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1. Introduction

Any variety of groups is generated by its free group of countably infinite rank.
A problem that appears in various forms in Hanna Neumann's book [7] (see,
for intance, sections 2.4, 2.5, 3.5, 3.6) is that of determining if a given variety 93
can be generated by Fk(93), one of its free groups of finite rank; and if so, if
Fn(23) is residually a ^-generator group for all n 2: k. (Here, as in the sequel, all un-
explained notation follows [7].)

To any variety 93 generated by a finitely generated group one can associate
the number (/(93), the least positive integer such that 93 is generated by its free
group of rank d(93). For example, for the variety £> of all groups, d(O) = 2 (in fact
every free group is residually free of rank 2 [8]); for 91, the variety of abelian
groups, d(9t) = 1 and d(%') = 2(1^2) ([7] 16.35 and 25.34); for %, the variety
of nilpotent groups of class at most c, d(3lc) = c —1 (c ^ 3) ([6], [9]); and more
generally for 93 ^ 9tc,d(93) ^ c ([7] 35.12). Further examples may be found in
[7] where, in addition, for two varieties U and 93, the dependence of </(U93) on
dQX) and d(93) is discussed. Also, Baumslag [2] has shown that for arbitrary U,
the non-cyclic free groups of U9I are residually free of rank 2 so that, in particular,
4U9I) S 2 (cf. [7] 25.33).

Corresponding results for [U, 93] are more isolated even for 93 = <S, especially
since [It, (£] is indecomposable for any U # £> ([7] 24.32). In the present paper
we shall consider such problems for2R(i) = [9I2, (£], the variety of centre-by-
metabelian groups; and more generally for 3R(C), defined inductively by 2Jl(c)

= [9K(C _!),(£](£ ^ 2). In addition, we obtain information regarding the ascend-
ing chains

(1) VarF2(SR(c)) ^ VarF3(W(C)) ^ •••
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(see [7] Section 1.6 for a general discussion of such chains).
Our results for c = 1,2 rely heavily on a 3 x 3 matrix representation of

Fao(yR(i)) found by Gupta [4] and a corresponding 4 x 4 matrix representation
of FooCJJl̂ )) (Section 4). These representations are generalizations of the
well-known faithful 2 x 2 matrix representation of FX(3R) found by Magnus (see
[7], 36.12), where SCR = 3F. In Section 2 we divert from our discussion to illustrate
how the Magnus representation can be used to give an alternate and rather elemen-
tary proof of the result that Fk(M) is residually F2(9Jt) for k ^ 2. On the whole,
Section 2 serves the purpose of introducing the terminology and the computational
techniques required in our discussion of9Jt(1) and$ft(2).

In Section 3 we show that d(9ft(1)) = 4 (Theorem 3.7) and establish chat

(2) VarF2(9K(1;) = VarF3(9Jt(1))

The inequality in (2) is a result of Gupta [5] who shows that the laws of F3(9J{(1))
are consequences of those of9Jt(1) plus an additional law u with the property that
u2 is a law of 9JZ(i). Further she shows that if U is the subgroup generated by the
values of u in FJ$)\^, then Fx(yR(1))IU is isomorphic to the group M3 of 3 x 3
matrices mentioned above. Thus it follows from (2) that d(Var (M3)) = 2.

In Section 4 we show that not only is d(9Jc"(2) = 4 (Theorem 4.6), but that

(3) Var F2(9Jl(2)) = Var F3(2R)(2) < Var F4(9Jl(2)) = 9Jt(2)

which is the chain (2) with9Jt(1) replaced by 9Jt(2). Our investigations, in Section 5,
regarding 9Ji(c)(c ^ 3) are not so complete. However, while we have not de-
termined the precise chain (1) for these cases, we are able to verify that for
c 3: 3 Var F^_1(9Ji(c)) is properly contained in Var Fk(3R(c)) for k = 2, ---.c - 1.
The proof uses methods similar to those in Levin [6].

Another problem for the varieties of the form[U,(£] is that of deciding when
the centre of F / [U(F) ,F] is precisely U(F)/[U(F),F] , where F is a free group
of finite or countably infinite rank. This, for instance, is the case if II = lRc(Witt,
cf. [7] 31.63) or It = 9JZ (follows from the fact that the centre of F(9Jl) is trivial [1]).
On the other hand, Cossey [3] has shown that this is not the case for U =
Var SL(2,5). As a by-product of our results, we show in Section 6 that the centre
of F/[F",F,F] is precisely IF",F~]I[F">F>F}.

We are thankful to Dr. M. F. Newman for his comments on an earlier draft
of the paper.

2. The Variety 9Ji

Let ZG be the integral group ring of a free abslian group G freely generated
by xux2,--, and let T2 = ZG[A2] be the ZG-algebra in the set A2 = {X2\;
fc = l,2, •••} of commuting indeterminates. Let M2 be the multiplicative group of
2 x 2 matrices (over T2) generated by

https://doi.org/10.1017/S1446788700016785 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016785


224 Narain Gupta and Frank Levin [3]

( 4 )

r 1U
for k = 1,2, •••. Let F be the (absolutely) free group freely generated by x, ,x2, •••
and let <f>2: F-* M2 be the homomorphism of FontoM2 defined by <j>2(xk)=Xk

{2).
Define a mapping a21 : F -> T2 by a21(w) = 21-entry of the matrix ^>2(w) f° r a ^
w e F .

LEMMA 2.1. (Magnus, c/. [7] 36.12). a21(w) = 0 J/ and only ifweF". In par-
ticular FjF" is isomorphic to M2 under the natural mapping xkF" -> X(

k
2).

Since G ̂  F/F', we may identify G with F/F' (and ZG with Z(F/F') corres-
pondingly) by identifying xk with xt.F'. Thus if w = w(xu • • -, xn) e F', then we may
write
(5) ws [I [*,,*J'"(modF*),

where #,•,• =
For each / ,ke {1,2, •••} and each ( e Z we define an endomorphism Qt.k,t of

f and an endomorphism B,,k,t of ZG as follows:

(6) 0,,*,,(*/) = 4,0,,kJxd = x, for i # /,

(7) Si.k.M = 4> 9/,t.,(x,) = *j for i # /.

LEMMA 2.2. / / weF', then a21(w) = 2fPj/l2i, w/iere eac/i pt is a uniquely
determined element ofZG. Further if a21(0,,tit(w))= IIqJ4'i> then for all i <£ {/, k},
qt = Qi,k.t(Pl)- i.Here e> 9 a r e a s defined in (6), (7)).

PROOF. It is clear that a21(w) will be an expression of the form ZJP(12I and
since X2

l\ are linearly independent over ZG, pt are unique. Replacing xk by x\ in w
has the effect of changing the corresponding matrix expression <f>2(w) by replacing
X[2) b y ( ^ 2 ) / . Thus if i${k,l}, the coefficient of I2

l\ in a21(0,,*,,(w)) is precisely

Bi.klp)-
For any p e ZG let ek(p) denote the maximum of the absolute values of the

exponents of xk occurring in p. The following lemma will have repeated applica-
tions in the sequel.

LEMMA 2.3. Let peZG,p # 0. For any integers l,k, Blik,,(p) # 0 whenever
\t\ ^ 2ek(p) + 1.

PROOF. The lemma follows immediately from the observation that if" [sx j < |sj
(sj # s) and s2 ^ 2|s| + 1 then the equation is2 + s, = js2 + s has no integral
solution, from which it follows that if s2 ^ 2|s| + 1, then x ^ 1 - x{x'k will not
vanish for any replacement of x, by xk

2.
We conclude this section by giving an alternate proof of the following result.
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THEOREM 2.4. (c/. [2]). For n ^ 2 FB(9Jl) fa resldually F2(9K).

PROOF. It is enough to show that for n ^ 3,FB(SR) is residually F^^SR). Let
w = WCXL'-.X,,) be an element of F\F". If w$F' then 8i i ) 0(w)^F' for some
i e {1, •••, n}. Thus we may assume that w e F' \F". By Lemmas 2.2 and 2.1, a21(w)
= P i4V+ "• + Pn̂ -Ti / 0» a n d we may assume, without loss of generality,
that Pi = Pi(x1,---,xn) ^ 0. Since n ̂  3, by Lemma 2.2 the coefficient of A21 in
the expansion of of21(0B,B-i,,(w)) is precisely 0B.B-i.XPi) which by Lemma 2.3 is
non-zero for a large enough t. It follows by Lemma 2.1 that 9n,n-i,,(w)$F". This
completes the proof of the theorem.

3. The variety 2R(1) ( = [9K,g])

As in Section 2 letA3 = {A/,f_,;i = 2,3;/c= l,2,---}and let T3 = ZG[A3].
Let M3 be the group of 3 x 3 matrices (over T3) generated by

(8)

- 1 o o-i

- 0 A(
3*] 1_|

for k = 1,2, ••• and let <£3 be the homomorphism o f f onto M3 defined by <l>3(xk)
= Xl3) for k = 1,2, —. Further let ay (3 ;> i > ; ^ 1) be the mapping of F into
T3 defined by otj/w) = y-entry of the matrix <j>3(w) for all weF.

LEMMA 3.1. (Gupta [4]). Let w e F". Then a31(w) = 0 if and only ifw = wlw2,
where wt is a product of values of the word

(9) «1234(*) = [^r1»^2"1;x3,^4][^r1»^3~1;X4,X2][x1"1,X41;X2)X3]

\_x3 ,x4 \Xi,x2j[x4. ,x2 ;x1>x3][x2 ,x3 ,xltx^\,
andw2e\F",F\

LEMMA 3.2. (Gupta [4]). F3(2R(1)) is isomorphic to the subgroup of M3 gen-

LEMMA 3.3. (Gupta [5]). ut23A(x)tlF,F] but ul23A(x)e[F",F], where
M1234(x) is defined by (9). Further if w = w(xu •••,xn) (n ^ 4) is an n-variable
word in F" such that a31(w) = 0, then

(10) w= PI "$/"X*) (mod [F'.F]),
lSi<j<*</gn

where «yjt/(x) js defined as in (9) and e(i./fc/) e {0,1}.
The next lemma is analogous to Lemma 2.2 and the proof is essentially the

same.

LEMMA 3.4. If we F", then a31(w) = T,i,jplj^32X2
Ji, where each pu is a uniquely
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determined element of ZG. Further if a31(0;,t,,(w)) = T,t,jq^2^21> then for all
Uj t {/,*},«y = 9kk.APtj), where 6,8 are def.ned in (6), (7).

LEMMA 3.5. Let w = w(x1; •••,xn) (n ^ 2 )eF" be an n-variable word such
that a31(w) ^ 0. Then there is an automorphism ^ of F such that for some
ie {1, ••-,«} the coefficient of A32A2I in the expansion o/a31(£(w)) is non-zero.

PROOF. Let a3 1(w)= X*,iPfc ^32^21 • If for some i, pit # 0 then we take £ to be
the identity automorphism of F. Otherwise, we may assume that for some i,
je {l,---,n}(i ^ j),Pa = 0 = pjj and one of />,;,/>,•,• is non-zero. Let ^ be the
automorphism of F which maps Xj to x,Xj and x* to xk for /c # j , and ^ be the
corresponding automorphism mapping Xj to XjXt and x* to x^ for k / ;. Let
«3i«i(w)) = Z i . t f ^ i M and a31(£2(w)) = !».,»•„ A&>A& One verifies that

la = A/ + *j£/i and ru = Xjptj + p n ,

where p is obtained from p on replacing x,- by x7Xj. If both qti and ru are zero then
both pij and ^ j must be zero and equivalently both ptJ and pJt must be zero, con-
trary to the assumption.

We can now prove,

THEOREM 3.6. Let © = Var(M3). Then for all n ^ 2,Fn(©) is residually
F2(©). In particular F3(SR(1)) is residually F2(9K(1)).

PROOF. Let w = w(x1)---,xn) (n ^ 3) be an «-variable word in F such that
w $ ®(F) < F". If w ^ F" then, by Theorem 2.4,0,,4.,(w) ^ F" for some /, fe e {1, ••-,«}
(/ # k) and some f e Z. Thus we may assume that w e F". Using an automorphism
f, of F, if necessary, we may, by Lemma 3.5, assume that the coefficient pu of
^32^21 in the expansion of a3I(w) is non-zero for some ie {1,•••,/!}. It follows, by
Lemma 2.3, that 6hk,t (pu) # 0 for / ^ {/,^} ( / ^ A:). Thus by Lemma 3.4, 0,,k,,
(w) ^ ®(F). The second part of the theorem uses Lemma 3.2.

We conclude this section by proving the following result.

THEOREM 3.7. For n ^ 4,Fn(9Jl(1)) is residually F4(2ttU)).

PROOF. Let w = w(x1, "-jX,,) (n ^ 5) be an n-variable word in F\lF",F']. As
in Theorem 3.6 we may assume that weF"\\_F",F~\. Further, if a31(w) # 0 then,
as in Theorem 3.6, 0l,k.^(w))^[_F",Fr\. Thus we may assume that a31(w) = 0 so
that, by Lemma 3.3,

w = El " & f > (mod [_F",F^)
lgi<j<t</gn

and for some i < j < k < I, s(ijkl) # 0. Since n ^ 5, we can choose r ̂  {i,j, k, /} .
By Lemma 3.3, 6r,r,0(w) $ [^F",F~\. This completes the proof of the theorem.
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4. The variety 2R(2) (= [Wl, (?, (£])

In this section we first of all show that d(3R(2)) > 3. We do this by exhibiting
a 4-variable word which is not a law in F4(9ft(2)) but is a law in F3(2R(2)).

THEOREM 4.1. Let w = [«i234(x),x4], where u1234.(x) is defined by (10).
Then w is a law in F3(2R(2)) but not a law in F4(

SIR(2)). In particular Var F3(9Ji(2>)
<VarF4(2R(2)).

PROOF. Since Mi234(x) is a law in F3(30i{1)) (Gupta [4]), it follows that w is a
law in F3(2R(2)). To complete the proof it suffices to show that w is not a law in

FtWvi A 9l7).

Expanding w modulo y8(F) [F", F, F] shows that

w = \xu x2', x t , x2, x3, x4; x4][x j , x3; xu x3, x2, x4; x4][x1 ; x4; x^ x4, x2, x3; x4j

[x2, x3; x2) x3, x1; x4; X4JLX2, x4 ; x2, x4, xlt x3 ; x4j|_x3, x4.;xi, x4, Xj,x2; x4]
(cf. [5]). Since the frequency of generators is different in each factor, as words in
y-j(F) the factors of w are independent of each other modulo y8(F). However, it is
readily verified that modulo ys(F), \F", F, F] is generated by all commutators of
the form [xiUxi2;xi3,xiA;xi5;xi6] plus those of the forms {.xn,xi2;xt3,xu;xi5;
xi6>xii\< [xii»xi2\xn>xn:>xis>xi65xn]' [xjnx»2»xj3;xf4,xi5;xi6;xf7] and [x,,,x,-2;
xt3,x,A;xts;xl6,xn'] where i l , i2 ,—,/7e{l ,2 ,—}. In particular if w = 1 (modulo
y8(F) [F", F, F]) then it is not difficult to verify that in fact w e [y3(F), y2(F), F, F]
y8(F). Since the generators of weight 7 cannot alter the frequency pattern of any
factor of w, it follows that if w lies in y8(F) \F",F, F ] then each factor of w lies in
y%{F) \_F",F,F~], and in particular, [x 1 ) x 2 ;x 1 ,x 2 ,x 1 ) x 2 ;x 2 ]ey 8 (F ) [F",F,F]. In
what follows we shall show that [x 1 ,x 2 ;x 1 ,x 2 ,x 1 ,x 2 ;x 2 ] is in fact non-trivial
modulo y8(F)[F",F,F].

Let H be the free group of class 7 freely generated by a, b and let W, be the
normal subgroup of H generated by all basic commutators ([7], 31.51) of weight
7 other than the following three commutators:

Ci = \b,a,a,b,b;b,a\t c2 = \b,a,a,b;b,a,b~\ and c3 = [b,a,b,b;b,a,a~\.

Let N2 be the normal subgroup of H generated by iV,, c\, cf, c\, cxcj *. Then

d = [b,a,a,b;b,a;b~] = [b,a,a,b,b;b,a][b,a,a,b;b,a,b] by the Witt
identity ([7], 33.34)

We next observe that modulo JV2,

[b,a,b;M;fc;a] = [b,a,b;b,a;a;b} = \b,a,b,a;b,a;b~\[b,a,b;b,a,a;b~]

= dc3c2^ = c1c2c3c2~
1 = clc3 = 1, and [h, a, a;b, a;b;b~\

= \b,a,a,b;b,a\b~] [b,a,a;b,a,b;b'] = dc^l1 = c^CjC^ = c ^ 1 s 1.
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Thus HjN2 is a centre-by-centre-by-metabelian group of class 7 in which
d = \_b,a, a, b;b,a;b] is non-trivial. This completes the proof of the theorem.

We now construct an JR(2)-group which will be useful in the sequel.
As in Sections 2 and 3 let A4 = {A|*>_x;i = 2,3,4;fe = 1,2,--} and T4

= ZG[A4]. Let M4 be the group of 4 x 4 matrices (over T4) generated by

- 1 0 1

X\{

0

_ 0

xk

4*2
0

0

I

xtl

0

0

!

for k = 1,2, •••. Let $ 4 be the homomorphism of F onto M4 denned by <f>4(xk)
= X(

k
4)for k = 1,2, ••• and let afj (4 ^ i > j' ^ 1) be the mapping of F into T4

denned by a,/w) = ij-entry of the matrix (/>4(w) for all w e F. Using matrix mul-
tiplication the following lemma is routinely verified.

LEMMA 4.2. (i) Jfwe [F",F,F], then w e kernel of (f>4;

(ii) [W1234OO. *s] e kernel of 0 4 ;

(iii) If we F", then a41 [w, x t ] = - 1 ^ 3 1 (w).

We now establish the following useful analogue of Lemma 3.5.

LEMMA 4.3. Let w = w(x1,---,xn)(n ^ 2) be an n-variable word in [F",F]
such that <x4i(w) ^ 0. Then there is an automorphism £ of F such that for some
ie{ l , - - - ,n} , the coefficient of ^lX^\k^l is non-zero in the expansion of a41^(w)).

PROOF. By Lemmas 4.2 and 3.4 we write

(11) «4i(w) = S PinfikX&fil
i.j.k

where piJk are uniquely determined elements of ZG and for some i,j, k e {1, •••, n},
p y i ?& 0. Let i , ; e{ l , •••,n} (i # 7 ) be fixed and let ^ ,^2.^3 be automorphisms of
F defined as follows: ^(xj) = XtXj,^^) = xk for k ^ j ; ^2(x;) £(J
= xk for fc ^ ; ; ^3(XJ) = x ," 1 ,^^*) = x* f o r ^ ^ '• Let

(12) and

= E
i.j.k

For p e ZG, let p* be the element of ZG obtained from p on replacing x( by x71

and /5 be the element of ZG obtained from p on replacing Xj by XjXf. If pJI( = piSj

= 0, then using matrix multiplication the following can be verified:

(13) qm = Paj + + pju +
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(14) riU = Xjpnj + pij, + Pjn + pjji + Xjpjij + Xjpijj;

(15) sUJ = xrVSj.s.jj = x^pfjiySjji = -x^pjjt and sJU = -x^pj^;

(16) qJJt = pjJhqnj = Xipjij and qtJl = p i n + p } n + p i n ;

(17) qkii = PklJ + XjpkJi + p k l i + XjpkJJ; and

(18) rkU = XypHy + pkJi + p k i i + XjpkJj.

To complete the proof of the lemma, let us assume that,

(19) Pm = Pjjj = qm = qjjj = rm = rw = sm = sw = 0.

Then from (13) and (14) we conclude that

(20) Puj - Pm = pjji - pjij, and hence also sUJ - s^ = sjJt - s j i ; .

Using (15), this last equation yields

Puj ~ Piji = ~ Pm + Pjij,

which together with the first equation in (20) gives

(21) Puj = Put and p}ji = p ; y , and hence also qtiJ = qin and qm = qji}.

Using (16) the last equation in (21) together with the second equation in (21) gives
Pm = 0 = Pjijl by symmetry,

(22) pUJ = put = pjjt = pj,j = 0, and similarly qUJ = qm = qjj, = qj,j = 0.

Using (22) in the last equation in (16) yields

(23) Pijj = 0 and (by symmetry) pjU = 0.

Thus we have shown that if (19) holds for any i, j e {1, • • •, n}, then

(24) Puj = Piji = Pju = Pjji = Pjij = Pijj = 0,

and the same for the corresponding q,r,s terms. Assuming (19) for every pair
i,je{l,-,n}(i ± j), if k${i,j}, then qm = rkii = pkii = pkjJ = 0, so that from
(17) and (18) we get as in the proof of Lemma 3.5, pkij = 0, which implies by
(11) that a41(w) = 0, contrary to the hypothesis. This completes the proof of the
lemma.

As an immediate consequence of Lemma 4.3, we prove the following.

THEOREM 4.4. F3(50t(2)) is residually F20Ol(2)).

PROOF. Let w = w(x1,x2,x3)6F\[F',F,F]. By Theorem 3.6, we may assume
that welF'^F^lF^F.F]. If a41(w) ^ 0 then, as in the proof of Theorem 3.6,
using Lemma 4.3 we can map w to a 2-variable word which does not belong
to [F",F,F']. If a41(w) = 0, then we may write w s= [DJ.XJ \V2,X2~\ {V^X^]
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mod [F", F, F]), where i;1,t>2,u3eF"and «31(vt) = Ofor j = 1,2,3 (by Lemma 4.2
(iii)). By Lemma 3.2, each t>je[F",F] and hence we[F",F,F~\, contrary to the
assumption.

For the proof of our final result in this section, we need the following lemma.

LEMMA 4.5. Let w = [M2 3 4 5(X)>XI][WI3 4 5(X)>X2]

["124500, *3]["1235<». *4][«1234C>0» ^ 5 ] ,

where uiJkl(x) is defined by (9). Then we[F",F,F~].

PROOF. If v = [xx" \ x2 *; x3, x4, x5][x7*, x3 *; x4, x2, x5][>7 ' , x ^ ' ; x2, x3) x5]

[x3 , x4 ;x1,x2,x5JLx4 ,x2 ;x1,X3,x5JLx2 ,x 3 ;x1 )x4 , x5j

then working modulo [F", F ] , it can be verified directly that

(25) v = 1.

Further, using the Witt identity

[a,b,cT\[c,a,bcTi[b,c,a'r\ = l with a = [x l 1 ,* ! 1 ] , b = [x3)x4], c = x5 and

working modulo [F",F,F] gives [ x 7 \ x 2 * ;x 3 ,x 4 ;x5][x 5 , [x7 1 ,x 2 " 1 ] , [x 3 ,x 4 7 ' ]

[x3 ,x4 ,x5 , [x^1, ^ J 1 ] ] = 1 and hence

(26) LXJ ,x 2 ;x3,x4;x5JLx1 ,x 2 ,x 5 ;x 3 ) x 4 ] |_Xi ,x 2 ;x3,x4,X5j = 1.

To complete the proof of the lemma, we first expand w applying (26) to each fac-
tor. Next we note, using (25), that the 6-weight contributions of each [uiJkl(x), x(]
lie in lF",F,F~\. Finally, the remaining 5-weight commutators in w can be re-
arranged to form a product of elements of the form

[[xf Sx;1],[xk,xi,xm][xl,xm,xk'][xm,xk,xl~]~] and

[ [ * r \ x j \ x ; J ] [ x J \ x k
 l,xj^[xt"',xfl,xj'],[x()xm]]~l

which belong to [F",F,F~\.
We are now in a position to prove the following theorem.

THEOREM 4.6. For each n ^ 4,Fn(ffl(2)) is residually F4(9Jt(2)).

PROOF. Let w = w(x1,---,xn) [n ^ 5) be an w-variable word in F\[F",F,F~\. Then

as in Theorem 3.6, we may assume that we[F",F~\, so that w = Wi = i[vi,xi~]

(mod [F",F,F~\\ where VieF". By Lemma 4.2 (iii), a41(w) = I 1 = 1 - A(
4'3a31(t;i).

There are two cases to be considered.

CASE I. (a4J(w) ^ 0). In this case, as in the proof of Theorem 4.4, we can
use Lemma 4.3 to map w to an (n — 1)-variable non-trivial word (mod \F",F,F~^).

https://doi.org/10.1017/S1446788700016785 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016785


[10] Generating groups 231

CASE II. (a41(w) = 0). In this case a31(v;) = 0 for each i = 1, ••-,/!. Thus by
Lemma 3.3 each vt is of the form (10). If n > 5 then 0k,k,o(w) £ [F", F, F] for some
k (by Theorem 4.1, [u1 2 3 4 (x) ,x5]£[F",F,F]) . If n = 5, then w = [u2345(x),Xlf

l

-[u1234(x),x5Y' (mod [F",F,F]\ where filt -,pse{0,1}, by Lemma 3.3.
Since w £ [F",F,F~], by Lemma 4.5 /?, = 0 and /?,• = 1 for some i,j, and we may
assume, without loss of generality, that /?! = 0 and fi2 = 1. Then 0t 2,i(w)
= [U2345(;)C)»;'C2] £ [F" ,F ,F] . This completes the proof of the theorem.

5. The variety 9K(C) (c ^ 3)

While we are unable to determine the precise chain (1) for c Si 3, our main
result in this section goes some way towards the solution of this problem. Our
method is similar to the one used in Levin [6].

Let Z[yu •••,ym](m ^ 3) be the free associative Z-algebra in non-commuting
indeterminates yu ••-,ym and let Jm + 5 be the ideal generated by all monomials of
length m + 5. Put R = Z[yu •••,ym]//m+5. We first prove the following lemma.

LEMMA 5.1. Let pm = l.,,\a\iy,yu,-,ym<,y, where y = «yi,3'2>»<3'3.J'4»
and a runs through all permutation of {1,2, --^m} with \<r\ = 1 or — 1 according
as a is even or odd. Then pm$Im+5. (Here <f"i,r2) denotes the Lie commutator

PROOF. CASE I. (m odd).

If pm = 0 (mod Im + 5) , then the sum of the terms with left factor y\ in the ex-
pansion of pm is in 7m + 5. However, these occur precisely in the terms with left factor
yty and a straight-forward computation shows that this sum is — }>i}'S(r'|cr'|.F2<7'
••• yma. (since m is odd), where a' runs through all permutations of {2, •••, m}, and
this is clearly non-zero modulo Im+S-

CASE II. (m even).

In this case we proceed as in Case I, but this time we consider terms with left
factors (^yuVi^y a n ^ show that this sum is not in Im + 5 . The computation in this
case is simplified by making use of the identity

to rewrite pm as

pm = 'Zu(y,<.yi..,y2.y,---,<y(m-i)..,ym..y>>

where \i runs through all even permutations of {1, •••, m} satisfying (2i — l)/x < (2i)n
for i = 1, •••,mj2. We omit the rest of the details.

THEOREM 5.2. Var F2(2Ji(c)) < ••• < Var F^^m^ic k 4).

PROOF. TO show that Var Fc_2(2R(c)) < Var Fc_ 1(2R(C)), we consider the word
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wc-i = n<r [*>Xi,. •••>*(<:-1),]1'1

where x = [x1,x2;xl,x3] and a runs through all permutations of {l,---,c — 1}.
It is immediate that Y/C-X is a law in Fc_2(2R(c)). With m = c - 1, the group A(£)
of units of R belongs to Var F^^SOt^). Thus to see that wc-t is not a law in
Fc_i(2R(c)), we note by Lemma 5.1 that pc-t $Ic+4- Finally to see that Var Fk_2

(2R(c)) < KarF4_1(93(i(c))(4 g k ^ c), observe by Lemma 5.1 again that

is not a law in F/t_1(2R(c)) but is clearly a law in Ft_2(2R(£.)). This completes the
proof of the theorem.

6. Concluding remarks

Let F be a free group of finite or countably infinite rank and let W be a fully
invariant subgroup of F. In general the centre of FI[W,F~\ is not Wj\W,F~\ (see
Cossey [3] for an example). If W = F", then using Lemma 2.1, it is not difficult to
see that the centre of F/[F", F ] is precisely F'I\_F", F ] . Here we are able to prove the
corresponding result for W = [F",F~\.

THEOREM 6.1. The centre of FI\F",F,F'] is precisely [F",F]I[F",F,F~}.

PROOF. Since F"/\_F",F'] is the centre of F/[F",F], it follows that the centre of
FI[F",F,F~\ is contained in F"l\_F",F,Fl Let weF'^lF'^F] such that [ w . x j e
{F",F,F~] for all k = 1,2, - .By Lemma 4.2 (iii), 0 = o+iK**] = - 43«3i(w).
Thus a31(w) = 0 and by Lemma 3.3, w is a product of the form (10). Since [w, xfc]
is a law in FI[F",F, F] , it follows by (proof of) Theorem 4.6 that [M1234OO, *4] is
a law in F/\_F",F,F}, contrary to Theorem 4.1. Thus weF"\[F",F'] implies that
[w,xk~]$[F",F,Fl, and hence the centre of F/\_F",F,F~\ is precisely {F",F~\I
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