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We consider two questions on the geometry of Lipschitz-free p-spaces Fp, where
0 < p � 1, over subsets of finite-dimensional vector spaces. We solve an open
problem and show that if (M, ρ) is an infinite doubling metric space (e.g. an infinite
subset of an Euclidean space), then Fp(M, ρα) � �p for every α ∈ (0, 1) and
0 < p � 1. An upper bound on the Banach–Mazur distance between the spaces
Fp([0, 1]d, | · |α) and �p is given. Moreover, we tackle a question due to Albiac et al.
[4] and expound the role of p, d for the Lipschitz constant of a canonical, locally
coordinatewise affine retraction from (K, | · |1), where K = ∪Q∈RQ is a union of a

collection ∅ �= R ⊆ {Rw + R[0, 1]d : w ∈ Z
d} of cubes in R

d with side length R > 0,
into the Lipschitz-free p-space Fp(V, | · |1) over their vertices.
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1. Introduction

Given a pointed metric space M, there exists a Banach space F(M), called the
Lipschitz-free space over M, such that M embeds isometrically into F(M) via
a map δ : M → F(M), and for every Banach space Y and a Lipschitz map f :
M → Y which vanishes at the origin, f extends uniquely to a linear operator Tf :
F(M) → Y such that Lip f = ‖Tf‖.

Lipschitz-free spaces are distinguished by their ability to relate the classical linear
theory to the non-linear geometry of Banach spaces. This line of research can be
traced back to the seminal paper by Godefroy and Kalton [8], where Lipschitz-free
spaces were identified as a natural class of objects for studying the deep classical
problem of whether two Lipschitz isomorphic Banach spaces are linearly isomorphic.

To give an application of the theory, we note the authors were able to establish
that whenever X is a separable Banach space and X embeds into a Banach space Y
isometrically, then there exists a linear isometric embedding of X into Y . Similarly,
they used the universal extension property of Lipschitz-free spaces to show that a
bounded approximation property of a Banach space is preserved merely by Lipschitz
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isomorphisms. Let us remark that the study of approximation properties and the
non-linear geometry of Banach spaces is an ongoing topic (see [4, 7, 9, 10, 13, 16]).

In the context of the Lipschitz isomorphism problem, Albiac and Kalton [1] later
came with an example of two separable p-Banach spaces, for each 0 < p < 1, which
are Lipschitz isomorphic but fail to be linearly isomorphic. As it turns out, the
counterexample to the generalized variant of the Lipschitz isomorphism problem
could be developed in the setting of generalized Lipschitz-free spaces, coined the
Lipschitz-free p-spaces.

For each 0 < p � 1, the Lipschitz-free p-space Fp(M) over a metric space M
is a p-Banach space into which M isometrically embeds, and such that for every
p-Banach space Y and a Lipschitz map f : M → Y which vanishes at the origin, f
extends uniquely to a linear operator Tf : Fp(M) → Y with Lip f = ‖Tf‖. We note
that a thorough study of Lipschitz-free p-space was recently initiated in [2].

The locally non-convex geometry of Lipschitz-free p-spaces is rather challenging
to grasp. As evidence, we note that for any subspace N of a metric space M,
it is straightforward to show that F1(N ) embeds isometrically into F1(M) via a
canonical linearization of the inclusion map i : N → M. However, this is not the
case for p < 1, and it remains an open question whether the inclusion in general is
an isomorphic embedding, see [2, Theorem 6.1 and Question 6.2], respectively.

A distinctive feature of the p < 1 theory is that a duality argument is no longer at
our disposal, and we instead have to proceed by a direct geometrical construction
in the Lipschitz-free p-space itself. Moreover, strict concavity of a p-norm for p < 1
typically introduces a dimensionality factor into the proof work; typically, this would
render many of the techniques developed within the vast literature dedicated to
approximation properties of Lipschitz-free spaces hardly adaptable.

Here we consider two open questions on the structure of Lipschitz-free p-spaces
over subsets of finite-dimensional normed spaces. In particular, we expound the
extent to which selected results from the classical p = 1 theory generalize to the
0 < p � 1 scale.

Theorem 1 cf. Theorem 4.9. Let (M, ρ) be an infinite doubling metric space (e.g.
an infinite subset of an Euclidean space) and 0 < α < 1, 0 < p � 1. Then Fp(M, ρα)
is isomorphic to the space �p.

A classical result in the theory of Lipschitz-free spaces states that if | · | is a norm
on R

d and M is an infinite bounded subset of R
d endowed with the snowflake

metric | · |α, where 0 < α < 1, then F1(M, | · |α) � �1.
The standard approach (consider e.g. [18]) is to identify an isometric predual of

F1(M, | · |α) as the subspace lip0(M, | · |α) consisting of little Lipschitz functions
in the Lipschitz dual Lip0(M, | · |α) � F∗

1 (M, | · |α). The proof then proceeds by
constructing an isomorphism between lip0(M, | · |α) and the space c0; this is an
earlier result which traces back to, e.g. [6].

More recently, the result was generalized in [3] to infinite subsets of R
d. In par-

ticular, an observation was made showing that for any 0 < p � 1, if Fp([0, 1]d, | · |α)
is isomorphic to the space �p, then Fp(M, | · |α) � �p for any infinite subset M of
R

d (and, by the Assouad embedding theorem, to snowflake distortions of infinite
doubling metric spaces). The authors claimed that the ideas from the standard
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p = 1 argument adapt to yield the isomorphism Fp([0, 1]d, | · |α) � �p for d = 1 and
0 < p � 1. However, for d � 2 the available techniques turned insufficient and the
problem remained open, see [3, Question 6.8].

Here we tackle the multidimensional structure of Fp([0, 1]d, | · |α), and unlike the
standard proof for p = 1, we set up an explicit linear bijection between p-norming
sets in the respective spaces. As it turns out, the basis shares the form with the
Schauder basis of Fp([0, 1]d), see [4, Theorem 3.8].

It is also interesting to note that our approach gives an estimate on the
Banach–Mazur distance between Fp([0, 1]d, | · |α) and �p whenever | · | is identi-
fied as the �1-norm, which is a new detail even for the case p = 1. An interested
reader may want to compare the upper bound of (4d2−αc(α))d with a lower bound
of c′(α)dα(1−α)(log(2n))−α/2 whenever α ∈ [1/2, 1) and c′(α)dα/2(log(2n))−α/2

otherwise, where p = 1 and c(α), c′(α) are universal constants, see [12,
Proposition 8.6].

As an introduction to the proof of theorem 1, it will be instructive to better inves-
tigate a canonical, locally coordinatewise affine retraction from (K, | · |1), where
K = ∪Q∈RQ is a union of a collection ∅ �= R ⊆ {Rw + R[0, 1]d : w ∈ Z

d} of cubes
in R

d with side length R > 0, into the Lipschitz-free p-space Fp(V, | · |1) over their
vertices.

From [14] we know that for p = 1, the retraction is Lipschitz continuous with the
Lipschitz constant equal to one. More recently, it was established in [4, Theorem
5.1] that the retraction is Lipschitz continuous for any 0 < p � 1. However, the roles
of p and d in the estimate of the Lipschitz constant were unclear, and the method
led to a suboptimal estimate even for the classical p = 1 case.

Here we present an alternative approach which generically refines the estimate
from [4], and we apply a double counting argument to derive a lower bound on the
Lipschitz constant of the retraction. That is, we obtain the following result, which
answers [4, Question 4.6] in the negative.

Theorem 2 cf. Theorem 3.2. There is a unique map rK,V : (K, | · |1) → Fp(V, | · |1)
such that rK,V (v) = δV (v), where v ∈ V , and rK,V is coordinatewise affine on each
of the cubes in R. If we denote C(p, n) = n1/p−1, where n ∈ N, then

C(p, 2d−1) � Lip rK,V � C(p, 2d−1)C(p, d)C(p, 3).

The article is organized as follows. In § 2, we recall the notion of a p-Banach
space and include several foundational properties of Lipschitz-free p-spaces. We also
introduce the canonical, locally coordinatewise affine retraction in a cube. Section 3
is devoted to the proof of theorem 2. In § 4, we develop a series of results leading up
to the proof of theorem 1 for the particular case M = [0, 1]d, and then we deduce
the general conclusion for snowflakes of infinite doubling metric spaces.

2. Preliminaries

2.1. p-normed spaces

Definition 2.1. Let X be a vector space. We say that a map ‖·‖ : X → [0,∞) is
a quasi-norm on X if there exists κ � 1 such that
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(i) ‖x‖ > 0 for any x �= 0,

(ii) ‖αx‖ = |α|‖x‖ for any scalar α and x ∈ X,

(iii) ‖x + y‖ � κ(‖x‖ + ‖y‖) for any x, y ∈ X.

We then call (X, ‖·‖) a quasi-normed space.
Replacing (iii) with the assumption that for some 0 < p � 1,

(iii’) ‖x + y‖p � ‖x‖p + ‖y‖p for any x, y ∈ X,

we obtain the notion of a p-norm and a p-normed space. Moreover, if X is com-
plete with respect to the metric d(x, y) = ‖x − y‖p (x, y ∈ X), we say (X, ‖·‖) is a
p-Banach space.

Definition 2.2. For 0 < p � 1, we say that a subset Z of a vector space X is
absolutely p-convex if for any x, y ∈ Z and scalars α, β, where |α|p + |β|p � 1, we
have αx + βy ∈ Z.

The smallest absolutely p-convex set containing Z is denoted by aconvp Z.

We shall write BX = {x ∈ X : ‖x‖ � 1} for the unit ball of a quasi-normed space
(X, ‖·‖).

Definition 2.3. For 0 < p � 1, we say that a subset Z of a quasi-normed space X
is p-norming with constants α, β > 0 whenever

α aconvpZ ⊆ BX ⊆ β aconvpZ.

If α = β = 1, we say Z is isometrically p-norming.

If X1 and X2 are two quasi-normed spaces, we let B(X1,X2) denote the space
of bounded linear operators from X1 into X2.

The following fact is an easy linear variant of an extension theorem for Lipschitz
continuous maps.

Lemma 2.4. Let 0 < p � 1. Assume that Y1 and Y2 are p-norming in p-Banach
spaces X1 and X2, respectively, and that aconvp Y1 and aconvp Y2 contain neigh-
bourhoods of zero in span Y1 and span Y2, respectively. That is, we have aconvp Yi ⊇
ciBXi

∩ span Yi for some ci > 0, for each i ∈ {1, 2}.
If T is a one-to-one linear map from span Y1 into X2 such that T (Y1) = Y2, then

T extends to an onto isomorphism T̃ : X1 → X2.
Quantitatively, if Y1, Y2 are p-norming in X1, X2 with constants α, β and α′, β′,

respectively, then ‖T̃‖ � β/α′ and ‖T̃−1‖ � β′/α.

We remark that [2, Lemma 2.6] states a stronger, alleged variant of the extension
result, leaving out the assumption that aconvp Yi contains a neighbourhood of zero
in spanYi, for each i ∈ {1, 2}. This claim, however, is not true. Nevertheless, it
turns out that the assumptions of lemma 2.4 are satisfied in the applications of [2,
Lemma 2.6] in [2]; hence, the derived results remain valid.

The following counterexample to [2, Lemma 2.6] was suggested by Ansorena.
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Counterexample 2.5 . Let X be a p-Banach space, where 0 < p � 1, and let M be
a closed subspace of X. Let T : X → X/M be the quotient map.

Pick a dense subspace V of X such that V ∩ M = {0}, and set K = BX ∩ V . It
is easy to see that K is absolutely p-convex as well as isometrically p-norming in X.
If UX denotes the open unit neighbourhood of zero in X, we verify that

BX/M =
⋂
t>1

tT (UX) =
⋂
t>1

tT (BX) =
⋂
t>1

tT (K) ⊆
⋂
t>1

tT (K) = T (K).

For instance, for any 0 < p � 1 we may take X = �p, M = span{e1}, and V =
span {{en : n � 2} ∪ {e1 +

∑∞
n=2 2−nen}}.

If we denote X1 = X, X2 = X/M and Y1 = K, Y2 = T (K), then Y1 and Y2 are
absolutely p-norming in X1 and X2, respectively, and T is a linear bijection from
span Y1 onto spanY2. However, T does not extend to an isomorphism from X1

into X2.

A particular class of coefficients We introduce a coefficient C(p, n) which has the
role of κ in (iii) for sums of n elements, i.e. if (X, ‖·‖) is a quasi-normed space and
both 0 < p � 1 and n ∈ N are given, then ‖∑n

i=1 xi‖ � C(p, n)
∑n

i=1‖xi‖ for any
x1, . . . , xn ∈ X.

Definition 2.6. For any n ∈ N and 0 < p � 1, let us denote

C(p, n) = sup

⎧⎨⎩
(

n∑
i=1

wp
i

)1/p

: wi � 0 for i ∈ {1, . . . , n},
n∑

i=1

wi � 1

⎫⎬⎭ .

Note that (
∑n

i=1 |wi|p)1/p � C(p, n)|w|1 for any n ∈ N, 0 < p � 1, and w =
(wi)n

i=1 ∈ R
n.

An explicit formula for C(p, n) follows easily from Hölder’s inequality.

Fact 2.7. Let n ∈ N, 0 < p � 1. It holds that C(p, n) = n1/p−1.

2.2. Lipschitz-free p-spaces

If (M, ρ) is a pointed metric space with 0M as its base point, we consider δ :
M → Lip0(M)∗ that maps x ∈ M to the canonical evaluation functional δ(x) ∈
Lip0(M)∗, i.e. 〈δ(x), f〉 = f(x) for each f ∈ Lip0(M).

We recall that the Lipschitz-free space F(M) over M can be identified as the
closed span of δ(M) in Lip0(M)∗,

F(M) = span{δ(x) : x ∈ M}.
Furthermore, F(M)∗ is linearly isometric to Lip0(M). In fact, if Mol(M) denotes
the set of elementary molecules in F(M),

Mol(M) =
{

δ(x) − δ(y)
ρ(x, y)

: x, y ∈ M, x �= y

}
,

it follows from the Hahn–Banach theorem that BF(M) = conv Mol(M).
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Let 0 < p � 1 and denote P(M) = span{δ(x) : x ∈ M}. Drawing from the
outlined construction, we set for each m ∈ P(M)

‖m‖ = inf

(
n∑

i=1

|ai|p
)1/p

,

the infimum being taken over all n ∈ N0 and μi ∈ Mol(M), ai ∈ R, for each i ∈
{1, . . . , n}, such that m =

∑n
i=1 aiμi.

It turns out that (P(M), ‖·‖) is a p-normed space and δ is an isometric
embedding. The completion yields the Lipschitz-free p-space Fp(M).

Theorem 2.8 cf. [2, Theorem 4.5]. Let (M, ρ) be a pointed metric space. Given 0 <
p � 1, there exists a p-Banach space (Fp(M), ‖·‖), called the Lipschitz-free p-space
over M, and a map δ : M → Fp(M) such that

(i) δ is an isometric embedding with δ(0M) = 0Fp(M),

(ii) Fp(M) = span{δ(x) : x ∈ M},
(iii) if (Y, ‖·‖Y ) is a p-Banach space, then B(Fp(M), Y ) is linearly isometric to

Lip0(M, Y ) via the map f∗ �→ f∗ ◦ δ for each f∗ ∈ B(Fp(M), Y ).

Fact 2.9 cf. [2, Corollary 4.11]. Let (M, ρ) be a pointed metric space. For each
0 < p � 1, the set Mol(M) is isometrically p-norming in Fp(M). That is, BFp(M) =
aconvp Mol(M), and for each m ∈ P(M) we have

‖m‖ = inf

(
n∑

i=1

|ai|p
)1/p

,

the infimum being taken over all n ∈ N0 and μi ∈ Mol(M), ai ∈ R, where i ∈
{1, . . . , n}, such that m =

∑n
i=1 aiμi.

We show that for any dense subset N of M and any m ∈ P(N ), the above formula
is still valid if we consider decompositions of m merely into molecules over N .

Lemma 2.10. Let N be a dense subset of a pointed metric space (M, ρ). Then
for each 0 < p � 1 and m ∈ P(N ), we have ‖m‖Fp(M) = inf(

∑n
i=1 |ai|p)1/p, the

infimum being taken over all n ∈ N0 and μi ∈ Mol(N ), ai ∈ R, where i ∈ {1, . . . , n},
such that m =

∑n
i=1 aiμi.

In particular, aconvp Mol(N ) contains the open unit neighbourhood of zero in
P(N ), with respect to the ambient space Fp(M). That is, we have {m ∈ P(N ) :
‖m‖Fp(M) < 1} ⊆ aconvp Mol(N ).

Proof. Let m ∈ P(N ) and pick ε > 0. It follows from fact 2.9 that there exist n ∈
N0 and μi ∈ Mol(M), ai ∈ R, where i ∈ {1, . . . , n}, for which m =

∑n
i=1 aiμi, and

(
∑n

i=1 |ai|p)1/p < (1 + ε)‖m‖Fp(M). We further consider ui, vi ∈ M, ui �= vi, such
that μi = δ(ui) − δ(vi)/|ui − vi|α, where i ∈ {1, . . . , n}.
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Let us denote B = {ui}i∈{1,...,n} ∪ {vi}i∈{1,...,n}. By density of N in M, it is
easy to construct a mapping r : B �→ N such that r(b) = b for any b ∈ N , and
|r(ui) − r(vi)|α/|ui − vi|α < 1 + ε but r(ui) �= r(vi), for any i ∈ {1, . . . , n}.

We consider the unique linear mapping r′ : P(B) �→ P(N ) which satisfies that
r′(δ(b)) = δ(r(b)) for each b ∈ B. It is easy to see that r′(m) = m, as r′ agrees with
the identity on P(N ).

Let us rewrite m = r′(m) =
∑n

i=1 air
′(μi), where

n∑
i=1

air
′(μi) =

n∑
i=1

ai
r′(δ(ui)) − r′(δ(vi))

|ui − vi|α

=
n∑

i=1

ai
|r(ui) − r(vi)|α

|ui − vi|α
δ(r(ui)) − δ(r(vi))
|r(ui) − (vi)|α .

For each i ∈ {1, . . . , n}, we denote μ′
i = δ(r(ui)) − δ(r(vi))/|r(ui) − (vi)|α ∈

Mol(N ) and set a′
i = ai|r(ui) − r(vi)|α/|ui − vi|α. It follows from the con-

struction that m =
∑n

i=1 a′
iμ

′
i and (

∑n
i=1 |a′

i|p)1/p < (1 + ε)(
∑n

i=1 |ai|p)1/p <
(1 + ε)2‖m‖Fp(M). We take ε → 0, and the first claim follows.

Note that, in particular, the already proven part shows that {m ∈ P(N ) :
‖m‖Fp(M) < 1} ⊆ aconvp Mol(N ). This establishes the second claim. �

We note that any Lipschitz map between pointed metric spaces which vanishes
at the base point has an extension to a bounded operator between the respective
Lipschitz-free p-spaces, for every 0 < p � 1.

Fact 2.11 cf. [2, Lemma 4.8]. Let M, N be pointed metric spaces. For every
0 < p � 1, there is a linear isometry L : Lip0(M,N ) → B(Fp(M),Fp(N )), called
the canonical linearization operator, such that δN ◦ f = L(f) ◦ δM, for every f ∈
Lip0(M,N ).

2.3. A projective construction in [0, 1]d

We overview a canonical, locally coordinatewise affine projective construction
in [0, 1]d; hereby we set ground for basis expansions in Fp([0, 1]d, | · |α) consid-
ered within § 4. Let us remark that this particular choice has appeared in various
contexts, e.g. [4, 14, 18]. We adopt the notation from [4, Section 3].

Let d ∈ N, R > 0. If w = (wi)d
i=1 ∈ Z

d, we set V d
w,R = Rw + R{0, 1}d and define a

cube Qd
w,R as the convex hull of the set V d

w,R, i.e. Qd
w,R = Rw + R[0, 1]d. We denote

Qd
R =

{
Qd

w,R : w ∈ Z
d
}

and Vd
R =

{
V d

w,R : w ∈ Z
d
}
. Let us further introduce a map

V : Qd
R → Vd

R by V(Qd
w,R) = V d

w,R, where w ∈ Z
d.

We define projective coefficients from R
d to the vertex set Vd

R. For any x ∈ [0, 1]
and w ∈ Z, we first put

x(w) =

⎧⎪⎨⎪⎩
x if w = 1,

1 − x if w = 0,

0 if w /∈ {0, 1},
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and write, whenever x = (xi)d
i=1 ∈ [0, 1]d and w = (wi)d

i=1 ∈ Z
d,

x(w) =
d∏

i=1

x
(wi)
i .

We find that this construction admits a lift to R
d in x.

Lemma 2.12 cf. [4, Lemma 3.1]. Let d ∈ N, R > 0. There exists a map

Λd
R :

⋃
Vd

R × R
d → [0, 1]

such that Λd
R(Ru,Rw + Rx) = x(u−w), for every x ∈ [0, 1]d and u, w ∈ Z

d.

Moreover, we list properties of Λd
R which we shall refer to in the sequel.

Lemma 2.13 cf. [4, Lemma 3.4]. Let d ∈ N, R > 0. It holds that

(i) Λd
R(v, x) = 0 whenever x ∈ Q ∈ Qd

R and v /∈ V(Q),

(ii) Λd
R(v, u) = δv,u for any u, v ∈ Vd

R,

(iii)
∑

v∈Vd
R

Λd
R(v, x) = 1 for any x ∈ R

d,

(iv) Λd
R(v, x) =

∏d
i=1 Λ1

R(vi, xi) for any x = (xi)d
i=1 ∈ R

d, v = (vi)d
i=1 ∈ Vd

R.

3. A retraction in Fp([0, 1]d, | · |1)
Drawing from the projective construction introduced in § 2.3, we consider a retrac-
tion from (K, | · |1), where K = ∪Q∈RQ is a union of a collection R of regularly
spaced cubes in R

d with equal side length, into the Lipschitz-free p-space Fp(V, | · |1)
over their vertices. We provide bounds on the Lipschitz constant thereof and analyse
locally coordinatewise affine extensions of Lipschitz maps from a vertex set ranging
into p-Banach spaces.

We pick d ∈ N and endow R
d with the �1-norm hereinafter.

Adopting the notation of § 2.3, let R ⊆ Qd
R, K = ∪Q∈RQ, V = ∪Q∈QV(Q),

and fix a point of V as the base point of both K, V . As a consequence of
lemma 2.13 (i), for any x ∈ K the coefficients Λd

R(·, x) are finitely supported, and
hence we are justified to introduce r = rK,V : K → Fp(V ) as

r(x) =
∑
v∈V

Λd
R(v, x)δV (v), x ∈ K. (3.1)

We can easily see that rK,V = δV on V . Moreover, in [4, Theorem 3.5], it was
established that the map rK,V is Lipschitz with an upper bound depending on both
p and d, under the assumption of the �∞-norm on R

d. Applying their method to the
p = 1 and �1-norm case, the obtained estimate still retained a term depending on
d, thus contrasting a positive result due to [14] which shows the Lipschitz constant
to equal 1.
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Question 3.1 [4, Question 4.6]. Is there a constant C depending on p but not on d,
K or V , such that Lip(rK,V ) � C?

We refine the estimate of [4, Theorem 3.5] but answer the above question in
negative.

Theorem 3.2. Let d ∈ N, R > 0, R ⊆ Qd
R, where R �= ∅, K = ∪Q∈RQ, V =

∪Q∈RV(Q), and consider V as a pointed metric space with the subspace �1 metric.
We let 0 < p � 1 and r = rK,V : K → Fp(V ) be as above.

For any x, y ∈ K we have

‖r(x) − r(y)‖p � C(p, 2d−1)C(p, d)C(p, 3)|x − y|1.
Conversely, there exist x, y ∈ K such that

C(p, 2d−1)|x − y|1 � ‖r(x) − r(y)‖p .

We develop a series of preliminary results which outline properties of the present
construction under dilation and translation.

Lemma 3.3. Let V ⊆ Z
d, 0V ∈ V , R > 0 and x ∈ Z. Denote V ′ = RV + Rx, 0V ′ =

R0V + Rx, and consider 0V , 0V ′ as the base points of V , V ′, respectively.
For any 0 < p � 1, the map τ ′ : δV (V ) ⊆ Fp(V ) → Fp(V ′), δV (v) �→ δV ′(Rv +

Rx), where v ∈ V , extends to an isomorphism τ of Fp(V ) and Fp(V ′), such that
‖τ(x)‖Fp(V ′) = R ‖x‖Fp(V ) for any x ∈ Fp(V ).

Proof. We note the map σ : V → V ′, v �→ Rv + Rx, where v ∈ V , is a bi-Lipschitz
bijection of V , V ′, such that |σ(v) − σ(u)|1 = R|v − u|1, where v, u ∈ V .

By fact 2.11, there exists an isomorphism τ of spaces Fp(V ) and Fp(V ′) satisfying
τ ◦ δV = δV ′ ◦ σ and ‖τ(x)‖Fp(V ′) = R ‖x‖Fp(V ), where x ∈ Fp(V ). Since τ �δV (V )=
τ ′ by the construction, the conclusion follows. �

Lemma 3.4. Let d ∈ N, R > 0, R ⊆ Qd
R, K = ∪Q∈RQ and V = ∪Q∈RV(Q). When-

ever x, y ∈ K satisfy the condition y − x ∈ RZ
d, we have that

(i) Λd
R(v, x) = Λd

R(v + (y − x), y), where v ∈ RZ
d,

(ii) v + (y − x) ∈ V for any v ∈ V , Λd
R(v, x) �= 0,

(iii) r(y) =
∑

v∈V, Λd
R(v,x) �=0 Λd

R(v, x)δV (v + (y − x)).

Proof. Pick w, u ∈ Z
d such that x ∈ Qd

w,R ∈ R and y ∈ Qd
u,R ∈ R.

Appealing to the definition of Λd
R, we establish for any v ∈ RZ

d

Λd
R(v, x) = Λd

R(v,Rw + (x − Rw))

=
( x

R
− w

)(v/R−w)

= Λd
R(v + (y − x), (Rw + (y − x)) + (x − Rw))

= Λd
R(v + (y − x), y),

(3.2)
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where v + (y − x) ∈ RZ
d by the assumption. This verifies the first claim.

As Λd
R(v, y) = 0 whenever v ∈ Vd

R and v /∈ V(Qd
u,R) ⊆ V , we deduce {v + (y − x) :

v ∈ V,Λd
R(v, x) �= 0} ⊆ {v : v ∈ V, Λd

R(v, y) �= 0}. This proves the second claim.
In fact, since the inclusion similarly holds for the role of x, y interchanged, we

conclude

{v + (y − x) : v ∈ V,Λd
R(v, x) �= 0} = {v : v ∈ V, Λd

R(v, y) �= 0}. (3.3)

We assert that

r(y) =
∑
v∈V

Λd
R(v,y) �=0

Λd
R(v, y)δV (v)

=
∑
v∈V

Λd
R(v,x) �=0

Λd
R(v + (y − x), y)δV (v + (y − x))

=
∑
v∈V

Λd
R(v,x) �=0

Λd
R(v, x)δV (v + (y − x)).

Indeed, the first equality follows from the definition of r. The second and
third equalities rely on equations (3.3) and (3.2), respectively. The proof is now
complete. �

We proceed to the proof of the main result. To that end, let us first introduce
the following notation.

Notation 3.5. For any j ∈ {1, . . . , d}, we define πj : R
d → R

d−1, (xi)d
i=1 �→

(x1, . . . , xj−1, xj+1 . . . , xd), where (xi)d
i=1 ∈ R

d.
Given v = (vi)d−1

i=1 ∈ {0, 1}d−1, we shall write v0 = (v0
i )d

i=1 and v1 = (v1
i )d

i=1 for
the elements of {0, 1}d satisfying v0

i = v1
i = vi, where i ∈ {1, . . . , d − 1}, and v0

d = 0,
v1

d = 1, respectively.

Proof of theorem 3.2. We claim that up to a dilation and a translation, it suf-
fices to consider the case R = 1 and Q0,1 ∈ R. Indeed, if R′ ⊆ Qd

R, K ′ = ∪Q∈R′Q,
V ′ = ∪Q∈R′V(Q) and 0V ′ is the base point of V ′, we may find R ⊆ Qd

1, Q0,1 ∈ R,
K = ∪Q∈RQ, V = ∪Q∈RV(Q), 0V ∈ V and w ∈ Z

d, such that K ′ = RK + Rw,
V ′ = RV + Rw and 0V ′ = R0V + Rw. We define σ : K → K ′ by y �→ Ry + Rw for
y ∈ K, and consider 0V as the base point of V .

We let τ : Fp(V ) → Fp(V ′) denote the isomorphism from lemma 3.3. Pick y ∈
K. For any v ∈ Z

d, we note that Λd
R(Rv + Rw,Ry + Rw) = Λd

1(v + w, y + w) and
Λd

1(v + w, y + w) = Λd
1(v, y) by the defining property of Λd

R and lemma 3.4 (i),
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respectively. We may thus write

rK′,V ′(σ(y)) =
∑
v∈V ′

Λd
R(v, σ(y))δV ′(v)

=
∑
v∈V

Λd
R(Rv + Rw,Ry + Rw)δV ′(Rv + Rw)

=
∑
v∈V

Λd
1(v, y)δV ′(Rv + Rw)

= τ(rK,V (y)).

Since y ∈ K was arbitrary, and using the fact that ‖τ(x)‖Fp(V ′) = R ‖x‖Fp(V ),
where x ∈ Fp(V ), we deduce for any y, z ∈ K

‖rK′,V ′(σ(y)) − rK′,V ′(σ(z))‖Fp(V ′) = R ‖rK,V (y) − rK,V (z)‖Fp(V ) .

Similarly, we note that |σ(y) − σ(z)|1 = R|y − z|1 for any y, z ∈ K. As σ is a
bijection of K and K ′, the claim follows.

To establish an upper bound on the Lipschitz constant of r, we begin with the
case when x, y ∈ Q for some Q ∈ R. To that end, let us first note that for x =
(xi)d

i=1 ∈ Qd
w,1 ∈ R, where w = (wi)d

i=1 ∈ Z
d, it holds by lemma 2.13(i) and (iv)

r(x) =
∑

v∈V(Qd
w,1)

Λd
1(v, x)δV (v)

=
∑

u∈{0,1}d−1

Λd−1
1 (πd(w) + u, πd(x))Λ1

1(wd, xd)δV (w + u0)

+
∑

u∈{0,1}d−1

Λd−1
1 (πd(w) + u, πd(x))Λ1

1(wd + 1, xd)δV (w + u1)

=
∑

u∈{0,1}d−1

Λd−1
1 (πd(w) + u, πd(x))(1 − (xd − wd))δV (w + u0)

+
∑

u∈{0,1}d−1

Λd−1
1 (πd(w) + u, πd(x))(xd − wd)δV (w + u1).

(3.4)

Pick x = (xi)d
i=1, y = (yi)d

i=1 ∈ Qd
w,1 ∈ R, where w = (wi)d

i=1 ∈ Z
d. We shall fur-

ther assume that x, y differ in at most one coordinate; without loss of generality,
let xi = yi for any i ∈ {1, . . . , d − 1}. It follows from (3.4) that

r(x) − r(y) = (xd − yd)·∑
u∈{0,1}d−1

Λd−1
1 (πd(w) + u, πd(x))(δV (w + u1) − δV (w + u0)). (3.5)

We have
∑

u∈Vd−1(πd(Qd
w,1))

Λd−1
1 (u, πd(x)) = 1 by lemma 2.13 (iii). Since also∥∥δV (w + u1) − δV (w + u0)

∥∥
p

= 1 for any u ∈ {0, 1}d−1, we deduce the inequality

‖r(x) − r(y)‖p � C(p, 2d−1)|xd − yd|. (3.6)
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For any x = (xi)d
i=1, y = (yi)d

i=1 ∈ Qd
w,1 ∈ R we may now take a sequence

(zi)d
i=0 = ((zi

j)
d
j=1)

d
i=0 ∈ (Qd

w,1)
d+1 such that for any i ∈ {0, . . . , d} and j ∈

{1, . . . , d}, it holds that zi
j = xj if and only if i � j and zi

j = yj otherwise. Any
two consecutive elements of the sequence (zi)d

i=1 differ in at most one coordinate,
and using the inequality (3.6) we establish

‖r(x) − r(y)‖p
p �

d−1∑
i=0

∥∥r(zi+1) − r(zi)
∥∥p

p

� Cp(p, 2d−1)
d∑

i=1

|xi − yi|p,

hence ‖r(x) − r(y)‖p � C(p, 2d−1)C(p, d)|x − y|1.
As for the general case, we consider x = (xi)d

i=1 ∈ Qd
w,1 ∈ R and y = (yi)d

i=1 ∈
Qd

u,1 ∈ R, where w, u ∈ Z
d. Let us denote I = {i ∈ {1, . . . , d} : wi �= ui}.

Given i ∈ I, we may find ni,mi ∈ Z such that ni ∈ {wi, wi + 1}, mi ∈ {ui, ui + 1}
and |xi − yi| = |xi − ni| + |ni − mi| + |mi − yi|. Let us also pick x′ = (x′

i)
d
i=1 ∈ R

d,
y′ = (y′

i)
d
i=1 ∈ R

d such that x′
i = y′

i = xi if and only if i ∈ {1, . . . , d} \ I and x′
i =

ni, y′
i = mi otherwise, respectively. It follows after short thought that x′ ∈ Qd

w,1,
y′ ∈ Qd

u,1 and |x − y|1 = |x − x′|1 + |x′ − y′|1 + |y′ − y|1.
We note that y′ − x′ ∈ Z

d; hence lemma 3.4 applies and

r(y′) =
∑
v∈V

Λd
1(v,x′) �=0

Λd
1(v, x′)δV (v + (y′ − x′)),

r(x′) − r(y′) =
∑
v∈V

Λd
1(v,x′) �=0

Λd
1(v, x′)(δV (v) − δV (v + (y′ − x′))).

If I was empty, then necessarily r(x′) = r(y′). Otherwise at least one coordi-
nate of x′ assumes value in Z; we claim |{v ∈ V(Q) : Λd

1(v, x′) �= 0}| � 2d−1 in
this case. To that end, let x′

j ∈ Z for some j ∈ {1, . . . , d}, and define w′
j = wj + 1

if and only if x′
j = wj + 1 and w′

j = wj − 1 otherwise. If we now denote w′ =
(w1, . . . , wj−1, w

′
j , wj+1, . . . , wd) ∈ Z

d, it follows that w �= w′ and x′ ∈ Qw,1 ∩ Qw′,1.
We have that Λd

1(v, x′) = 0 whenever v /∈ V(Qw,1) ∩ V(Qw′,1) by lemma 2.13 (i).
Since |V(Qw,1) ∩ V(Qw′,1)| � 2d−1, the claim follows.

As ‖δV (v) − δV (v + (y′ − x′))‖p = |x′ − y′|1 for any v ∈ V(Q), Λd
1(v, x′) �= 0 and∑

v∈V Λd
1(v, x′) = 1 by lemma 2.13 (iii), in either case we are thus justified to

establish the inequality

‖r(x′) − r(y′)‖p � C(p, 2d−1)|x′ − y′|1.
Using the already proven parts and the fact that x, x′ ∈ Qd

w,1, y, y′ ∈ Qd
u,1, we

deduce

‖r(x) − r(y)‖p
p � ‖r(x) − r(x′)‖p

p + ‖r(x′) − r(y′)‖p
p + ‖r(y′) − r(y)‖p

p

� Cp(p, 2d−1)Cp(p, d)(|x − x′|p1 + |x′ − y′|p1 + |y′ − y|p1),
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and altogether we obtain ‖r(x) − r(y)‖p � C(p, 2d−1)C(p, d)C(p, 3)|x − y|1.
Regarding the converse part, we let R ⊆ Qd

R, where R �= ∅, K = ∪Q∈RQ, V =
∪Q∈RV(Q), and consider 0V as the base point of V . By the initial remark, it suffices
to consider the case R = 1 and Q0,1 ∈ R.

We let x = (xi)d
i=1, y = (yi)d

i=1 be such that xi = yi = 1/2, for each i ∈
{1, . . . , d − 1}, and xd = 0, yd = 1. Recall that using (3.5), we have r(y) − r(x) =∑

u∈{0,1}d−1 2−d+1(δV (u1) − δV (u0)).
Denote M = {δ(z) − δ(z′)/|z − z′|1 : z, z′ ∈ V, z �= z′}; by fact 2.9, we have

‖r(y) − r(x)‖p = inf

(
n∑

i=1

|ai|p
)1/p

,

the infimum being taken over all n ∈ N0 and μi ∈ M, ai ∈ R, where i ∈ {1, . . . , n},
such that r(y) − r(x) =

∑n
i=1 aiμi.

We shall see that ‖r(x) − r(y)‖p � C(p, 2d−1)|x − y|1 = C(p, 2d−1). To that end,
pick n ∈ N0 and ai ∈ R, μi ∈ M, where i ∈ {1, . . . , n}, as above.

We introduce N : V(Q0,1) → P({1, . . . , n}) as

v �→
{

i ∈ {1, . . . , n} : μi ∈
{
±δ(z) − δ(v)

|z − v|1 : x ∈ V, z �= v

}}
.

It follows that for any i ∈ {1, . . . , n}, there exist at most two distinct ele-
ments u, v ∈ V(Q0,1) such that i ∈ N (u) ∩N (v); consequently,

∑n
i=1 |ai|p �

1/2
∑

u∈V(Q0,1)

∑
i∈N (u) |ai|p.

We claim that
∑

i∈N (u) |ai| � 2−d+1 for any u ∈ V(Q0,1).
To that end, we pick u ∈ V(Q0,1) and construct ϕ : V → R as follows: If χA

denotes the indicator function of a set A ⊆ V , we define ϕ = χ{u} if u �= 0V and
ϕ = χV \{u} otherwise. We note that ϕ ∈ Lip0(V ), Lip ϕ � 1, as ϕ(0V ) = 0 and
|ϕ(z) − ϕ(z)| � 1, |z − z′|1 � 1 for any two z, z′ ∈ V , z �= z′. By (iii) of Fp(V ), we
let ϕ∗ ∈ Fp(V )∗ be such that ϕ = ϕ∗ ◦ δV on the set V .

We observe that |〈ϕ∗, μi〉| � 1 for any i ∈ {1, . . . , n}, where 〈ϕ∗, μi〉 = 0 for each
i ∈ {1, . . . , n} \ N (u). Hence, we may write

|〈ϕ∗, r(y) − r(x)〉| =

∣∣∣∣∣
〈

ϕ∗,
n∑

i=1

aiμi

〉∣∣∣∣∣
�

∑
i∈N (u)

|ai| |〈ϕ∗, μi〉| �
∑

i∈N (u)

|ai|,

and

|〈ϕ∗, r(y) − r(x)〉| =

∣∣∣∣∣∣
〈

ϕ∗,
∑

v∈{0,1}d−1

2−d+1(δV (v1) − δV (v0))

〉∣∣∣∣∣∣
= 2−d+1,

and the intermediate claim is established.
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We note that x �→ xp is subadditive on [0,∞), and thus
∑

i∈N (u) |ai|p � 2p(−d+1)

for any u ∈ V(Q0,1). Altogether, we are justified to establish

n∑
i=1

|ai|p � 1
2

∑
u∈V(Q0,1)

∑
i∈N (u)

|ai|p

� 2d−12p(−d+1)

= Cp(p, 2d−1),

which concludes the proof. �

Let us recall a closely related result which shows that Fp([0, 1]d) has a Schauder
basis, consider [4, Theorem 3.8]. In fact, the associated canonical projections are
the retractions r; hence, theorem 3.2 gives a refined estimate on the basis constant.

4. On the geometry of Fp(M, ρα), where (M, ρ) is infinite doubling

We recall that a metric space (M, ρ) is doubling if there exists λM ∈ N, called
the doubling constant, such that any closed ball in M of radius 2r > 0 can be
covered by λM-many closed balls of radius r. As an example, any subspace of a
finite-dimensional Banach space is doubling.

A classical result due to Assouad [5] implies that for any α ∈ (0, 1), the metric
snowflake (M, ρα) is bi-Lipschitz equivalent to (M′, | · |β) for some M′ ⊆ R

d, where
d ∈ N and β ∈ (0, 1). As a consequence, it follows that Fp(M, ρα) � Fp(M′, | · |β)
for any 0 < p � 1, see fact 2.11.

Moreover, it was observed in [3] that, for infinite subsets M of R
d, the isomor-

phism theorem reduces to the case where M = [0, 1]d. Hence, the central topic of
this section is to fill in the missing part and establish that Fp([0, 1]d, | · |α) � �p, for
any 0 < α < 1 and 0 < p � 1.

4.1. The isomorphism Fp([0, 1]d, | · |α) � �p

It is easy to see that for any fixed 0 < α < 1, the associated snowflake distortion
of any two norms | · |, | · |∗ on R

d are Lipschitz equivalent; thus, Fp([0, 1]d, | · |α) �
Fp([0, 1]d, | · |α∗ ) for any 0 < p � 1, again by fact 2.11. It will be convenient to
identify | · | as the �1-norm in the sequel.

Theorem 4.1. Let d ∈ N and 0 < α < 1, 0 < p � 1. Then Fp([0, 1]d, | · |α) is
isomorphic to the space �p.

Quantitatively, if we consider the Banach–Mazur distance (see, e.g. [11, p. 277])
of Fp([0, 1]d, | · |α) and �p(V ) defined by d(Fp([0, 1]d, | · |α), �p(V )) = inf ‖T‖‖T−1‖,
where T ranges over onto isomorphisms T : Fp([0, 1]d, | · |α) → �p(V ), we show that
d(Fp([0, 1]d, | · |α), �p(V )) � C(p, 2d)ρdτd, where ρ and τ are as in lemmas 4.8 and
4.4, respectively.

Pick 0 < α < 1 and 0 < p � 1. Whenever d ∈ N is fixed and known from the
context, we shall denote V−1 = {0}, Vk = [0, 1]d ∩ 2−k

Z
d, where k ∈ N0, and V =
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∪k∈N0Vk \ Vk−1. We take 0 as the base point of [0, 1]d and write δ : [0, 1]d →
Fp([0, 1]d, | · |α) for the canonical isometric embedding.

The proof proceeds by considering the map ι : {ev : v ∈ V } ⊂ �p(V ) →
Fp([0, 1]d, | · |α),

ev �→ 2kα

⎛⎝δ(v) −
∑

u∈Vk−1

Λd
2−k+1(u, v)δ(u)

⎞⎠ , v ∈ Vk \ Vk−1, k ∈ N0.

A brief consideration shows that {ev : v ∈ V } is p-norming (see definition 2.3) in
�p(V ) and that ι extends to a one-to-one linear map from span{ev : v ∈ V } into
Fp([0, 1]d, | · |α). Hence, by lemma 2.4, ι shall provide us with an onto isomor-
phism ι̃ : �p(V ) → Fp([0, 1]d, | · |α) once we show that ι({ev : v ∈ V }) is p-norming
in Fp([0, 1]d, | · |α).

Let us note this particular choice of ι(ev), where v ∈ V , is frequent in the theory
of Lipschitz-free spaces over an Euclidean space. Indeed, a dual variant thereof is
used in the standard proof of the p = 1 case (see, e.g. [18, Theorem 8.44]), and it
is known that ι(ev), where v ∈ V , forms a Schauder basis of Fp([0, 1]d, | · |), see [4,
Theorem 3.8].

Notation 4.2. If d ∈ N is fixed, x = (xi)d
i=1 ∈ R

d, j ∈ {1, . . . , d}, and ε ∈ R, let
us set xj

ε = (x1, . . . , xj + ε, . . . , xd) ∈ R
d. If x ∈ [0, 1], x ∈ 2−n

Z \ 2−n+1
Z, for some

n ∈ N, we will write x+ = x + 2−n, x− = x − 2−n.
For d ∈ N, j ∈ {1, . . . , d}, and (xi)d−1

i=1 ∈ [0, 1]d−1, we furthermore adopt the
notation δj

(xi)
d−1
i=1

(x) = δ(x1, . . . , xj−1, x, xj , . . . , xd−1).

4.1.1. One linearization result We expand the element δ(v), where v ∈ V , in a
way that partially recovers the candidate basis geometry. This will have a great
importance for the construction considered in lemma 4.4.

Lemma 4.3. Let u1, u2 ∈ [0, 1] ∩ 2−n
Z for some n ∈ N0, u1 < u2 and |u1 − u2| =

2−n. Let v ∈ [u1, u2] satisfy v ∈ 2−k
Z, where k ∈ N, k � n.

There exist μ1, μ2 � 0, μ1 + μ2 = 1, l ∈ N0, νi > 0, ni ∈ N, ni > n, and vi ∈
2−niZ \ 2−ni+1

Z, where i ∈ {1, . . . , l}, such that

2nαδj
x(v) = μ12nαδj

x(u1) + μ22nαδj
x(u2)

+
l∑

i=1

νi2niα

(
δj
x(vi) − 1

2
(δj

x(v−
i ) + δj

x(v+
i ))

)
,

for any d ∈ N, j ∈ {1, . . . , d}, and x = (xj)d−1
j=1 ∈ [0, 1]d−1.

Moreover, we have (
∑l

i=1 |νi|p)1/p � 2−α(1/1 − 2−pα)1/p.

Proof. We shall establish that for any k ∈ N, k � n and v ∈ [u1, u2] ∩ 2−k
Z, we

can choose the coefficients μv
1, μ

v
2 � 0, lv ∈ N0, νv

i ∈ [0, 1], vv
i ∈ [u1, u2] and nv

i ∈ N,
where i ∈ {1, . . . , lv}, so that for any v ∈ [u1, u2] ∩ 2−k

Z, it holds

(i) μv
1, μv

2 � 0, μv
1 + μv

2 = 1 and k � nv
i > n for every i ∈ {1, . . . , lv},
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(ii) if v′ ∈ [u1, u2] ∩ 2−k
Z, there exists at most one index i ∈ {1, . . . , lv} such that

vv
i = v′,

(iii) vv
i ∈ [u1, u2] ∩ 2−nv

i Z \ 2−nv
i +1

Z for every i ∈ {1, . . . , lv},
(iv) for any j ∈ {1, . . . , d} and x = (xj)d−1

j=1 ∈ [0, 1]d−1, we have

2nαδj
x(v) = μv

12
nαδj

x(u1) + μv
22

nαδj
x(u2)

+
l∑

i=1

νv
i 2nv

i α

(
δj
x(vv

i ) − 1
2
(δj

x((vv
i )−) + δj

x((vv
i )+))

)
,

(v) 0 < νv
i � 2(n−nv

i )α for every i ∈ {1, . . . , lv},
(vi) if v′ ∈ [u1, u2] ∩ 2−k+1

Z is such that |v − v′| = 2−k, then {vv′
i : i ∈

{1, . . . , lv
′}} ⊆ {vv

i : i ∈ {1, . . . , lv}},
(vii) |{vv

i : i ∈ {1, . . . , lv}} ∩ 2−m
Z \ 2−m+1

Z}| � 1 for any m ∈ N, m > n.

We proceed by induction on k. To that end, note that for k = n, we may take
lv = 0. We also set either μv

1 = 1, μv
2 = 0 or μv

1 = 0, μv
2 = 1 when v equals u1 or u2,

respectively.
Let k ∈ N, k > n, be such that the claim holds for k − 1.
For any v ∈ [u1, u2] ∩ 2−k

Z, we define the coefficients μv
1, μv

2 ∈ R, lv ∈ N0, νv
i ∈

[0, 1], nv
i ∈ N, k � nv

i > n, i ∈ {1, . . . , lv}, as follows. If v ∈ 2−k+1
Z, we take the

coefficients from the induction hypothesis. Otherwise v ∈ 2−k
Z \ 2−k+1

Z, and
hence, both v− and v+ belong to [u1, u2] ∩ 2−k+1

Z. For any d ∈ N, j ∈ {1, . . . , d},
and x = (xj)d−1

j=1 ∈ [0, 1]d−1, we may write

2nαδj
x(v) = 2(n−k)α2kα

(
δj
x(v) − 1

2
(δj

x(v−) + δj
x(v+))

)
+2nα−1δj

x(v−) + 2nα−1δj
x(v+).

(4.1)

Let now μv+

1 , μv+

2 , lv
+
, νv+

i , nv+

i , vv+

i , i ∈ {1, . . . , lv
+}, and μv−

1 , μv−
2 , lv

−
, νv−

i ,
nv−

i , vv+

i , i ∈ {1, . . . , lv
−}, be the coefficients corresponding to v+ and v−, respec-

tively. We denote V = {vv+

i : i ∈ {1, . . . , lv
+}} ∪ {vv−

i : i ∈ {1, . . . , lv
−}}. Finally,

set lv = |V| + 1.
Let vv

i , i ∈ {1, . . . , lv − 1}, be such that {vv
i : i ∈ {1, . . . , lv − 1}} = V; such an

arrangement of the finite set V necessarily exists. By the choice of V and the
induction hypothesis, for any i ∈ {1, . . . , lv − 1} we may further find nv

i ∈ N,
k − 1 � nv

i > n, such that vv
i ∈ 2−nv

i Z \ 2−nv
i +1

Z.
Given i ∈ {1, . . . , lv − 1}, let us denote νv

i = 1/2
∑

j∈{1,...,lv+}, vv+
j =vv

i
νv+

j +

1/2
∑

j∈{1,...,lv−}, vv−
j =vv

i
νv−

j . It follows from the induction hypothesis that there

is at most one index j ∈ {1, . . . , lv
+} such that vv+

j = vv
i (similarly for v−). Hence,

we obtain 0 < νv
i � 2α(n−nv

i ).
We set nv

lv = k, vv
lv = v, νv

lv = 2(n−k)α, and μv
1 = 1/2(μv+

1 + μv−
1 ), μv

2 =
1/2(μv+

2 + μv−
2 ). Let us remark that μv

1, μ
v
2 � 0 and μv

1 + μv
2 = 1/2(μv+

1 + μv−
1 ) +
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1/2(μv+

2 + μv−
2 ) = 1 since μv+

1 + μv+

2 = μv−
1 + μv−

2 = 1, by the induction hypothe-
sis.

Continuing (4.1), let us rewrite the above coefficients

2nαδj
x(v) = 2(n−k)α2kα

(
δj
x(v) − 1

2
(δj

x(v−) + δj
x(v+))

)
+2nα−1δj

x(v−) + 2nα−1δj
x(v+)

= μv
12

nαδj
x(u1) + μv

22
nαδj

x(u2)

+
lv−1∑
i=1

νv
i 2nv

i α

(
δj
x(vv

i ) − 1
2
(δj

x((vv
i )−) + δj

x((vv
i )+))

)

+2(n−k)α2kα

(
δj
x(v) − 1

2
(δj

x(v−) + δj
x(v+))

)
= μv

12
nαδj

x(u1) + μv
22

nαδj
x(u2)

+
lv∑

i=1

νv
i 2nv

i α

(
δj
x(vv

i ) − 1
2
(δj

x((vv
i )−) + δj

x((vv
i )+))

)
.

We note that for any v ∈ [u1, u2] ∩ 2−k
Z and for the elements μv

1, μv
2, lv, nv

i , vv
i

and νv
i , where i ∈ {1, . . . , lv}, the (i) to (vi) now follow at once if v ∈ 2−k+1

Z by
the induction hypothesis and were otherwise established during the construction
whenever v ∈ 2−k

Z \ 2−k+1
Z.

To establish (vii), we first remark the conclusion is satisfied for any v ∈ 2−k+1
Z

by the construction and the induction hypothesis. Let us pick v ∈ [u1, u2] ∩ 2−k
Z \

2−k+1
Z.

Since we have v−, v+ ∈ 2−k+1
Z, |v+ − v−| = 2−k+1, it follows that {v−, v+} ∩

2−k+2
Z �= ∅. Hence, there exist u, u′ such that u ∈ {v−, v+} ∩ 2−k+1

Z \ 2−k+2
Z,

u′ ∈ {v−, v+} ∩ 2−k+2
Z. By the induction hypothesis and (vi) for u and u′, we get

that {vu′
i : i ∈ {1, . . . , lu

′}} ⊆ {vu
i : i ∈ {1, . . . , lu}}. Since {vv

i : i ∈ {1, . . . , lv}} ∩
2−k+1

Z = {vv+

i : i ∈ {1, . . . , lv
+}} ∪ {vv−

i : i ∈ {1, . . . , lv
−}} by the construction,

we deduce that

{vv
i : i ∈ {1, . . . , lv}} ∩ 2−k+1

Z = {vu
i : i ∈ {1, . . . , lu}}.

The conclusion of (vii) now follows from the induction hypothesis for u whenever
m ∈ N, k − 1 � m > n. Additionally, since {vv

i : i ∈ {1, . . . , lv}} \ 2−k+1
Z = {v},

(vii) is satisfied. The proof of the induction step is now complete.
Pick k ∈ N, k � n and v ∈ [u1, u2] ∩ 2−k

Z. We note that nv
i > n, where i ∈

{1, . . . , lv}, by (i), and |{i ∈ {1, . . . , lv} : nv
i = j}| � 1, where j ∈ N, j > n, by (ii),

(iii) and (vii). Likewise, (v) shows that 0 < νv
i � 2(n−nv

i )α for every i ∈ {1, . . . , lv}.
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Hence,

(
lv∑

i=1

|νv
i |p
)1/p

�
(

lv∑
i=1

2p(n−nv
i )α

)1/p

<

( ∞∑
i=1

2−pαi

)1/p

= 2−α

(
1

1 − 2−pα

)1/p

.

The claim is established. �

Lemma 4.4. Let d ∈ N and M ⊆ Fp([0, 1]d, | · |α) be such that for any v ∈ Vk, where
k ∈ N0, we have 2kα(δ(v) −∑u∈Vk−1

Λd
2−k+1(u, v)δ(u)) ∈ M.

There exists a constant ρ′ > 0 for which the following holds true. Consider
v = (vi)d

i=1 ∈ V and i ∈ {1, . . . , d}. If vi ∈ 2−n
Z \ 2−n+1

Z for some n ∈ N, then
2nα(δ(v) − 1/2(δ(vi

2−n) + δ(vi
−2−n))) ∈ ρ′ aconvp M. Quantitatively, if we set ρ =

(Cp(p, 2) + (1 + 21−p)2−pα(1/1 − 2−pα))1/p, then ρ′ = ρd.

Proof. We prove that for any l ∈ {0, . . . , d − 1}, the following claim is true. Let v =
(vi)d

i=1 ∈ V . If i ∈ {1, . . . , d} is such that vi ∈ 2−n
Z \ 2−n+1

Z for some n ∈ N and
if |{j ∈ {1, . . . , d} : vj /∈ 2−n

Z}| � l, then 2nα(δ(v) − 1/2(δ(vi
2−n) + δ(vi

−2−n))) ∈
ρl+1 aconvp M. We proceed by induction on l.

Let l = 0. We pick v = (vi)d
i=1 ∈ V , n ∈ N and i ∈ {1, . . . , d} as above. Recall that

for any u = (ui)d
i=1 ∈ Vn−1, it follows from lemma 2.13 (iv) that Λd

2−n+1(u, v) =
Λd−1

2−n+1(πd(u), πd(v))Λ1
2−n+1(ui, vi). Hence, Λd

2−n+1(u, v) = 0 whenever ui /∈ {vi ±
2−n}, and now∑

u∈Vn−1

Λd
2−n+1(u, v)δ(u)

=
∑

u=(ui)
d
i=1∈Vn−1

ui∈{vi±2−n}

Λd−1
2−n+1(πi(u), πi(v))Λ1

2−n+1(ui, vi)δ(u)

=
1
2

∑
u=(ui)

d
i=1∈Vn−1

ui∈{vi±2−n}

Λd−1
2−n+1(πi(u), πi(v))δ(u).

Repeating the same argument, we verify∑
u∈Vn−1

Λd
2−n+1(u, vi

2−n)δ(u) =
∑

u=(ui)
d
i=1∈Vn−1

ui=vi+2−n

Λd−1
2−n+1(πi(u), πi(v))δ(u),

∑
u∈Vn−1

Λd
2−n+1(u, vi

−2−n)δ(u) =
∑

u=(ui)
d
i=1∈Vn−1

ui=vi−2−n

Λd−1
2−n+1(πi(u), πi(v))δ(u).
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Altogether, we have

2nα

(
δ(v) − 1

2
(δ(vi

2−n) + δ(vi
−2−n))

)

= 2nα

⎛⎝δ(v) −
∑

u∈Vn−1

Λd
2−n+1(u, v)δ(u)

⎞⎠
−2nα−1

⎛⎝δ(vi
2−n) −

∑
u∈Vn−1

Λd
2−n+1(u, vi

2−n)δ(u)

⎞⎠
−2nα−1

⎛⎝δ(vi
−2−n) −

∑
u∈Vn−1

Λd
2−n+1(u, vi

−2−n)δ(u)

⎞⎠ .

Note that by the assumption, 2nα(δ(v′) −∑u∈Vn−1
Λd

2−n+1(u, v′)δ(u)) for each
v′ ∈ {v, vi

±2−n} ⊆ Vn. The intermediate claim now follows as

2nα

(
δ(v) − 1

2
(δ(vi

2−n) + δ(vi
−2−n))

)
∈ (1 + 21−p

)1/p
aconvp M

⊆ ρ aconvp M.

Let l ∈ {1, . . . , d − 1} be such that the claim holds for l − 1. Pick v = (vi)d
i=1 ∈ V ,

n ∈ N, and i ∈ {1, . . . , d} such that vi ∈ 2−n
Z \ 2−n+1

Z. If {j ∈ {1, . . . , d} : vj /∈
2−n

Z} is empty, the conclusion follows from the induction hypothesis. We may
thus further assume there is some j ∈ {1, . . . , d} for which vj /∈ 2−n

Z.
We consider u1, u2 ∈ [0, 1] ∩ 2−n

Z such that u1 < vj < u2 and |u1 − u2| = 2−n.
Let us further denote v′ = (v1, . . . , vj−1, u1, vj+1, . . . , vd), v′ = (v1, . . . , vj−1, u2,
vj+1, . . . , vd). Observe that i, n and v′, v′′ ∈ V , respectively, satisfy the induction
hypothesis for l − 1. Hence,

{
2nα

(
δ(w) − 1

2
(δ(wi

2−n) + δ(wi
−2−n))

)
: w ∈ {v′, v′′}

}
⊆ ρl aconvp M. (4.2)

If j > i, we set m = i. Otherwise, we set m = i − 1. We define x =
(v1, . . . , vj−1, vj+1, . . . , vd) and x1 = xm

2−n , x2 = xm
−2−n . Let also μ1, μ2 ∈ R, l ∈ N0,

νr ∈ R, nr ∈ N, nr > n, and wr ∈ 2−nr Z \ 2−nr+1
Z, where r ∈ {1, . . . , l}, be the

coefficients from lemma 4.3 associated with u1, u2 and vj .
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It follows that

2nαδj
x(vj) = μ12nαδj

x(u1) + μ22nαδj
x(u2)

+
l∑

r=1

νr2αnr

(
δj
x(wr) − 1

2
(δj

x(w−
r ) + δj

x(w+
r ))
)

,

2nα−1δj
x1

(vj) = μ12nα−1δj
x1

(u1) + μ22nα−1δj
x1

(u2)

+
l∑

r=1

νr2αnr−1

(
δj
x1

(wr) − 1
2
(δj

x1
(w−

r ) + δj
x1

(w+
r ))
)

,

and

2nα−1δj
x2

(vj) = μ12nα−1δj
x2

(u1) + μ22nα−1δj
x2

(u2)

+
l∑

r=1

νr2αnr−1

(
δj
x2

(wr) − 1
2
(δj

x2
(w−

r ) + δj
x2

(w+
r ))
)

.

Pick r ∈ {1, . . . , l} and recall that wr ∈ 2−nr Z \ 2−n
Z. If y = (yi)d−1

i=1 ∈
{x, x1, x2}, we set y′ = (y′

i)
d
i=1 = (y1, . . . , yj−1, wr, yj+1, . . . , yd); it follows that

|{k ∈ {1, . . . , d} : y′
k /∈ 2−nr Z}| � l − 1. By the induction hypothesis,

2αnr

(
δj
y(wr) − 1

2
(δj

y(w−
r ) + δj

y(w+
r ))
)

∈ ρl aconvp M.

Using the estimate from lemma 4.3, we obtain for any y ∈ {x, x1, x2}

l∑
r=1

νr2αnr

(
δj
y(wr) − 1

2
(δj

y(w−
r ) + δj

y(w+
r ))
)

∈ 2−α

(
1

1 − 2−pα

)1/p

ρl aconvp M. (4.3)

We note that δj
x(vj) = δ(v). Similarly,

δj
x(u1) = δ(v′) δj

x(u2) = δ(v′′)

δ(vi
2−n) = δj

x1
(vj) δ(vi

−2−n) = δj
x2

(vj)

δj
x1

(u1) = δ((v′)i
2−n) δj

x1
(u2) = δ((v′′)i

2−n)

δj
x2

(u1) = δ((v′)i
−2−n) δj

x2
(u2) = δ((v′′)i

−2−n).
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We may now rewrite

2nα

(
δ(v) − 1

2
(δ(vi

2−n) + δ(vi
−2−n))

)
= μ12nαδj

x(u1) + μ22nαδj
x(u2)

+
l∑

r=1

νr2αnr

(
δj
x(wr) − 1

2
(δj

x(w−
r ) + δj

x(w+
r ))
)

−μ12nα−1δj
x1

(u1) + μ22nα−1δj
x1

(u2)

−
l∑

r=1

νr2αnr−1

(
δj
x1

(wr) − 1
2
(δj

x1
(w−

r ) + δj
x1

(w+
r ))
)

−μ12nα−1δj
x2

(u1) + μ22nα−1δj
x2

(u2)

−
l∑

r=1

νr2αnr−1

(
δj
x2

(wr) − 1
2
(δj

x2
(w−

r ) + δj
x1

(w+
r ))
)

,

and

μ12nα

(
δj
x(u1) − 1

2
(δj

x1
(u1) + δj

x2
(u1))

)
= μ12nα

(
δ(v′) − 1

2
(δ((v′)i

2−n) + δ((v′)i
−2−n))

)
,

μ22nα

(
δj
x(u2) − 1

2
(δj

x1
(u2) + δj

x2
(u2))

)
= μ22nα

(
δ(v′′) − 1

2
(δ((v′′)i

2−n) + δ((v′′)i
−2−n))

)
.

Substituting the last two terms, let us rewrite

2nα

(
δ(v) − 1

2
(δ(vi

2−n) + δ(vi
−2−n))

)
= μ12nα

(
δ(v′) − 1

2
(δ((v′)i

2−n) + δ((v′)i
−2−n))

)
+μ22nα

(
δ(v′′) − 1

2
(δ((v′′)i

2−n) + δ((v′′)i
−2−n))

)

+
l∑

r=1

νr2αnr

(
δj
x(wr) − 1

2
(δj

x(w−
r ) + δj

x(w+
r ))
)
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−1
2

l∑
r=1

νr2αnr

(
δj
x1

(wr) − 1
2
(δj

x1
(w−

r ) + δj
x1

(w+
r ))
)

−1
2

l∑
r=1

νr2αnr

(
δj
x2

(wr) − 1
2
(δj

x2
(w−

r ) + δj
x1

(w+
r ))
)

.

Appealing to (4.2) and (4.3), we conclude

2nα

(
δ(v) − 1

2
(δ(vi

2−n) + δ(vi
−2−n))

)

∈
(

μp
1 + μp

2 + (1 + 21−p)2−pα 1
1 − 2−pα

)1/p

ρl aconvp M

⊆ ρl+1 aconvp M.

This verifies the induction step, and thus completes the proof. �

4.1.2. One geometrical consideration We develop a result for the specific case of
d = 1. This result implies the existence ρ ∈ R such that for any u, v ∈ [0, 1] ∩ 2−n

Z

with n ∈ N0, the relation δ(u) − δ(v)/|u − v|α ∈ ρ aconvp ι({ex : x ∈ V }) holds.
First, we establish the conclusion under the assumption that |u − v| = 2−n.

Lemma 4.5. Let d ∈ N, i ∈ {1, . . . , d}, x = (xj)d−1
j=1 ∈ [0, 1]d−1 and M ⊆ Fp

([0, 1]d, | · |α). Assume that δi
x(0), δi

x(1) ∈ M and for any y ∈ 2−k
Z \ 2−k+1

Z, where
k ∈ N, it holds that 2αk(δi

x(y) − 1/2(δi
x(y−) + δi

x(y+))) ∈ M.
Whenever u, v ∈ [0, 1] ∩ 2−n

Z and |u − v| = 2−n for some n ∈ N0, we have
δi
x(u) − δi

x(v)/|u − v|α ∈ 21/p(1/1 − 2p(α−1))1/p aconvp M.

Proof. Given n ∈ N0, let us denote

Mn =
{

δi
x(u) − δi

x(v)
|u − v|α : u, v ∈ [0, 1] ∩ 2−n

Z, |u − v| = 2−n

}
.

We claim that for any y ∈ Mn, where n ∈ N0, there exist coefficients μy
j ∈ {−1, 1},

where j ∈ {0, . . . , n}, and elements yy
j ∈ 2−j

Z \ 2−j+1
Z, where j ∈ {1, . . . , n}, such

that

y = μy
02

n(α−1)(δi
x(1) − δi

x(0))

+
n∑

j=1

μy
j 2(n−j)(α−1)2jα

(
δi
x(yy

j ) − 1
2
(δi

x((yy
j )+) + δi

x((yy
j )−))

)
.

(4.4)

We proceed by induction on n. To that end, we note the conclusion is trivial in
the case n = 0.

Let n ∈ N be such that the claim holds for n − 1, and pick y =
δi
x(u) − δi

x(v)/|u − v|α ∈ Mn for some u, v ∈ [0, 1] ∩ 2−n
Z, |u − v| = 2−n. As
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{u, v} ∩ 2−n
Z \ 2−n+1

Z �= ∅, there exists w ∈ 2−n
Z \ 2−n+1

Z for which

y ∈
{
±δi

x(w) − δi
x(w+)

|w − w+|α ,±δi
x(w) − δi

x(w−)
|w − w−|α

}
.

Similarly, there exist ν1, ν2 ∈ {−1, 1} such that

δi
x(u) − δi

x(v)
|u − v|α = ν12nα

(
δi
x(w) − 1

2
(δi

x(w+) + δi
x(w−))

)
+ν22α−1 δi

x(w+) − δi
x(w−)

|w+−w−|α .

(4.5)

Denote z = δi
x(w+) − δi

x(w−)/|w+ − w−|α ∈ Mn−1 and let μz
j ∈ {−1, 1}, where

j ∈ {0, . . . , n − 1}, and yz
j ∈ 2−j

Z \ 2−j+1
Z, where j ∈ {1, . . . , n − 1}, be the coef-

ficients from the inductive hypothesis. We may now define μy
j = ν2μ

z
j , where

j ∈ {0, . . . , n − 1}, and yy
j = yz

j , where j ∈ {1, . . . , n − 1}. Similarly, let μy
n = ν1,

yy
n = w.
It follows from the construction that {μy

j : j ∈ {0, . . . , n}} ⊆ {−1, 1} and yy
j ∈

2−j
Z \ 2−j+1

Z for any j ∈ {1, . . . , n}. By (4.5) we easily verify

y = μy
02

n(α−1)(δi
x(1) − δi

x(0))

+
n∑

j=1

μy
j 2(n−j)(α−1)2jα

(
δi
x(yy

j ) − 1
2
(δi

x((yy
j )+) + δi

x((yy
j )−))

)
.

As y ∈ Mn was arbitrary, this concludes the induction step.
Let y ∈ Mn, where n ∈ N0. We pick μy

j ∈ {−1, 1}, where j ∈ {0, . . . , n}, and
yy

j ∈ 2−j
Z \ 2−j+1

Z, where j ∈ {1, . . . , n}, as found in the previous part. Recall
that by the assumption, 2jα(δi

x(yy
j ) − 1/2(δi

x((yy
j )+) + δi

x((yy
j )−))) ∈ M for any

j ∈ {1, . . . , n} and δi
x(0), δi

x(1) ∈ M. Combining this with (4.4), we deduce y ∈
(2 · 2p(α−1)n +

∑n
j=1 2p(n−j)(α−1))1/p aconvp M. Hence,

y ∈
(

2
n∑

i=0

2pi(α−1)

)1/p

aconvp M ⊆ 21/p

(
1

1 − 2p(α−1)

)1/p

aconvp M.

The claim follows. �

We decompose a general element δ(u) − δ(v)/|u − v|α, where u, v ∈ [0, 1] ∩ 2−n
Z

for some n ∈ N0, into a combination of elements which we considered above.
The following technical result is a refinement of [18, Lemma 8.40].

Lemma 4.6. Let u, v ∈ [0, 1] ∩ 2−n
Z for some n ∈ N0, u �= v. There exist l ∈ N and

ai ∈ [u, v] ∩ 2−n
Z, where i ∈ {1, . . . , l}, such that

(i) a1 = u, al = v,

(ii) ai, ai+1 ∈ 2−k
Z and |ai − ai+1| = 2−k for some k ∈ {0, . . . , n}, for any i ∈

{1, . . . , l − 1},
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(iii) (
∑l−1

i=1 |ai+1 − ai|pα)1/p < 21/p(1/1 − 2−pα)1/p|u − v|α.

Proof. Without loss of generality, let u < v.
We choose the smallest n0 ∈ N0 ∪ {−1} such that [u, v] ∩ 2−n0Z �= ∅. Sub-

sequently, we define the sets Vi (where i ∈ {n0, . . . , n}) to be sub-
sets of 2−i

Z as follows. Set Vn0 = 2−n0Z ∩ [u, v]. If i ∈ {n0 + 1, . . . , n}
and Vj was defined for all j ∈ {n0, . . . , i − 1}, we take Vi = [u, v] ∩ 2−i

Z \
[min∪j∈{n0,...,i−1}Vj ,max∪j∈{n0,...,i−1}Vj ].

We remark that |Vn0 | = 1 by the choice of n0 and, moreover, [u, v] ∩ 2−i
Z ⊆

[min∪j∈{n0,...,i}Vj ,max∪j∈{n0,...,i}Vj ], where i ∈ {n0, . . . , n}, by the construction.
Pick i ∈ {n0 + 1, . . . , n}. It follows from the above remark that Vi ∩ 2−i+1

Z = ∅.
Since ∪j∈{n0,...,i−1}Vj ⊆ 2−i+1

Z, this establishes the inclusion

Vi ⊆ {min
⋃

j∈{n0,...,i−1} Vj − 2−i,max
⋃

j∈{n0,...,i−1} Vj + 2−i}. (4.6)

Denote V = ∪i∈{n0,...,n}Vi. It follows that V is finite and {u, v} ⊆ V since {u, v} ⊆
2−n

Z. Hence, we may define l = |V| and find a strictly monotone arrangement ai,
where i ∈ {1, . . . , l}, of the set V such that a1 = u, al = v. It remains to show that
l and ai, where i ∈ {1, . . . , l}, satisfy (ii) and (iii).

To show (ii), pick i ∈ {1, . . . , l − 1}. By (4.6), there is k ∈ {n0 + 1, . . . , n}
for which ai = min∪j∈{n0,...,k−1}Vj − 2−k, ai+1 = min∪j∈{n0,...,k−1}Vj or ai =
max∪j∈{n0,...,k−1}Vj , ai+1 = min∪j∈{n0,...,k−1}Vj + 2−k. It follows that ai, ai+1 ∈
2−k

Z and |ai − ai+1| = 2−k.
The above argument also shows that the set {i ∈ {1, . . . , l − 1} : |ai − ai+1| =

2−k} is empty for any k ∈ Z such that k � n0 or n < k and it has at most two
elements if n0 < k � n. We consider the least k0 ∈ Z for which there exists i ∈
{1, . . . , l − 1} with |ai − ai+1| = 2−k0 . Since |u − v| � 2−k0 , we have(

l−1∑
i=1

|ai+1 − ai|pα

|u − v|pα

)1/p

�
(

l−1∑
i=1

|ai+1 − ai|pα

2−pk0α

)1/p

�
(

2
n∑

i=k0

2p(−i+k0)α

)1/p

< 21/p

(
1

1 − 2−pα

)1/p

,

which verifies (iii). The proof is now complete. �

Lemma 4.7. Let d ∈ N, i ∈ {1, . . . , d}, x = (xj)d−1
j=1 ∈ [0, 1]d−1 and M ⊆ Fp([0, 1]d,

| · |α) be such that the conclusion of lemma 4.5 holds true, i.e. whenever u, v ∈
[0, 1] ∩ 2−n

Z and |u − v| = 2−n for some n ∈ N0, then δi
x(u) − δi

x(v)/|u − v|α ∈
21/p(1/1 − 2p(α−1))1/p aconvp M.

Whenever u, v ∈ [0, 1] ∩ 2−n
Z for some n ∈ N0, where u �= v, then δi

x(u) − δi
x(v)/

|u − v|α ∈ 22/p(1/1 − 2p(α−1))1/p(1/1 − 2−pα)1/p aconvp M.
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Proof. Given u, v ∈ [0, 1] ∩ 2−n
Z, where n ∈ N, u �= v, we pick the coefficients l

and aj , where j ∈ {1, . . . , l}, from lemma 4.6 associated with v, u and n.
By (i) and (iii) of lemma 4.6, respectively, we have

δi
x(u) − δi

x(v)
|u − v|α =

l−1∑
j=1

|aj+1 − aj |α
|u − v|α

δi
x(aj+1) − δi

x(aj)
|aj+1 − aj |α ,

⎛⎝ l−1∑
j=1

|aj+1 − aj |pα

|u − v|pα

⎞⎠1/p

< 21/p

(
1

1 − 2−pα

)1/p

.

By the assumption on M and (ii), we obtain

δi
x(aj+1) − δi

x(aj)
|aj+1 − aj |α ∈ 21/p

(
1

1 − 2p(α−1)

)1/p

aconvp M, j ∈ {1, . . . , l − 1}.

Hence, we get δi
x(u) − δi

x(v)/|u − v|α ∈ 22/p(1/1 − 2p(α−1))1/p(1/1 − 2−pα)1/p

aconvp M. The proof is complete. �

Drawing on the conclusion of lemma 4.4, we generalize the previous result by
induction on the dimension of boundary cubes.

Lemma 4.8. Let d ∈ N and M ⊆ Fp([0, 1]d, | · |α) be such that {δ(u) : u ∈ {0, 1}d} ⊆
M and the conclusion of lemma 4.4 holds true, i.e. there exists ρ′ > 0 such that
for any v = (vi)d

i=1 ∈ V and i ∈ {1, . . . , d}, if vi ∈ 2−n
Z \ 2−n+1

Z for some n ∈ N,
then 2nα(δ(v) − 1/2(δ(vi

2−n) + δ(vi
−2−n))) ∈ ρ′ aconvp M.

There exists τ ′ > 0 such that for any u, v ∈ V ∪ {0}, u �= v, we have
δ(u) − δ(v)/|u − v|α ∈ τ ′ aconvp M. Quantitatively, if we denote τ = Cα(pα, d)22/p ·
(1/1 − 2p(α−1))1/p(1/1 − 2−pα)1/p · (1 + (d − 1)pα)1/p, then τ ′ = τdρ′.

Proof. We show inductively that for any l ∈ {1, . . . , d}, the following claim
holds true. Let u = (ui)d

i=1, v = (vi)d
i=1 ∈ [0, 1]d ∩ 2−n

Z
d, where n ∈ N0, u �= v

and I ⊆ {1, . . . , d}, |I| = d − l, be such that ui = vi ∈ {0, 1} for any i ∈ I. Then
δ(u) − δ(v)/|u − v|α ∈ τ lρ′ aconvp M.

Let us note that by assuming ui = vi ∈ {0, 1} for any i ∈ I with |I| = d − l, we
can iteratively develop the result over the l-faces of [0, 1]d.

Let l = 1 and pick u = (ui)d
i=1, v = (vi)d

i=1 ∈ [0, 1]d ∩ 2−n
Z

d, where n ∈ N0,
u �= v, and i ∈ {1, . . . , d}, such that uj = vj ∈ {0, 1} for any j ∈ {1, . . . , d} \ {i}.
We may find x ∈ {0, 1}d−1 and u′, v′ ∈ [0, 1] ∩ 2−n

Z such that δ(u) = δi
x(u′),

δ(v) = δi
x(v′).

Note that by the assumption, δi
x(0), δi

x(1) ∈ M, and whenever q ∈ 2−k
Z \ 2−k+1

Z

for some k ∈ N, we have 2αk(δi
x(q) − 1/2(δi

x(q−) + δi
x(q+))) ∈ ρ′ aconvp M. It fol-

lows that d, i, x and ρ′ aconvp M satisfy the assumption of lemma 4.5.
Consequently, by lemma 4.7 for u′, v′ ∈ [0, 1] ∩ 2−n

Z, u �= v, we obtain

δ(u) − δ(v)
|u − v|α =

δi
x(u′) − δi

x(v′)
|u′ − v′|α ∈ τρ′ aconvp M,

which establishes the first step.
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Let l ∈ {2, . . . , d} be such that the claim holds for l − 1. We pick u = (ui)d
i=1, v =

(vi)d
i=1 ∈ [0, 1]d ∩ 2−n

Z
d, where n ∈ N0, u �= v, and I ⊆ {1, . . . , d}, |I| = d − l, such

that ui = vi ∈ {0, 1} for any i ∈ I. Assume first there exists i ∈ {1, . . . , d} \ I such
that uj = vj for any j ∈ {1, . . . , d} \ {i}. We shall prove that δ(u) − δ(v)/|u − v|α ∈
22/p(1/1 − 2p(α−1))1/p(1/1 − 2−pα)1/p(1 + (d − 1)pα)1/pτ l−1ρ′ aconvp M.

Let y = (yj)d
j=1, z = (zj)d

j=1 ∈ [0, 1]d ∩ 2−n
Z

d be such that yi = 0, zi = 1 and
yj = zj = uj for any j ∈ {1, . . . , d} \ {i}. We further pick y′ = (y′

j)
d
j=1, z′ =

(z′j)
d
j=1 ∈ {0, 1}d satisfying y′

j = yj and z′j = zj for any j ∈ I ∪ {i}.
If y �= y′, we rewrite δ(y) = |y − y′|αδ(y) − δ(y′)/|y − y′|α + δ(y′), where, in par-

ticular, δ(y) − δ(y′)/|y − y′|α ∈ τ l−1ρ′ aconvp M by the induction hypothesis. Since
δ(y) = δ(y′) in the remaining case and δ(y′) ∈ M by the assumption on M,
we deduce that δ(y) ∈ (1 + (d − 1)pα)1/pτ l−1ρ′ aconvp M. Repeating the same
argument for z, we conclude δ(y), δ(z) ∈ (1 + (d − 1)pα)1/pτ l−1ρ′ aconvp M.

Let next x ∈ [0, 1]d−1 ∩ 2−n
Z

d−1 and u′, v′ ∈ [0, 1] ∩ 2−n
Z, u′ �= v′, be such

that δ(u) = δi
x(u′), δ(v) = δi

x(v′). We observe that δ(y) = δi
x(0) and δ(z) =

δi
x(1) hold. By the preceding paragraph, we have δi

x(0), δi
x(1) ∈ (1 + (d −

1)pα)1/pτ l−1ρ′ aconvp M, and if q ∈ 2−k
Z \ 2−k+1

Z for some k ∈ N, then
2αk(δi

x(q) − 1/2(δi
x(q−) + δi

x(q+))) ∈ ρ′ aconvp M by the assumption on M. By
lemmas 4.5 and 4.7, we conclude

δ(u) − δ(v)
|u − v|α =

δi
x(u′) − δi

x(v′)
|u′ − v′|α

∈ 22/p

(
1

1 − 2p(α−1)

)1/p( 1
1 − 2−pα

)1/p

·(1 + (d − 1)pα)1/pτ l−1ρ′ aconvp M.

To establish the general case, we pick u = (ui)d
i=1, v = (vi)d

i=1 ∈ [0, 1]d ∩ 2−n
Z

d,
where n ∈ N0, u �= v, and I ⊆ {1, . . . , d}, |I| = d − l, are such that ui = vi ∈ {0, 1}
for any i ∈ I. If u, v differ at exactly k coordinates, k � 1, we set u1 = v, uk+1 = u
and find ui, where i ∈ {2, . . . , k}, such that ui, ui+1 differ at one coordinate for
any i ∈ {1, . . . , k}. Let us remark that all ui, where i ∈ {1, . . . , k + 1}, mutually
coincide at any coordinate from the set I.

It follows that
∑k

i=1 |ui+1 − ui| = |u − v| and

δ(u) − δ(v)
|u − v|α =

k∑
i=1

|ui+1 − ui|α
|u − v|α

δ(ui+1) − δ(ui)
|ui+1 − ui|α ,

(
k∑

i=1

|ui+1 − ui|pα

|u − v|pα

)1/p

� Cα(pα, d),

where, by the already proven that, we have for any i ∈ {1, . . . , k},
δ(ui+1) − δ(ui)
|ui+1 − ui|α ∈ 22/p

(
1

1 − 2p(α−1)

)1/p( 1
1 − 2−pα

)1/p

· (1 + (d − 1)pα)1/pτ l−1ρ′ aconvp M.
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Therefore, we may write

δ(u) − δ(v)
|u − v|α ∈ Cα(pα, d)22/p

(
1

1 − 2p(α−1)

)1/p( 1
1 − 2−pα

)1/p

· (1 + (d − 1)pα)1/pτ l−1ρ′ aconvp M
= τ lρ′ aconvp M.

This concludes the claim. �

By now we have collected all the necessary results to establish the isomorphism
theorem.

Proof of theorem 4.1. Let ι : {ev}v∈V ⊂ �p(V ) → Fp([0, 1]d, | · |α) be defined as
ev �→ 2kα(δ(v) −∑u∈Vk−1

Λd
2−k+1(u, v)δ(u)) for v ∈ Vk \ Vk−1, where k ∈ N0.

It follows easily that {ev : v ∈ V } is isometrically p-norming in �p(V ) and that
aconvp{ev : v ∈ V } contains a neighbourhood of zero in span{ev : v ∈ V }. More-
over, we claim that ι extends to a one-to-one linear map from span{ev : v ∈ V } into
Fp([0, 1]d, | · |α). Indeed, an easy direct argument is possible or it suffices to note
that δFp([0,1]d,|·|α)(x) �→ δFp([0,1]d)(x), where x ∈ [0, 1]d, induces an onto linear bijec-
tion κ : span{δFp([0,1]d,|·|α)(x) : x ∈ [0, 1]d} → span{δFp([0,1]d)(x) : x ∈ [0, 1]d} and
κ(ι(ev)), where v ∈ V , form a Schauder basis in Fp([0, 1]d), see [4, Theorem 3.8].

Once we show that ι({ev : v ∈ V }) is p-norming in Fp([0, 1]d, | · |α) and that
aconvp ι({ev : v ∈ V }) contains a neighbourhood of zero in span ι({ev : v ∈ V }),
it will follow from lemma 2.4 that ι extends to an onto isomorphism ι̃ : �p(V ) →
Fp([0, 1]d, | · |α). To that end, let us first establish the inclusion βι({ev : v ∈ V }) ⊆
BFp

for some β > 0.
For any v ∈ V0 \ V−1, we deduce

‖ι(ev)‖p = ‖δ(v)‖p = |v|α
∥∥∥∥δ(v)
|v|α

∥∥∥∥
p

� dα,

where ‖δ(v)/|v|α‖p = 1 as δ is an isometry.
Let v = (vi)d

i=1 ∈ Vk \ Vk−1, where k ∈ N. We first note that

‖ι(ev)‖p
p =

∥∥∥∥∥∥
∑

u∈Vk−1

2kαΛd
2−k+1(u, v)(δ(v) − δ(u))

∥∥∥∥∥∥
p

p

�
∑

u∈Vk−1

∥∥∥∥2kα|v − u|αΛd
2−k+1(u, v)

δ(v) − δ(u)
|v − u|α

∥∥∥∥p

p

=
∑

u∈Vk−1

(2kα|v − u|αΛd
2−k+1(u, v))p,

(4.7)

where the third equality follows as ‖δ(v) − δ(u)/|v − u|α‖p = 1 for any u ∈ Vk−1, by
isometry of δ. We further remark that for any u = (ui)d

i=1 ∈ Vk−1, Λd
2−k+1(u, v) �= 0,

it follows from lemma 2.13 (iv) that |vi − ui| ∈ {0, 2−k}, where i ∈ {1, . . . , d}; hence,
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2kα|v − u|α � dα. Similarly, we recall that
∑

u∈Vk−1
Λd

2−k+1(u, v) = 1 by lemma 2.13
(iii) and Λd

2−k+1(·, v) � 0 by definition. Continuing (4.7), we obtain

‖ι(ev)‖p �

⎛⎝ ∑
u∈Vk−1

(2kα|v − u|αΛd
2−k+1(u, v))p

⎞⎠1/p

� dαC(p, 2d).

It follows that ι({ev : v ∈ V }) ⊆ dαC(p, 2d)BFp
.

We verify that Mol(V ∪ {0}) ⊆ α aconvp ι({ev : v ∈ V }) for some α > 0.
To that end, let v ∈ Vk, where k ∈ N0. Whenever v ∈ Vk \ Vk−1, we have that

2kα(δ(v) −∑u∈Vk−1
Λd

2−k+1(u, v)δ(u)) ∈ ι({ev′ : v′ ∈ V }). If v ∈ Vk−1, we recall
that Λd

2−k+1(u, v) = δu,v for any u ∈ Vk−1 by lemma 2.13 (ii); hence, 2kα(δ(v) −∑
u∈Vk−1

Λd
2−k+1(u, v)δ(u)) = 0. We deduce that

2kα

⎛⎝δ(v) −
∑

u∈Vk−1

Λd
2−k+1(u, v)δ(u)

⎞⎠ ∈ {0, ι(ev)}

⊆ aconvp ι({ev′ : v′ ∈ V }).

Since now aconvp ι({ev : v ∈ V }) satisfies the assumption of lemma 4.4 and,
in particular, we have that {δ(u) : u ∈ {0, 1}d} = {ι(ev) : v ∈ V0 \ V−1} ∪ {0} ⊆
aconvp ι({ev : v ∈ V }), by lemma 4.8 there exists α > 0 such that

Mol(V ∪ {0}) ⊆ α aconvp ι({ev : v ∈ V }). (4.8)

Quantitatively, if ρ and τ are as in lemmas 4.4 and 4.8, respectively, we may set
α = ρdτd.

Note that Mol(V ∪ {0}) is a dense subset of Mol([0, 1]d), which is isometrically p-
norming by fact 2.9. Hence, we get from (4.8) that BFp

⊆ α aconvpι({ev : v ∈ V }).
Since also ι({ev : v ∈ V }) ⊆ dαC(p, 2d)BFp

by the already proven part, we conclude
that ι({ev : v ∈ V }) is p-norming in Fp([0, 1]d, | · |α).

Moreover, lemma 2.10 in conjunction with (4.8) shows that aconvp ι({ev :
v ∈ V }) ⊇ 1/α · Mol(V ∪ {0}) contains a neighbourhood of zero in span ι({ev : v ∈
V }) = P(V ∪ {0}).

Altogether, we have verified that the assumptions of lemma 2.4 are satisfied;
hence, ι extends to an onto isomorphism ι̃.

Quantitatively, we have shown that

1
C(p, 2d)

aconvp ι({ev : v ∈ V }) ⊆ BFp
⊆ ρdτd aconvp ι({ev : v ∈ V }),

and thus the Banach–Mazur distance of Fp([0, 1]d, | · |α) and �p(V ) may be
estimated as d(Fp([0, 1]d, | · |α), �p(V )) � ‖ι̃‖‖ι̃−1‖ � C(p, 2d)ρdτd.

The proof is complete. �
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4.2. The isomorphism Fp(M, ρα), where (M, ρ) is infinite doubling

We generalize the isomorphism theorem to snowflakes of infinite doubling metric
spaces. The following argument was suggested in [3].

Theorem 4.9. Let (M, ρ) be an infinite doubling metric space and 0 < α < 1, 0 <
p � 1. Then Fp(M, ρα) is isomorphic to the space �p.

Proof. Let β ∈ (α, 1). By the Assouad embedding theorem, see [5, Proposition 2.6],
it follows that (M, ρα/β) is bi-Lipschitz equivalent to (M′, | · |) for some M′ ⊆ R

d,
where d ∈ N. As a consequence, (M, ρα) is bi-Lipschitz equivalent to (M′, | · |β).
Hence, for the rest of the proof we may assume that M is an infinite subset of R

d.
We note that Fp(Rd, | · |α) contains a complemented subspace isomorphic to

Fp(M, | · |α), which is infinite-dimensional since M is infinite. In fact, it is true
that for any M ⊆ N ⊆ R

d, there exists a bounded operator T : Fp(N ) → Fp(M)
satisfying T ◦ Li = IdFp(M), where Li is the canonical linearization of the inclusion
map i : M → N , i.e. M is complementably p-amenable in N , see [3, Theorem 5.1].

Moreover, it is known that Fp(Rd, | · |α) � Fp([0, 1]d, | · |α), see [3, Theorem 4.15].
In light of Theorem 4.1, it follows that Fp(Rd, | · |α) � �p.

We deduce that Fp(M, | · |α) is isomorphic to a complemented infinite-
dimensional subspace of �p. Hence, it is isomorphic to �p, see [15, Theorem 1]
and [17, Theorem 2], and this finishes the proof. �
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