) with respect to the relative weak* topology. Then,
J(g°f) dp,— [(g°f)dn' forany g € C(M). Consequently, [g df (v) = [ g df (n")
because of [(g°f)dw, = [(g°f) dv, where h(p) denotes the image of a measure . under
a measurable mapping h. Thus, w'jq, = v by the coincidence of the measures f(v) and
f(pn") on ([4], Theorem 1.3 or [13], Theorem 5.9). It follows that ca® (U, v, U")
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is closed in rca(S) (notice the metrizability of the relative weak* topology on rca*(S)
([5], p. 1214) and the fact that rca*(S) is a closed subset of rca(S)). A corollary to the
theorem of Alaoglu ([6], V.4.3) implies the compactness of ca® (U, v, U’). Because
A is separable, the theorem of D. Landers and L. Rogge in [8] shows that
ca® (WU, v, WU’) is nonempty. Thus ca®™ (U, v, U’) has extreme points ([6], V.8.2).

(3) The preservation result 3.(1) fails if the common domain U is a field but not a
o-field: Define Q = [0, 1), 1, = 1/2" (m € N), let U (¢,,: m € N) denote the field in
Q generated by {{o,B) [0, BER : 0= a <B = 1} U {{t,} : m € N}, and v, the
restriction of the Dirac measure at s (s € R) on U (¢,, : m € N). Then (, ), e defined

by w,, (A) = lim v, (A) for any A € U (1, : m € N) is a sequence of purely finitely

=1,

>1,
additive charées"on W (1, : m € N) such that w, (A) — vy (A) foralA € U (1, : m
€ N). The convergence property of (., ) .cx follows from canonical, though longish
calculations.

The preservation result 3.(1) cannot be translated to the case of nets (py)uep : €.8.,
the restriction of the Lebesgue measure on the Borel o-field in [0, 1] admits of a
representation as the limit of a net of purely finitely additive charges under the topology
of setwise convergence ([11], 5.10).

I wish to thank Professor D. Plachky and the referee for valuable remarks.
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