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GENERALIZED MELLIN CONVOLUTIONS 
AND THEIR ASYMPTOTIC EXPANSIONS 

R. WONG AND J. P. McCLURE 

1. Introduction. A large number of important integral transforms, such 
as Laplace, Fourier sine and cosine, Hankel, Stieltjes, and Riemann-
Liouville fractional integral transforms, can be put in the form 

/

oo 

0 f(t)h{xt)dt, 

where / (0 and the kernel, h(t), are locally integrable functions on (0, oo), 
and x is a positive parameter. Recently, two important techniques have 
been developed to give asymptotic expansions of I(x) as x —> i o o o r x ^ 
0 + . One method relies heavily on the theory of Mellin transforms [8] and 
the other is based on the use of distributions [24]. Here, of course, the 
integral I(x) is assumed to exist in some ordinary sense. 

If the above integral does not exist in any ordinary sense, then it may be 
regarded as an integral transform of a distribution (generalized function). 
There are mainly two approaches to extend the classical integral 
transforms to distributions. In one approach, the kernel of a transform is 
embedded in a test function space, and a generalized integral transform is 
defined by the action on the kernel of an element of the dual space. A 
typical example of this approach is provided by the generalized Laplace 
transform; see [28, Section 6] or [21, p. 217]. In the other approach, one 
first finds a test function space O, which is mapped continuously into 
another test function space ^ by the integral transform in question, and 
then uses the adjoint mapping to define the generalized integral transform 
for the elements of the dual of yir. This is the approach commonly used for 
the Fourier transform of tempered distributions; see [20]. For a parallel 
study of these two approaches for the Stieltjes transform of generalized 
functions, we refer to [3]. 

Although there is a vast amount of literature on the subject of 
generalized integral transforms, only a few papers are devoted to 
discussions of the behavior of these transforms in the two limits x —> -f oo 
and x —» 0 + . In [10], Jones has given a detailed study of the case in which 
the kernel is an oscillatory function such as elt or the Bessel function Jn{t). 
Jones was concerned only with the limit x —> -foo, and obtained infinite 
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GENERALIZED MELLIN CONVOLUTIONS 925 

asymptotic expansions for this class of generalized transforms. In [15, 16], 
Lavoine and Misra have discussed the asymptotic behavior of the 
distributional Stieltjes transform, i.e., when h(t) = 1/(1 + /). They have 
treated both limits x —> +oo and x —» 0 + , but obtain only the leading 
terms in the asymptotic expansions. The above two studies are comple­
mentary to each other, but neither one can be extended to include the 
other. In this connection, we also mention a recent paper of Zayed [27], 
who establishes a general procedure to extend certain integral transforms 
to distributions, and then applies a technique of one of us ([25]) to derive 
asymptotic expansions (as x —» +oo) for some of these integral 
transforms. Zayed's procedure is essentially a unification of those given by 
Zemanian [29] and belongs to the first approach mentioned above. It 
should be noted, however, that the asymptotic expansions given in [27] 
are only for the conventional and not for the generalized integral 
transforms. 

The integral in (1.1) is one of the two convolutions encountered in the 
theory of Mellin transforms, and is easily seen to be equivalent to the 
other more symmetric convolution defined by 

/

oo 

0 f(t)S(xrv)rxdt. 

This suggests that one may extend the integral transforms to distributions 
in a third way, in addition to the two previously mentioned, that is to 
define first a distributional Mellin convolution and then to view the 
various generalized integral transforms as special cases. 

In this paper, we introduce a class J^of locally integrable functions in (0, 
oo), characterized by their asymptotic behavior at 0 and oo, on which we 
can define the Mellin convolution * as a distribution in (0, oo). This class 
includes functions such as e~l and 1/(1 + t), but (unfortunately) excludes 
oscillatory functions such as elt and Jn(t). Also, we find infinite asymptotic 
expansions, as x —» 0 + and as x —> +oo, of the convolution of two 
functions in J*T In particular, we give asymptotic expansions of the 
generalized Laplace, Stieltjes, and fractional integral transforms. We 
expect that our results can be extended to a class ^ D ^ which includes 
oscillatory functions such as elt and Jn(t), and that the asymptotic 
expansions of the generalized Fourier and Hankel transforms can be 
deduced, as special cases, from our general results on Mellin convolutions. 
This possibility is presently under investigation. 

The present paper is arranged as follows. In Section 2 we introduce the 
family J^and recall the regularization method developed in the theory of 
distributions. This method is then used to define infinite integrals 
involving functions in J^and, in particular, the Mellin transforms of these 
functions. Our family J^is similar to a class of distributions introduced by 
Jeanquartier [9] in a study on Mellin transforms of distributions. However, 
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the aims of the two studies and the methods used differ completely. In 
Section 3 the generalized Mellin convolution is defined, and some specific 
convolutions, including ta(\og t)n * /^(log t)n\ are calculated. Here a and /? 
are any complex numbers, and m and n are non-negative integers. It 
should be emphasized that these are Mellin convolutions, and not the 
convolutions associated with the Laplace transform as given in [6, p. 116] 
or those recently studied by Jones in connection with the Fourier 
transform [11, 12]. The main results of this paper are given in Section 4, 
where asymptotic expansions are derived for the generalized Mellin 
convolution as the parameter tends to zero or infinity. Finally, in Section 5 
various generalized integral transforms are defined as (generalized) Mellin 
convolutions, and the results in Section 4 are then used to give asymptotic 
expansions of these transforms. 

2. Regularization of infinite integrals. Let J^be the family of locally 
integrable functions/(/) on (0, oo), which have asymptotic expansions of 
the form 

oo N(s) 

(2.1) / ( / ) ~ 2 2 arst
ailog t)r as / -> 0 + 

s = 0 r = 0 

and 

oo Q(s) 

(2.2) /(/) - 2 2 crsr
pi\og ty as t -> +00, 

s = 0 r = 0 

where {Re as} and {Re vs) are strictly increasing sequences with limit 
+ 00, and N(s) and Q(s) are finite for each s; for definition of such 
asymptotic expansions, see [26]. The following facts about J^are easily 
verified and will be used later: (i) J^is a vector space; (ii) i f / a n d g be­
long to ^ then fg belongs to ^\ and (hi) if/belongs to J^then so d o e s / , 
where/( /) = f(\/t). 

Without restrictions on the exponents a0 and v0 in (2.1) and (2.2), the 
integral 

/*oo 

(2.3) Jo f(t)dt 

will normally diverge. In this section we shall summarize some of the 
important concepts in the regularization method [6] which will allow us to 
give a meaningful definition to the infinite integral (2.3). 

Let U be an open interval in R = ( — oo, oo). As usual, we shall denote 
by @(U) the space of all C°°-functions with compact support in U, and by 
@'(U) the space of distributions in U. The action of a distribution/on a 
test function r] will be denoted by ( / TJ). 

Le t / ( / ) be a locally integrable function in R — {/0}, but not integrable 
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in any interval containing fy. The integral 

J(t)ri(t)dt, r. 
where ?](/) belongs to <@(R), will in general diverge. However, it will 
converge if 7](î) vanishes in a neighborhood of ÎQ. 

Definition 1 ([6, p. 10]). A regularization of the function / ( / ) is any 
distribution/ e &(R) satisfying 

/

oo 

_oof(t)T](t)dt 

for all 7] G ^(R) whose support does not contain t0. 

It can be shown that every almost everywhere locally integrable 
function/(/) with at most a finite number of algebraic singularities can be 
regularized, and that the regularization is determined only up to an 
additive functional concentrated on the singularities of f{t)\ see [6, 
Section 1.7]. 

For our purpose we shall restrict our attention to those locally 
integrable functions / ( / ) which vanish in ( — oo, 0) but may have 
singularities only at 0 and oo. Thus we need consider only integrals of the 
form 

/ ; 0 AOviOdt, 

where the test function -q(t) is, however, still assumed to be only in <^(R) 
and not necessarily in i^(R+), R + being the open half-line (0, oo). 

For Re X > — 1, the integral 

/ ; t\(t)dt, 0 < b < oo, 

converges and is a holomorphic function of À. Furthermore, it can be 
analytically continued to the entire A-plane via 

J0 t\(t)dt = JQ tX[V(t) - MO) - ri'(P)t -

(2.4) ^À+i ^À + 2 

. . . + ^ ~ 1 ) ( 0 ) 
(n - 1)!(A + nY 

the right-hand side of which makes sense for all À with Re X > —n~ 1 
except for X = — 1, — 2 , . . . , —n. We shall use (2.4) to define a 
distribution which regularizes the function 
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(2.5) t{)<t<b a 
\ S tx for 0 < t < b 

0 for all other /, 

and we shall denote this distribution also by t0<t<h. Linearity of this 
distribution is obvious, and continuity follows from the Lebesgue 
dominated convergence theorem. Thus we define 

(2.6) (tX
0<l^„ V) = fQ t\{t)du 

where the integral is understood in the sense of (2.4). Note that if i\(t) 
vanishes in a neighborhood of t = 0, then this integral exists in the 
ordinary sense and (2.4) holds trivially. 

Thus, the distribution defined in (2.6) is indeed a regularization of the 
function given in (2.5). If we take TJ*(/) to be a test function in <@(R) which 
equals " 1 " on the interval [0, b], then we have from (2.6) 

(2.7) </£<,<*, 7,*) 
x + r 

Interpreting the integral j^rdt as the result of applying the distribution 

o the test 

(2.8) f/dt = 

h<t<b t 0 t n e t e s t function r/*(/) gives 

x + r 
valid for all X ¥= — 1, —2, —3, . . . ; see two related papers by Jones [11, 
12]. Since the right hand side has only one singularity at X = — 1, equation 
(2.8) will be considered to hold also at X = —2, — 3, . . . . 

In view of the fact that 

9'' x 

— r = 
= t\log t)r for t > o, 

we also obtain, by a similar argument, the formula 

(2.9) fl * og tfdt • i f -\)kr\ bx+] 

(log bf-k (2.9) fl * og tfdt • i f -\)kr\ 

'(X + \)k+i (log bf-k 

The case X = — 1 needs a separate treatment. The identity 

J Q r l T)(t)dt = 71(b) log b - J 0 Tj'(0 log / A, 

valid for all test functions i\ whose supports do not contain 0, suggests that 
we may define the distribution t0<t<h by 

(2.10) </0~<,<A, V) = V(b) log b - / 0 V(0 log / A, 

that is, 
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(2.11) t 0 ^ b = (log b)S(t - b) + (log / • X[m)\ 

where X[o,/>] *s the characteristic function which is equal to 1 on [0, b], and 
where the derivative on the right-hand side is taken in the distribution 
sense. With T]*(/) again being a test function in <®(R) which equals " 1 " on 
[0, b\ we have from (2.10): 

(2.12) <f0"<,<*, i?*> =logfr . 

We shall regard the integral / 0 t~xdt as the action of the distribution 
to<t<b o n V*- Thus (2.12) gives 

(2.13) JQ t~ldt = log b. 

A similar argument yields 

(2.14) fl / - ' ( log tyd t = ^ ^ r C i o g b y + [ 

for any non-negative integer r. 
Having given a meaning to the integral j $txdt, we now wish to do the 

same for the integral j^txdt. Unfortunately there is no test function in 
^(R) which is equal to " 1 " on the infinite interval [b, oo). Thus we must 
proceed in a slightly different manner. Let Q)(b, oo) denote the space of all 
C°°-functions <f>(0 on [b, oo) such that for 0 < / < Mb, we have 

<t>(\/t) = 7](t) for some t\ e ^(R). 

The linear functional th<t<00 is then defined by 

, r\/h 

<'*<*<oo,*> = J 0 T A Z7](T)dT (2.15) v & - K o ° ' y / J o 
_ / ~ ^ - 2 \ 
— \T0<T<\/h V/i 

where T](T) = ^>(l/r). We shall interpret the integral j ^ tx dt as the result 
of the action of th<t<OQ on a function <}>* e ^ (6 , oo) such that 

<J>*(l/0 - TJ*(0 = 1 for 0 < / < 1/6. 

Thus 

feA+l 

/

OO 

> M = X + 1 

for all X ^ — 1. The argument for (2.9) then leads to 

, - 0 ( r - fc)! (XT 1> /

oo r / _ 1 \k r\ 

h Alog r r * - - 2 j — ^ A 1 1 v t + 1(lo8 6 / 

The case X = — 1 can be treated similarly, and the corresponding formula 
is 
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/

OO I 

r\\ogt)rdt= - — — ( i o g & / + l . b (r + 1) 
Formulas (2.9), (2.14), (2.17) and (2.18) together suggest that we give the 

meaning 

/

oo / fb foo\ 

o Alog tfdt = {JQ+ Jh j?
A(log f)' A = 0 

for all complex À and all non-negative integers r. 
For À T̂  — 1 there is an easier way to motivate the result (2.19). For 

simplicity, let us consider only the case when r = 0. Clearly we have 
fb b\+\ 

(2.20) / n txdt = for Re X > - 1 
} J v X + 1 

and 

(2.21) J h tAdt = - ^-7-7 f o r R e X < ~ L 
roo . fr 

*> X + 1 

The right-hand sides of these two equations are analytic functions of À for 
all X except for X = — 1, and are hence meromorphic continuations of the 
integrals on the left-hand sides. If we use the integrals on the left-hand 
sides to denote not only the functions which they represent when they 
converge but also their meromorphic continuations, then it follows at once 
from (2.20) and (2.21) that for À ^ - 1 

/

oo fb foo 

0 ^ ' - J o ^ ' + L ** 
0. 

For another different approach to this problem, we refer to two recent 
articles by Jones [11, 12]. 

The above concept of regularization will now be used to give a 
meaningful definition to the infinite integral in (2.3). Suggested by (2.19), 
we split the interval of integration at / = b and consider first the integral 
j0f(t)dt. Now choose n such that Rea„ > — 1 and write (2.1) as 

n-\ N(s) 

(2.23) /(/) = 2 2 arsl"> (log if + fan(t) 
s = 0 r = 0 

with 

foAO = O(t""(\og tfW) as t -> 0 + . 

We define 

fb n~] N(s) fb fb 
(2.24) J /(/>//= 2 2 ars J f'(log tYdt + J0foAOdt, 

,9 = 0 r = 0 

https://doi.org/10.4153/CJM-1984-053-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-053-x


G E N E R A L I Z E D M E L L I N C O N V O L U T I O N S 931 

where the integrals in the double sum are understood in the sense of either 
(2.9) or (2.14), depending upon whether as is not or is equal to — 1, and 
where the last integral on the right exists and is hence taken in the 
ordinary sense. 

Similarly, we choose q such that Re vq > 1 and write (2.2) in the 
form 

q-\ Q(s) 

(2.25) / ( 0 = 2 2 c r 5 r -^ ( logO r +/oo^(0 
s = 0 r = 0 

with 

foe* (t) = 0(r "<log 00(*}) as t -> oo. 

The integral f™ f(t)dt is then defined by 

/

oo <7_ 1 Q(s) /*oo 

b f(t)dt^ 2 2 c „ J f t r\\ogt)rdt 

+ 

5 = 0 r = 0 

/

oo 

where the integrals in the double sum are understood in the sense of either 
(2.17) or (2.18), depending upon whether vs is not or is equal to 1, and 
where the last integral on the right-hand side exists and is taken in the 
ordinary sense. 

Definition 2. If / i s in 3F then the infinite integral f0f(t)dt is given the 
meaning 

/

oo fb foo 

0 f(t)dt= J0f(t)dt + j h f(t)dt, 
where the two integrals on the right are defined by the formulas (2.24) and 
(2.26). The value of the right-hand side is called the regularization of the 
(formal) integral on the left. 

We shall also call the right-hand sides of equations (2.9), (2.14), (2.17), 
(2.18) and (2.19), respectively, the regularizations of the integrals on the 
left-hand sides of these equations. 

A few points are now in order. Firstly, it is easily shown that the 
definitions of j0f(t)dt and f™f(t)dt given in (2.24) and (2.26) are in­
dependent of the choices of n and q as long as Re an > — 1 and Re vq > 1. 
Secondly, it can also be shown that the definition of j0f(t)dt given in 
(2.27) is independent of the choice of b. Thirdly, the new definition 
of J^f(t)dt agrees with the usual one when the latter makes sense. 
Finally, for the functions in J^ we have the linearity property 

/

oo /*oo /*oo 

0 [c i / i (0 + c2f2(t)]dt = c, J0 Mt)dt + c2 J0 f2(t)dt, 
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where all three integrals are understood in the sense of Definition 2. 

Example 1. Let m be a non-negative integer, and consider the formal 
integral 

— m 

/ ; dt. 
0 t + x 

Since this integral may be viewed as the Stieltjes transform of the 
distribution t+

n\ it is of interest to know what appropriate value should 
be assigned to it; see Section 5. We first consider the case m = 0, and 
write 

1 1 x 

t + x t t(t + x) 

Regarding the second term on the right as the remainder in the asymptotic 
expansion (t + x)~x ~ t~\ we have from (2.18) and the definition in 
(2.26) 

/

oo 1 /*oo 

, dt = - l o g é - / -
* t + x 6 J b t 

(t + x) 
-dt. 

The last integral exists as an ordinary integral and can be evaluated to be 
log (b + x) — log b. Thus 

Since 

/ : 

dt = - l o g (b + x). 

dt = log (b + x) —log x, 
o t + x 

Definition 2 gives 

(2.29) / —-dt= - l o g * . 
^ ° / + x 

Note that for any m > \ 

t = l-(±- 1 ) 
x \r r~Ht + x)/' 

t + x x \tm r~l(t 

From (2.22), it follows that 

/

oo ^ - m i /*oo f — m+\ 

o / + x x ./ o t + x 
Equation (2.29) then gives 
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J 0 
r]-dt = 1^. 

o t + x 

By induction we have 

Jo ~-
m 

(2-3°) L 7 ^ = ( - i r + l 1 ^ -

Definition 3. If / e J^ then we define the (generalized) Mellin transform 
off by 

/*oo 

Jo (2.31) M[fz] = Jo f-xf(t)dt, 

where the integral on the right is understood in the sense of Definition 
2. 

Since tz~x f(t) is in ^ w h e n e v e r / i s in J^"and z is a complex number, 
M[f z] is a well-defined, complex-valued function of the complex variable 
z, for e a c h / i n ^ If the integral in (2.31) converges, then M[f z] is simply 
the conventional Mellin transform off evaluated at z, M[f z] is analytic 
near z and can be continued to a meromorphic function in the z-plane; see 
[8]. The following lemma shows that the generalized Mellin transform off 
has similar properties, that is, it has a meromorphic extension with poles 
at — as and vs, where as and vs are the exponents in the asymptotic 
expansions off and moreover that the values M[f — at] and M[f vt] are 
closely related to that meromorphic function. 

LEMMA 1. Let f be in J^ with asymptotic expansions (2.1) and (2.2). 
(i) The Mellin transform M[f z], defined in Definition 3, is a 

meromorphic function in the z-plane with poles at z = —as and z = vs, s = 
0, 1, 2, . . . . The principal part of this function at ~at is 

N(i) 

2 CLr 

( -1)7 
rr\ 

if — az ¥= vs for all s, while its principal part at vj is 

_ <&> ( - 1 ) 7 ! 
A Crj (7 - V Y + 1 

r = 0 Vz ^ 7 
if Vj ¥" ~asfor all s. If—at = Vjfor some i and], then the principal part of 
the meromorphic function at this point is 

tg (-1)7! _ <&> (-1)7! 

(ii) If —at ¥= vs for all s, then 
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N(1) r-nv 
M[f -a,] = lim {M[f z] - 2 ari \ J ' x } . 

(iii) If Vj ^ — &s for aH s> tnen 

QU) ( - 1 ) 7 ' 
M[f pj] = hm {M[/; z] + 2 Cy , _ V + i > -

(iv) / / —at = Vjfor some i and j , then 

M[f; -«,-] = M[f; Vj\ 

'M<> (—1)V 
= lim {M[/; 2] - 2 ari-——-— z-*-ai ,=0 («, + ^ r + l 

<&> (-l)V! , 

Proof, (i) By Definitions 2 and 3, 

(2.32) M/ ; ^] = /y t'-lf(t)dt + / 7 r~lf(t)dt. 

For convenience, we have taken Z> = 1 in (2.27). From (2.9), (2.17), (2.24) 
and (2.26), it follows that the first integral in (2.32) is given by 

2 2 *„, \\r^ + Ltz'xfoM)dt 

and the second integral by 

q-\ Q{s) 

~~ 2a 2a ~A> , v 

5 = 0 r = 0 \ z — vs) 

1~] Q(s) / _ i \ r f /*oo 

, _ n ~_n IZ — ï> V ^ ' ^ 

Each of the two remainder integrals above converges, and defines an 
analytic function of z, in the strip — Re an < Re z < Re vq. The two 
double sums give the principal parts as indicated. Since Re an —» oo as 
n —» oo and Re ^ —» co as g —» oo, part (i) follows. 

(ii), (iii), (iv). Proceed as in the proof of part (i), using (2.14) and (2.17) 
where necessary. 

Results similar to the above have been given by Handelsman and Lew 
[8, Lemmas lc and 2c] and Jeanquartier [9, Proposition 4.3]. 

We conclude this section with some notations which will be used later. 
We have found it useful to think of the generalized Mellin transform of/ 
in J^as the meromorphic function of Lemma 1 (i), together with certain 
values assigned at the poles of that function, as in Lemma 1 (ii), (iii) and 
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(iv). These values are obtained as the limits of the meromorphic function 
minus its corresponding principal parts. Wi th /as in Lemma 1, and X one 
of the values — as, vs, we write Vv\[f\ z] for the principal part at X given in 
Lemma 1 (i), and we write, for z + X, 

(2.33) Ax[f; z} = M[f;z}- Prx[/; z\ 

Then A\[f; z] is a meromorphic function of z with a removable singularity 
at X, and we have from Lemma 1 (ii), (iii), (iv), that 

M[f\ X] = Ax[f; X}. 

Using this notation, we can easily state the following extended versions of 
the results of Lemma 1 ; in each of these formulas, the derivatives on the 
right are with respect to z, and the integrals on the left are in the sense of 
Definition 2. With / as in Lemma 1, k a non-negative integer, and z 
different from —<xs and vs, for all s, 

(2.34) J0 r-'Oog t)kf(t)dt = Mk\f; z]; 

on the other hand, if À is one of the values — as, vs, then 

/

oo 

0 tx-\\ogtff(t)dt = Ar[f;\]. 

3. Generalized Mellin convolution. In the remainder of the paper, we 
shall work with distributions on (0, oo), and it will be convenient to define 
the action of a locally integrable function/on a test function </> e ^ ( R + ) 
by 

/

OO 

o f(twt)rxdt. 
Now le t / ( / ) and g(t) be two locally integrable functions on (0, oo), and 

recall the ordinary Mellin convolution defined by (1.2): 
/*oo 

(3.1) (f*g)(x)= J 0 f(t)g(xr{)r]dt. 
Assume that this integral is absolutely convergent. Then the distribution 
on (0, oo) defined by the (locally integrable) function/* g can be written 
in the form 

/

oo 

0 (f*g)(tm)rxdt 

= / ~ [J^f(x)g{tx-l)X-ldx^t)rldt 

/ r ^ { / r ' <Kt)g(tx-])r*dt}x-*dx. This naturally suggests that the convolution of /and g inJ^can be defined 
by 
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/

oo 

0 f(x)Qg(x)x-ldx 

for all <(> G <®(R+), where 

/

oo Too 

o tfOgC*"1')'-1*/* = ]0 <nxt)g{t)r]dt, 
provided that we can make sense out of the integral in (3.2). 

Note that f o r / a n d g in ^ the integral in (3.1) may not exist without 
further restrictions on the exponents in the asymptotic expansions of these 
functions. 

Let the asymptotic expansions of g be given by 
oo M(s) 

(3.4) g ( f ) ~ 2 2 bJ°(log t)r, a s / ^ 0 + , 
5 = 0 r = 0 

and 

oo P(s) 

(3.5) g(t) - 2 2 drsr^(log t)\ as t -» +oo, 
5 = 0 r = 0 

where M(s) and P(s) are finite for each s, and the sequences {Re 8S} and 
{Re fis} are strictly increasing to +oo. 

For <J> e ^ ( R + ) , we define <bg(x) as in (3.3). Clearly, <bg(x) is a 
C°°-function on (0, oo) and hence locally integrable there. The following 
result shows that $g(x) belongs to J^ 

LEMMA 2. For any (j> e i^(R+), //zer^ exist constants b%s and d%s such 
that 

oo M{s) 

(3.6) ®g(x) - 2 2 è&jt~ô<log x)A <w x -> oo, 

5 = 0 A = 0 

and 
OO / > ( 5 ) 

(3.7) $ (*) - 2 2 C *A(log *)* £M X -» 0 + . 
5 = 0 A = 0 

iVoo/. Put 

m— 1 A/(j) 

(3.8) g(/) = 2 2 *r/'(log Or + go,Jt)-
s=0 /- = 0 

From (3.4) it follows that 

g0,m(0 = 0(A"(k)g ?)M(m)) as f -» 0 + . 

It is easy to show that 
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/*oo 

(3.9) J 0 <Kt)goAx~lt)t~]dt = 0 ( x " S l o g *)M(m)) a s x ^ œ . 

Coupling (3.8) and (3.9) and using the binomial theorem gives 
m-\ M{s) 

$g(x) = 2 2 btx~8i\ogx)k + 0(x~Bm(logx)M{m)), 
s=0 k=0 

where 

M(s) i x 

(3.io) (-\)kbt= 2 brsyk)^-k\^ ss]. 

This proves the large-* expansion (3.6). A similar argument will lead to 
the small-* expansion given in (3.7). 

Definition 4. For / and g e J^ we define the generalized M ell in 
convolution f * g by (3.2): 

J o (3.11) < / * g, <(>> = J Q /(*)<Dg(* )*"'</* 

for all <f> e i^(R+), where the integral on the right is understood in the 
sense of Definition 2. 

Since Og G F b y Lemma 2, /3>g G j ^ b y an earlier remark. Thus the 
integral in (3.11) is indeed meaningful. Furthermore, it is clear that this 
definition of convolution satisfies the linearity condition 

(3.12) ( / * g, al4>] + a2(j>2) = « i < / * g, <t>\) + «2</* & ^2>, 

where a\ and a2
 a r e anY t w o constants and <J>! and <j>2 are any two functions 

in <^(R+). To show that this linear functional is also continuous, we let 
{<pv} be a sequence of functions in <^(R+) such that all these functions 
vanish outside a fixed compact set c R + and converge uniformly to zero 
together with their derivatives of any order, and let {Og„(*) } denote the 
corresponding sequence of integrals defined by (3.3). It can easily be 
shown that the coefficients in both the large-* and the small-* expansions 
of $>gv(x) tend to zero as v —» oo, and moreover that the remainders in 
these expansions also tend to zero as v —» oo; see equation (3.10) and the 
expression for the remainder given in (3.9). The same is of course true for 
the product f(x)$gv(x). Therefore we have 

J o / (*)<!>(*)* xdx —> 0 as v —> oo, 

where the integrals are all taken in the sense of Definition 2, thus 
establishing t h a t / * g is indeed a distribution on ^ ( R + ) . 

It should be noted that although the ordinary convolution * in (3.1) is 
commutative, this is no longer true for its generalization given in (3.11). 
We shall come across some specific examples of non-commutativity later 
in our discussion. 
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Let us now calculate convolutions of the form ta * ft. Throughout the 
remaining sections, we shall use xo(0 t 0 denote the characteristic function 
X[0,i](/X which is 1 on [0, 1] and 0 elsewhere. Similarly we write Xoo(0 f° r 

the characteristic function X[i,oo](0-
For any a and /? with a ¥= /?, it is easy to see that taxo * * Xo a n d 

^Xoo * ̂ Xoo exist in the ordinary sense of (3.1) and are given by 

(3.13) /*xo * ̂ Xo = - ~ * Xo 
a — p 

(3.14) fXoo * t^xoo = ~ * X, .00 • 
a - fi 

However, the convolutions taxo * ^Xoo a n d ^Xoo * ^Xo m aY n o t e x ' s t m 

this sense. Nevertheless, if we replace / and g by taxo and rXoo. 
respectively, in the integral (3.1), and apply the results in (2.8) and (2.16), 
we obtain formally 

(3.15) t"Xo * ̂ Xoo = - ^ X o + ^ ^ X o o 
a — p a — p 

xa x@ 
(3.16) ta

Xoo * ̂ xo = - ^Xoo - ^Xo-
a — p a — p 

These indeed hold, and are proved in the following lemma. 

LEMMA. 3. For all <£ e @(R+) and a ^ /?, we have 

(3.17) <^xo * t^xco, <t>) = —^<xaXQ, <t>) + — ^ < ^ X o o , 4>> 
a — p a — p 

(3.18) </aXoo * ? V 4>) = ~ —^(xa
Xoo, <t>) - — L - < ^ X o , <f>>. 

a — p a — p 

Proof. By definition, 

(3.19) </"xo * ̂ Xoo, <f>> = j \ xa-f-] j x i / " 1 cf>(u)dudx 

with the definite integral on the right being understood in the sense of 
Section 2. The integrand in (3.19) is clearly equal to 

(3.20) M[4>, P]xa-P~l - Z " ^ 1 JX
Q u^~l<j>(u)du, 

and the last term is actually zero for small values of x. Thus we may regard 
(3.20) as an asymptotic expansion of the integrand in (3.19). By (2.24), we 
have 

(3.21) </<*xo * ̂ Xoo, *> = —l—j;M[<t>; 0] 
a — p 
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]0x
a~p'1 jX

Qu^^(u)dudx. 

The last integral is absolutely convergent and, upon reversing the order of 

integration, is equal to 

1 fl 1 P 
JouP-lc}>(u)du - —— J0if-

l<Ku)du. a - fi J 0 " v / a - P 

Therefore 

1 
a Z P 

1 

<^X0 * ^Xoo, <t>) = ^—o fl ua~X<i>{u)du 

a - P /

OO 

] uP~l<t>(u)du, 

which is of course equivalent to (3.17). 
A similar argument applies to (3.18). 

LEMMA 4. For any complex number a, the following identities hold as 
Junctionals: 

(3.22) / a
Xo*^Xo = -x a ( log*) X o , 

(3.23) ta
Xoo * ta

Xoo = xa(log x)xoo, 

(3.24) t«Xo * t«Xoo = xa(log x ) X o , 

(3.25) ^Xoo*^Xo = -A logx)xoo-

Proof. The first two convolutions exist as ordinary integrals, and hence 
(3.22) and (3.23) can be proved in a straightforward manner. 

Now consider the identity in (3.24). By definition 

(3.26) <^xo * ^Xoo, <f>> = / o {*_1 j°°x ta~XW)dt}dx, 

where the definite integral on the right hand side is understood in the 
sense of Definition 2. The function inside the bracket can be written as 

/ ; -M[<j>; a]x~l - x'1 J Q ta'{^>(t)dt. 

As in (3.20), the second term here is zero for small values of x. Applying 
the definition (2.24) to the integral in (3.26), we have 

(taXo * taXoo, <f>> = ~j\ {*- ' fl f-xW)dt}dx. 

(Note that, by (2.13), / 0 x_1 dx = 0.) Reversing the order of integration 
gives 

(taXo * taXoo, <t>) = fl ta-\log t)<j>(t)dt, 
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which is exactly the statement in (3.24). A similar reasoning applies to 
(3.25). 

Note that coupling equations (3.24) and (3.25), we have an explicit 
example showing the non-commutativity of the convolution * defined in 
(3.11). 

The results in Lemmas 3 and 4 can all be extended to allow logarithmic 
terms of the form (log /)", n being a positive integer. Since these formulas 
are rather complicated to state and their proofs are essentially the same as 
those previously given, we mention only the following two identities. For 
any a ^ ft, we have 

/«(log O"xo * Alog 0mXoo 

(127) '^oV/J a - W " ^ ' ^ 1 0 6 ^ X° 

and for all a, we have 

(3.28) /«(log r)"Xo * ? a( l o8 OmXoo = C„mx«(log x)" + " '+ 1
X o , 

where 

y M (~1)A 

A\k) n+k+ 
(3.29) C„m _ . 

* = 0 V^/ « + /c + 1 

These identities of course hold only in the sense of functionals. 
Equation (3.27) can be formally obtained from (3.15) by differentiating 

both sides with respect to a and yS. A rigorous proof can be based on the 
fact that from (3.21), we have 

(/«(log /)"xo * Alog OmXoo, <t>) = Dn
aD"t{taxv * t^Xoo, 4>), 

where Da and Dp denote the partial derivatives with respect to a and /?, 
respectively. Equation (3.27) then follows at once from (3.17). Formula 
(3.28) can be derived directly from the definition of generalized 
convolutions. In a similar manner, one can state and prove the 
corresponding results for ra(log 0"Xoo * Al°g OmXo a n d ^*(log 0"Xoo 
* /«(log OmXo-

It is important to observe that the generalized convolution satisfies the 
distributive laws, that is, for any constants c\, c2, d\ and d2, and any / i , / 2 , 
/•> %h §2 a n d g in ^ we have 

(3.30) (c,/i + c2f2) * g = cxfx * g + c2/2 * g 

(3.31) / * (rfjg! + d2g2) = dif* gx + rf2/* £2-
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Thus, by writing ta = taxo + taXoo and r = t"xo + t Xoo, we immediately 
obtain 

(3.32) f * tp = 0 

for all a and /?. The following generalization is proved in the same 
manner. 

LEMMA 5. For any complex numbers a and ft, and for any non-negative 
integers n and m, we have 

(3.33) /"(log tf * Alog tf1 = 0. 

The following identities are also worth noting. For all a ¥= ft and all 
non-negative integers m and n, we have 

(3.34) /«(log /)"xo * Alog t)m = Alog t)m * /"(log r)"xo 

and 

(3.35) /«(log /)"xoo * ^(log t)m = Alog t)m * /«(log /)"xoo. 

That is, if a ¥= ft then "powers commute with truncated powers". 
However, these are not true in the case when a = ft; for instance, it is 
easily shown that 

(3.36) /«(log OmXo * '"(log tf = 0, 

whereas 

(3.37) /«(log tf * /"(log Om
Xo = -Cnmxa(log x)n+m + \ 

Cnm being the constant given in (3.29). 
The following results are needed in the next section. 

LEMMA 6. Let f e &and let its asymptotic expansions be as given in 
(2.1)-(2.2). If\*as and X ^ ~vsfor all s = 0, 1, 2, . . . , then for any 
non-negative integer k, we have 

tx(\ogt)k * / = / * t\\ogt)k 

(3.38) = 2 (k)(-\)J^\f -X\x\\ogx)k-J 
7 = 0 XJ ' 

- (s)W -Xlii)-
iVotf/. We wr i te / = /xo + /Xoo- From (2.23) it follows that 

n-\ N(s) 

(3.39) /xo = 2 2 flr/Xlog O'xo + /o,*Xo-
s = 0 r = 0 
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If n is sufficiently large so that Re a„ > Re À, then it is easy to see that the 
convolution t\log t)k */o,«Xo exists as an ordinary integral and hence that 
the two factors commute. This, together with (3.34) and (3.39), 
immediately gives 

(3.40) Alog tf *fX0 = /xo * Alog tf. 

A similar argument leads to 

(3.41) /Vog tf *fXoo = fXoo * Alog tf. 

The first equality in (3.38) now follows from (3.40) and (3.41). 
To prove the second equality in (3.38), we note that with g(t) = 

r(log t)k and </> a test function on (0, oo), 

%{x) = 2 (k\]rfk-j\*\\]x-\-\ozxy. 
7 = 0 XJ ' 

In view of (2.34), we also have by Definition 4 

(3.42) </*/\iogo*,*> = 2 (^{-xy^-^xw^f- -xi 
7 = 0 XJ f 

The right side of (3.42) can clearly be written as 

2 (k\-\ytâj\f\ -x](xx(\ogx)k~^<t>). 
7 = 0 XJ ' 

Thus, as functionals, 

/•^(îogo* = 2 (^)(-iy^°V; -A]xA(iogx)A-A 
7 = 0 V ^ 7 

This completes the proof. 

The corresponding result when À is one of the values as, —vs, is as 
follows; see the end of Section 2 for the definition of A\. 

LEMMA l.IfX = atfor some i and X ¥= ~vsfor all s then 

(3.43) f*t\\ogt)k = 2 n ( ) ) ( - l ) ^ [ / ; -X]x\\ogx)k 

and 

7 = 0 ^J ' 

N{i) 

(3.44) /A(log tf *f = f* t\log t)k - 2 anCkrx\\og x)k + r+\ 
r = 0 

where Ckr is the constant given in (3.29). 
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LEMMA 8.IfX = —Vifor some i and X ^ otsfor all s then 

•Vw t\k - 2 (^)(-iv/^ (-Arf- -\ivVino v^'-i (3.45) f*t\\ogtf = 2 l ; J ( - W - W ; -X]x\logx 

7 = 0 

and 
Q(i) 

(3.46) t\log t)k*f = f* t\\og tf + 2 cnQ7.x
A(log x)* + r + 1 . 

r = 0 

The proofs of (3.43) and (3.45) are similar to the last part of the proof of 
Lemma 6, using (2.35) in place of (2.34). Equations (3.44) and (3.46) 
follow from (3.43) and (3.45), respectively, using (3.36) and (3.37) or the 
corresponding results for convolutions of /"(log t)n and /"(log f)mXoo- F ° r 

instance, to obtain (3.44) from (3.43), we put 

N(i) 

/i(0 = 7(0 - 2 arit"ïlog OrXo(0, 
r = 0 

note that with X = an Lemma 6 applies tof\, and use (3.36) and (3.37). 
There is, of course, a similar result for cases where at = — Vj for some i 

andy. 

Example 2. As a simple illustration, let us calculate the convolutions 
e~l * f and e~l * /"(log ?) for any non-negative integer n. W i t h / = e~r 

and an = «, the function v4_„[/; z] in (2.33) becomes 

A-„[e '; z] = T(z) - — - . 
n\ z + n 

The result [4, Section 1.17] 

(3.47) T(z) = ^ " 1 — + ^ + ]) + 

1 [77 

2 

then gives 

2 
f2 - (z + n) — + ij/(w + 1) - ;//'(« + 1) + 0((z + «)2) 

( - 1 ) " 

and 

^ - J e " ' ; - i ] = y ^ [ y + ^ ( i + 1) - Vin + 1)], 

where ^ is the logarithmic derivative of the T-function. From (3.43), it 
follows that 
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(-1)" •^{n + \)x" 

and 

e ' * t" log / = ( - 1 ) " 
2 • n\ 

(-1)" 

- + i2(n + 1) - f (n + 1) 

n\ 
xP(n + \)x" log x. 

From (3.44), we also have 

(-1)" 
(" * e~' = [Mn + 1) - log x]x" 

n\ 
and 

/" log t * e - , _ ( " ! ) " r i 7 
i - - logzx + ^(« + 1) log x 

i W 
1) - f(« + 1) >x" ]} 

Example 3. A slightly more complicated example is provided by K\ * f, 
where s is any non-negative integer and K\ is the modified Bessel function 
given by 

(3-48, *,„> - i + I 2 ( ' /2 ) 2/1+1 

f 2 ~ 0 *!(* + 1)! 

X 

It is well known [22, p. 202] that 

.1/2 r 3 

2 log- - M + 1) - iK* + 2)1 

(3.49) A-,(0~ ( j ) ' 2 ^ ' [: 

as / —> +oo, and [22, p. 388] that 

«,*,: -, - 2-r(i - I)r( | + I). 

Thus, from (3.38), we have 

AT! * ?2" = 2"2"-2r(-« - 0 r ( - / i + l-): 

For the odd exponents, we use (3.43). With À = In + 1, we obtain 

Jin 
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K,*t2n + ] =A-2n-i[K\; ~2n- \]x2n + i, 

where the constant can be calculated as follows. In view of (3.48), we have 
from (2.33) 

A^xlKù z] = M[KÙ z] + 2ln + xJ{n + l ) ; (z + I + l)2 

[2 log 2 + xP(n + 1) + iK« + 2 ) ] 1 
22n+2n\(n 4- 1)! (z + 2/7 + 1)' 

The Laurent expansion (3.47) then leads to 

A-2n-\[K\\ -2n - 1] 
2"2«-2 ( 

«!(« + 1)! 

2 

log22 + log 2 M<w + 1) + W + 2) ] 

^ \2^(n + !>/</! + 2) + ( y + ^2(/7 + 1) - f(/ i + 1)̂  

+ ( y + ^{n + 2) - *'(* + 2))]}. 

4. Asymptotic expansions of convolutions. Le t / and g be members of J^ 
We shall now study the behavior of ( / * g)(x) for both small and large 
values of x. In particular, we shall show that f * g has asymptotic 
expansions similar to those o f / and g. 

THEOREM 1. Let f and g belong to J^ and let their asymptotic expansions 
be given by (2.1) - (2.2) and (3.4) - (3.5). If for some m and n the exponents in 
these expansions satisfy the relations 

(4.1) Re 8m > Re an-X > - R e v0 

and 

(4.2) Re an > Re 8m-X > - R e A>, 

then 

(4.3) 

n-\ N(s) 

f * g = 2 2 flr/xiog or * g 
s = 0 r = 0 

m — \ M(s) 

+ 2 2 brj*tsi\ogty + /„,„• 
s = 0 r = 0 

w/zere //ze convolution f0n * g0,m ex/sta *« ^ ordinary sense, and, with 

pmn = min (Re an, Re <5m}, 

satisfies 

https://doi.org/10.4153/CJM-1984-053-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-053-x


946 R. W O N G A N D J. P. M c C L U R E 

(A» * &>.*)(*) = 0(x"»'»(log xf»") 

as x —> 0 + ,for some non-negative integer Kmn. 

Note that Lemmas 6 through 8 imply that each of the terms under the 
double sums in (4.3) is a regular distribution. Thus, Theorem 1 shows that 
f o r / a n d g in J^such that (4.1) and (4.2) holds for some m and n, the 
convolution/* g is a regular distribution. 

Proof. In view of (3.33), it follows immediately from (2.23) and (3.8) 
that 

w - l N(s) 

f*g = 2 2 arst"ilog t)r * g0,w 

5 = 0 r = 0 

' ' w - 1 M{s) 

+ 2 2 è„/o,w * ̂ (log t)r + A„ * g0,,7Z. 
s = 0 r = 0 

A further application of (3.33) simplifies (4.4) to 

n-\ N(s) 

/ * g = 2 2 tf^(iog o r * g 
s = 0 r = 0 

' ' w - 1 M(.y) 
+ 2 2 bnf^ilogt)" +f0,„*gO,n, 

s = 0 r=0 

All the convolutions under the double sums have been calculated in 
Lemmas 6-8, and it remains only to consider the remainder/) n * g0 m. We 
first note that under the conditions (4.1) and (4.2), f$n * g0m actually 
exists as an ordinary integral. Next we write 

A « = A « X 0 + fo,nXoo 

and 

g0,w = g0,mX0 + gO,mXoo-

For x < 1, it is clear that 

( 4 - 6 ) /o ,«Xoo * gO,mXoo = 0 . 

Now recall from (2.23) that 

A „ ( 0 = 0(ta»(\ogtf^) a s / - ^ 0 + , 

and that 

A « ( 0 = O ^ - ^ l o g t)N(n'l)) as / -> +oo, 
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if Re an-\ > — Re v0. Similarly, 

goAO = 0(A'(log 0M(w)) as/->0 + , 

and 

go.m(0 = 0(^-'(log oW(M-l)) as r -> +00, 

if Re 8m-\ > —Re /}0. Simple estimates then show that as x —> 0 + , 

(4-7) /o,„Xco * go,mXo = 0 ( A ( l o g xf<m)) 

(4-8) A«Xo * gfcmXoo = O(xa»(log x)M"-0 

and 

(4-9) /o,,Xo * go,mXo = 0(xp™(\og x)N»»% 

where Mm„ = M(m — 1) 4- N(n) and JVmw = M(m) + 7V(«) or M(m) + 
7V(ft) + 1 depending upon whether an is not or is equal to 8m. Adding up 
the results in (4.6) - (4.9) gives 

(4.10) /o,„ * g0,m = 0 ( ^ - ( l o g * )* - ) 

with Kmn = max {Mmn, Nmn}. The final expansion (4.3) now follows from 
(4.5) and (4.10). 

Note that under the conditions of (4.1) and (4.2), pmn tends to infinity as 
n, m —> 00. Furthermore, {pnn} is a strictly increasing sequence. The next 
result is proved in exactly the same manner, or can be deduced from 
Theorem 1 by us ing / ( l / / ) and g(l/t). 

THEOREM 2. Let f and g be given as in Theorem 1. If for some m and n the 
exponents in the expansions off and g satisfy the relations 

(4.11) Re /3m > Re vn-X > - R e a0 

and 

(4.12) Re vn > Re fim-X > - R e 80, 

then 

n-\ Q(s) 

/ * g = 2 2 crsr\iogty *g 
5 = 0 r = 0 

(4.13) m - i T>(J) 

+ 2 2 < W * f ~ f t ( l o g 0 r + /oo,„ * goo,m 
s = 0 r = 0 

where f^n * goo,m e-xwto /« //ie ordinary sense, and, with 

\mn = min {Re ?„, Re /3m), 
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(/oo,W * goo,m)(x) = 0(X X - ( l 0 g x)Lm») US X - » OO, 

for some non-negative integer Lmn. 

If we let Pmn = P(m - 1) + Q(n) and <2„2„ = P(m) + Q(n) or P(m) 
+ Q(n) + 1 depending upon whether *>„ is not or is equal to /}w , then Lmn 

in (4.13) is explicitly given by 

Lmn = m a x \rmn, Urnnj' 

As with Theorem 1, Theorem 2 shows that for certain pairs/, g in J^ the 
convolution/* g is a regular distribution. Actually, combining Theorems 
1 and 2 with an elementary fact about sequences gives the following 
result. 

THEOREM 3. Iff and g belong to J^ then so does f * g. 

Proof Because of Theorems 1 and 2, it is enough to prove the following 
fact: if {a,-} and {ô,} are real sequences, both strictly increasing to 
infinity, and if v and /? are real numbers, then there are integers n and m 
such that 8m> an-\ > v and an > ôm_ \ > /3. This implies that integers n, 
m satisfying the hypotheses of either Theorem 1 or Theorem 2 can be 
chosen arbitrarily large, so that / * g is regular and has the required 
asymptotic expansions; see the remark following the proof of Theorem 
1. 

To prove the fact mentioned in the last paragraph, we proceed as 
follows. For each /' > 0, let j = j(i) be the least integer such that Sj-\ > 
«/- i ; note thaty'(/') is well-defined, since {8j} | oo. Since both sequences 
increase to infinity, we can ensure both at-\ > v and §}(\)-\ > fi by 
taking / sufficiently large. Since {az} f oo, there is a least integer k > 0 
such that al+k > 8j^-\. We claim that n = i + k and m = j(i) satisfy all 
requirements. For, by choice of /c, /, and j'(z'), we have 

v < az-_, < cLi+k-\ < Syxo — l < 8j(i), and 

^ < 5 y( i ) - i < ai + k-

This completes the proof of the theorem. 

The results in Theorems 1 and 2 can be considerably simplified, if the 
logarithmic terms in the asymptotic expansions o f / a n d g are all absent 
and, furthermore, if the exponents in these expansions are of a particular 
form. To be more specific, we assume that the asymptotic expansions of/ 
are given by 

oo 

(4.14) / ( ( ) ~ 2 d / + a , as?^0 + , 
s = 0 
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(4.15) / ( / ) - 2 cst~
s-\ a s f - > + oo, 

*=o 

and the corresponding expansion of g by 

oo 

(4.16) g(t) ~ 2 bst
s + \ as / -> 0 + , 

s=o 

oo 

(4.17) g (0 - 2 dsr
s-P, as / -* + oo, 

s = 0 

where the exponents a, /?, v and 8 are arbitrary complex numbers. 

THEOREM 4. Let f and g be given as in (4.14) - (4.17), and suppose for all 
non-negative integers r and s, 

(4.18) a + J ¥= 8 + r, a + s ¥= - / ? - r, W 

8 + s ^ — ^ — r. 

77ze/7 /or sufficiently large n and m satisfying 

(4.19) m + Re (8 - a) - 1 < w < m + Re (8 - a) + 1, 

we have 

n-\ 

5 = 0 

(4.20) . 
+ 2 M*[/; - 8 - s]xs+8 + <9(JCP™) 

s=o 

as x —» 0 + , vv/zere pm„ = min {n + Re a, m + Re 8}. 

Proof Choose « > 1 - Re (a + *>) and m > 1 - Re (/? + 8). The 
inequalities in (4.19) then guarantee that conditions (4.1) and (4.2) are 
met. Since the logarithmic terms in the asymptotic expansions are all 
absent, and since a + s — S — r and a -f s + /? -f r are never zero, the 
non-negative integer Kmn is actually zero. Thus by Theorem 1 

«—1 m—\ 

f* g = 2 ast
5 + a * g + 2 bsf* ts+8 + 0(JCP-) , 

as x —> 0 + . The desired result now follows from Lemma 6. 

Note that the last two conditions in (4.18) are automatically satisfied, if 
Re (a + /?) > 0 and Re (8 + v) > 0, in which case the convolution/* g 
actually exists as an ordinary integral. 
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THEOREM 5. Let f and g he given as in Theorem 4. If a + / = 8 -b j for 
some i and j , and if a + s ¥= — /? — r and 8 + s ^ —v — r for all s and r, 
then for sufficiently large n and m satisfying (4.19) we have 

f*g= 2 asM[g\ -s - a]xs + a 

0<s<8-a 

n-\ 
+ 2 as[b* - ba^8+s log x]xs + a 

s>8~a 

+ 2 bsM[f -s - 8]x? + B 

0<s<a-8 
m— 1 

+ 2 a*bsx
s + s + 0(xp"'" log x), 

s>a~8 

as x —» 0 + , where pmn = min {n + Re a, m + Re S}, 

(4.22) as* = lim (M[f; z] - - ^ ^ - ) 

and 

(4.23) />,* = lim f M[g; z] - *p*±£__ \ 

The coefficients as and bs with negative subscripts are understood to be 
zero. 

Proof. The proof proceeds exactly the same as in Theorem 4, except that 
here one uses both Lemmas 6 and 7. Since n + a = m + ô, the 
non-negative integer Kmn in (4.10) is equal to 1. 

Note that if a = 8 then (4.21) simplifies to 

CO CO 

(4.24) / * g ~ 2 c y + a - 2 aA^Oogx), 
5 = 0 5 = 0 

as x —» 0 + , where c* = ^ 6 * + a*Z ;̂ the meaning of (4.24) being that 
whenever we terminate the two series, say after N terms in the first and M 
terms in the second, the error committed is of the order 0(xN + a) plus 
<9(xM+a(log x)). The condition that m and n in (4.21) had to be 
sufficiently large can be dropped by a standard argument in asymptotics; 
see [22, pp. 197-198]. 

Theorems 4 and 5 are extensions of Theorems 1 and 2 given in [23] for 
the ordinary Mellin convolutions. Results similar to these theorems can of 
course be also obtained in the cases when a -f / = — ft — j or 8 + /' 
= — v — j for some i and j . We shall, however, omit the details; see 
Example 4 in Section 5. 
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To conclude this section, we include the following analogues for the 
large-x behavior. These results are deducible from Theorems 4 and 5, and 
will be used in later examples. 

THEOREM 6. Let f and g be given as in Theorem 4, and suppose that for all 
non-negative integers r and s, 

(4.25) v 4 s ¥= P 4 r, v 4 s ^ -8 - r, and fi 4 s ¥= -a - r. 

Then for sufficiently large n and m satisfying 

(4.26) m 4 Re ()8 - v) - 1 < n < m 4 Re (0 - v) 4 1, 

/ z - 1 

/ * g = 2 c^M[g; 5 4 U]JI 
y = 0 

m— 1 

4 2 ^ M [ / ; 5 4 P]x~s~P 4 0 ( x ~ M , 
5 = 0 

#s x —> 4oo, w/zer̂  \m„ = min (A? 4 Re v, m 4 Re /?}. 

THEOREM 7. Let f and g be given as in Theorem 4. If v 4 z = fî 4 j for 
some i andj, and ifv + s^ —8 — r and fi 4 s ¥= —a — r for all s and r, 
then for sufficiently large m and n satisfying (4.26) we have 

/ * g = 2 csM[g; s 4 v]x~s~v 

0<s</3-v 

4 2 cs[df+ dv-p+s log x]x~s~" 

(4-28) ^ 

0<s<*>-/? 

m — 1 

+ 2 c&sx~s-p + 0(x"A™ log x), 

vv/îere \m„ = min [n + Re v, m + Re /?}, 

(4.29) cf= lim ( M [ / ; Z ] 4 C * - ; + J | 

(4.30) # = lim f M [ g ; z ] 4 ^ " ^ ^ 
I/ + S I Z — V - S ) 

and the coefficients cs and ds with negative subscripts are understood to be 
zero. 
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As before, we note that if Re (v + 8) > 0 and Re (/? + a) > 0 then 
v -f s ¥" —S — r and fi -\- s ¥= — a — r for any pair (s, r), in which case we 
h a v e / * g existing as an ordinary convergent integral. Also note that if fi 
= v then (4.28) reduces to 

oo oo 

(4.31) / * g ~ 2 csdsx~s~v\ogx + 2 M * + C X ) * " 5 " " , 
5 = 0 5 = 0 

as x —» -f oo; see the remark following (4.24). 

5. Generalized integral transforms. As remarked in the introduction, a 
large number of classical integral transforms can be put in the form of an 
ordinary Mellin convolution. This suggests that extensions of these 
transforms to domains larger than their classical ones can be obtained by 
using the generalized Mellin convolution. Thus, fo r / and h in J^ we shall 
define the distribution / / / i n R + by 

(5.1) (Hf, <j>) = </, * A, <j>) for all <f> G <@(R + ), 

where f\(t) = t~]f(t~]), and denote it by 

/

CO 

0 f(t)h(xt)dt, 

the integral being used purely in a formal sense. If the integral in (5.2) 
turns out to be absolutely convergent, then it is easily shown that the 
function defined by the integral indeed generates the distribution Hf(x) 
defined by (5.1). We shall therefore call Hf(x) the generalized integral 
transform of f with kernel h. Asymptotic behaviors of some of these 
generalized integral transforms will now be considered. 

Generalized Laplace transform. This is the transform whose kernel is the 
exponential function, i.e., h(t) = e~l. In view of its Maclaurin series and 
its behavior at infinity, it is clear that this function belongs to J^ Indeed, 
we have 

e-t _ f t-^-t\ as/-^0 + , 
5 = 0 ^ ! 

and 

CO 

(5.3) e~î — 2 dst~&, as / -^ oo, 
s = 0 

where the coefficients ds are all zero and the exponents fis can be chosen as 
desired. Now let / b e a member of ^ and let Lf(x) denote its generalized 
Laplace transform. By (5.1), Lf(x) is defined by 
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(5.4) Lf(x) = / , * * " ' . 

Here, as before , /^) = t~ ]f(t~l) and the convolution is understood in the 
generalized sense. 

Let the asymptotic expansions of /be again given by (2.1) and (2.2), and 
choose the /?/s in (5.3) such that fis ¥= ar + I for all r and s, and (4.11) and 
(4.12) hold. If none of the exponents as in (2.1) is a negative integer then, 
in view of (5.4), we have by Theorem 2 and Lemma 6 

oo N(s) 

(5.5) Lf(x) ~ 2 2 arsD
r
s[T(as + l)*-"*"1] 

s = 0 r = 0 

as x —> +oo, where 2)5 = d/das. If some of the exponents as are negative 
integers then, since Re a5 —» +oo, there are at most a finite number of 
them, say aS], . . . , aSn. On account of Lemma 7, we obtain 

oo f N(s) r r / \ 

V(*) - 2 2 ( - i ) ^ J 2 (yM^jc-^-1 (log JC/-^' 
5 = 0 r = 0 V = 0 V / 

(5-6) - — — ^ - J _ _ x - ^ - 1 ( l o g x / + 1 

r + 1 ( - a , - l ) ! 

oo W(s) 

+ 2 " 2 ^X[r(«, + l)*-"*"1], 

a s i ^ +oo, where 

(5.7) A(J] = (-\yA{
a

J
sl,[e-';as + 1]. 

In (5.6), 2 sums over only those s for which as is a negative integer and is 
hence finite, whereas 2 excludes exactly these s. The values of A J in 
(5.6) can be obtained as in Example 2. In particular, 

(0) ( - I ) - - ' " 1 „ 
(-as - 1)! 

and 

A? = ~ (~ lr^"1 f- + ^2(-as) - n-«s)l 
2 (-as - 1)! L 3 Y V ' ; ^V ' 7 J 

The results in (5.5) and (5.6) are extensions of Watson's lemma [26, 
Theorem 4.1] to generalized Laplace transforms. The leading terms in 
these expansions, as expected, agree with the Abelian theorems given 
earlier by Lavoine [14, Theorem 1], but our results could give much more 
detailed information when required. 

To obtain the small-x behavior, let us suppose for simplicity that the 
asymptotic expansions o f / a r e given by (4.14) and (4.15). If a is not a 
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negative integer and v is not an integer, then applying Theorem 4 to (5.4) 
gives 

CO 

(5.8) Lf(x) ~ 2 csT(l - v - s)xsJrv~x 

5 = 0 

5 = 0 S\ 

as x —» 0 + . Here we have used the fact that 

M[f}; -s]\ = M[f; 1 4- s). 

If v is a non-positive integer, say v = — n, but a is not a negative integer, 
we have from Theorem 5 

Lf(x) ~ 2J csT(n -h 1 — s)xs • n - \ 

s-=0 

0 0 / 1 \5 — « — I 

(5.9) + 2 ~ " —cs[W-n)- log xtf-»-1 

s = n+\ (S ~ n - 1)! 
00 ( - 1 V 

+ 2 (—P-& 
5 = 0 ^! 

as x —> 0 + , where \p is, as before, the logarithmic derivative of the 
T-function and 

(5.10) cf= lim ( M [ / ; 1 - z ] - ^ ± i | . 

A corresponding result follows if ^ is a positive integer. In this case, the 
result coincides with the one given in [18, Theorem 4]. A similar expansion 
can also be derived when a is a negative integer; see Example 4. 

All these results are distributional extensions of those given in [7] for the 
conventional Laplace transforms. The possibility of such an extension was 
also suggested in that paper, but no details were given; see [7, p. 129]. We 
also note that the Abelian theorem (for small x) given in [14, Theorem 2] 
seems to be incorrect. This fact can be verified, even in the case of 
ordinary Laplace transforms, by comparing it with Theorem 1 in [1] or 
Theorem 4 in [18]. 

Example 4. Consider the generalized Laplace transform of K\(t), where 
Kx(t) is the modified Bessel function given in (3.48). As suggested by (5.2), 
we may denote this transform by the formal integral 

/•oo 

(5.11) I(x) = Jo Kx{t)e-X'dt. 

With a0 = — 1 and as — 2s — 1 for s > 1, we have from (5.6) 
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I(X) ~ - y - log* 

+ 2 2 l^+^M2k + 2) - \ogx](2xy2k-2 

k=0 k\(k + 1)! 

- 2 , u , , n t 2 log 2 

+ xP(k + 1) + *K^ + 2)](2x) -2A: —2 

as x —> -foo. Note that ^(1) = — y. 
For the small-x behavior, we note that neither (5.8) nor (5.9) holds, 

since here we have a = — 1. Nevertheless, we may appeal directly to 
Theorem 1. Recall that I(x) is defined by (5.4) to be 

I(x) = rlKx(t~
l) * e'1. 

Since 

t~xKx(t~
x) ~ ( - J e'x,t a s / - ^ 0 + , 

the first sum in (4.3) is absent. Furthermore, we have 

t~lKi(t~]) * 1 = log 2 - y 

by Lemma 8 and 

r'tfKr1)*/' = 2 i- ,r(0r(i + 0*\ * = 1,2,..., 

by Lemma 6; cf. Example 3. Therefore, from (4.3), it follows that 

(5.13) I(x) ~ (log 2 - y) + 2 ^ p 2 5 " 1 ^ ) ^ 1 + 0 ^ 

asx ^>0 + . 
To see that the above results are indeed what one would expect to have, 

let us rederive them in an alternative manner. Put 

(5.14) X(t) = Kx{t) - t~\ 

In view of (3.48) and (3.49), the Laplace transform of Jf{t) exists as an 
ordinary integral. Hence, by Watson's lemma [26], 

LAx) ~ 2 2 l^+?lw.W + 2) - log x](2xf2k-2 

k=0 k\(k + 1)! 

(515) -S££±>.4 + « * + . > 
£= 0 k\(k + 1)! 

+ xftk + 2)](2x)~2/c~2, 
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as x —> +00. Furthermore, it follows from [1, Theorem 1; 18, Theorem 4] 
that 

(5.16) LAx) ~ (log* + log 2) 4- 2 ^ T " 2 5 " , r ( 0 r ( 1 + 0^ 

as x —» 0 + . We now recall the formula for the Laplace transform of the 
distribution / + as given in the earlier theory on this subject: 

(5.17) L,-i(x) = - 7 - log*; 

see [13, p. 533; 18, Eq. (5.5) ]. Since this integral transform should be 
linear, the transform of K\ must be the sum of the transforms of Jfand t~]. 
By adding (5.17) to (5.15) and (5.16), we again obtain the expansions in 
(5.12) and (5.13). 

It should be also noted that since K\(t) = —K'0(t), it is tempting to 
define the Laplace transform of K\ as 

LK](x) = (Khe-Xt) = -(K'0,e~xl) 

/

OO 

0 K»(t)e~xt dt. 

Here K0(t) is the modified Bessel function of order zero. This definition, 
however, will lead to asymptotic expansions which differ from (5.12) and 
(5.13) by the constant log 2 — y. An explanation of this discrepancy is 
that —K0(t) is not the only antiderivative of K\(t). 

Generalized Stieltjes transform. The conventional Stieltjes transform of a 
locally integrable function/(/) on (0, 00) is defined by 

f°° fit) 
(5-18) *<*> = Jo JjTTxY*> 
where p is a fixed real number, provided that the integral exists. Here we 
shall again assume that / belongs to the family J^ 

If the above integral does not exist, then we shall view Sf(x) as the 
convolution of tl~pf(t) and (1 + t)~p. That is, for <j> e <^(R+), we 
define 

(5.19) (Sf9<t>) = < / p * ( l + trp,4>>, 

where fp(t) = tl~pf(t) and the right hand side is understood in the sense 
of Definition 4. 

To obtain the behavior of Sf(x), we assume t h a t / h a s the asymptotic 
expansions (4.14) and (4.15), and note that 

(1 + 0 " p ~ 1 {~iy,ip)st\ a s f - 0 + , 
s = 0 S\ 
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i-\Y{p)s.-s-

and 

=o *! 

M[(i + o~p;*l - r(z)r(P - z) / r(P), 
where (p)s = Y(p + s) / T(p). 

If a — p is not an integer, and if v + p — 1 and a -f 1 are not negative 
integers or zero, then Theorem 4 gives 

5=0 T(P) 

(5-2°) 
+ 2. ; M[f\ 1 - p - ^]x\ 

5=0 s! 

as x —> 0 + . If a — p is an integer, and if v + p — 1 and a -f 1 are not 
negative integers or zero, then by Theorem 5 we have 

5 = 0 T(P) 

(5.21) - 2 a , J — - — ^-(p) a+i+5-plogx - b"s 

s = p-a-\ 1.(5 + a + 1 - p)! 

, V ( - i y ( p ) 5 „ r ^ , 
+ 2 : M[f\ 1 - p - ^K 

5 = 0 ^ 
oo 

2 ^ ^ V , 
5 = a -f 1 — p ^ • 

as x —-> 0 + , where 

fl;= lim | M [ / ; Z - P + l ] - ^ " t t " ' + P ) 

and 
( _ i y + fl+i-p r ( j + a + 1 } 

(s + a -f 1 — p)! I(p) 
- ^ + a + 1) ]. 

In (5.21), the coefficients as and (p)s are taken to be zero when the 
subscripts s are negative. 

Similarly, if v — 1 is not an integer, and if v + p — 1 and a + 1 are not 
negative integers or zero, then Theorem 6 gives 
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2a a, -— x' Sf(x) ^ „3 

(5.22) 
S (~mp)s-+ 2J -r-^Mtf; s + \]x~s-p 

s=o si 

as x —» +oo. If v — 1 is an integer, but v + p — 1 and a + 1 are not 
negative integers or zero, then we have from Theorem 7 

(5.23) 

+ 2 c 
s=\-v 
v-2 

T(s + v + p - l ) r ( l - s - P) , _ , _ „ _ , 

n 
S/(x) ~ 2u cs — x 

s=o r(p) 
oo 

1—S—P p 

(s + v - 1) 
ip)s+v-\ ) o g * + d*s X 

2 (—^-(p)sM[f; s + i]x~s-» 
s = 0 Si 

+ 2 c^-^-ip^x-'-" 

as x —•» +oo where 

lim { M[/ ; z + 1 - p] + _ Cl~1'^ \ 
->s + p Z 

and 

i-\y~^s r(s + ? + p - i) 
(* - l + J)! r(p) 

X {^(v + 5) - # s + ^ + p - 1) }, 

the coefficients ĉ  and (p)5 in (5.23) again being taken to be zero when s is a 
negative integer. 

The above results should be compared with some of those in [15, 16], 
where only the leading terms in the expansions (5.20) - (5.23) are given; 
see also Example 1 above. For asymptotic expansions of the ordinary 
Stieltjes transform, we refer to [8], [18] and [23]. 

Example 5. Consider the formal integral 

/

oo 

0 

1 - t |3/2 

which is used only symbolically to represent the Stieltjes transform of 
|1 — /|3/2 defined by (5.19) with p = 2. The first three terms in ascending 
powers of x in (5.21) give 
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1 3 3 
H(x) ~ - + - log x + -

x 2 2 14) 77 + y 

as x —» 0 + . Similarly, from (5.22) we have 

H(X) ~ - 1 W 1 ~ ~4 77X-'72 + ^ 77X-372 

as x —> +oo. The behavior of a similar but conventional integral has been 
obtained by Handelsman and Lew [8, p. 430]. 

Generalized fractional integral transform. The above technique can of 
course be repeated for the generalized fractional integral transform 

(5.24) Pg(x) = ^ j'l (x - tf-lg(t)dt, g G ^ 
1 

with the right-hand side being understood in the sense of the generalized 
Mellin convolution 

(5.25) - ^ - ( / * g ) ( J C ) , 

where 

(5.26) / ( 0 - { ^ i ( 1 _ r i r - i 
0 < t : 
t > 1. 

Fractional integrals of generalized functions have been studied via a 
different approach by Erdélyi-McBride [5] and Erdélyi [2]. Their results 
have been further extended in [17]. For the asymptotic expansions of the 
conventional fractional integrals, see [19] and [23]. The results in Section 4 
will enable us to write down the asymptotic expansions of the generalized 
fractional integrals at once. 

Acknowledgement. We are grateful to the referee for careful reading of 
an earlier version of this article, and for valuable suggestions leading to 
simplification and clarification at various points in the text. 
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