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Abstract
Let 𝜀 > 0 be sufficiently small and let 0 < 𝜂 < 1/522. We show that if X is large enough in terms of 𝜀, then for any
squarefree integer 𝑞 ≤ 𝑋196/261−𝜀 that is 𝑋𝜂-smooth one can obtain an asymptotic formula with power-saving
error term for the number of squarefree integers in an arithmetic progression 𝑎 (mod 𝑞), with (𝑎, 𝑞) = 1. In the
case of squarefree, smooth moduli this improves upon previous work of Nunes, in which 196/261 = 0.75096 . . .
was replaced by 25/36 = 0.694. This also establishes a level of distribution for a positive density set of moduli that
improves upon a result of Hooley. We show more generally that one can break the 𝑋3/4-barrier for a density 1 set
of 𝑋 𝜂-smooth moduli q (without the squarefree condition).

Our proof appeals to the q-analogue of the van der Corput method of exponential sums, due to Heath-
Brown, to reduce the task to estimating correlations of certain Kloosterman-type complete exponential sums
modulo prime powers. In the prime case we obtain a power-saving bound via a cohomological treatment of
these complete sums, while in the higher prime power case we establish savings of this kind using p-adic
methods.

Contents

1 Introduction 2
1.1 Proof Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Setting up the Key Estimate 6
2.1 First reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Bounding incomplete exponential sums on average . . . . . . . . . . . . . . . . . . . 9

3 Correlations of 𝐾2 Sums to Prime Moduli: Cohomological Methods 15
3.1 Cohomological Interpretation of 𝐾2 and (14) . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Applying the trace formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Correlations of 𝐾2-sums to Prime Power Moduli: Stationary Phase Methods 19
4.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 The 𝜖 = 0 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Bounds for Large 𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Bounds for Small 𝑛 and Large 𝑝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Applying the 𝐾2 Correlations Bounds: Proof of Propositon 2.4 34

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2021.67 Published online by Cambridge University Press

doi:10.1017/fms.2021.67
https://orcid.org/0000-0003-4055-4078
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2021.67&domain=pdf
https://doi.org/10.1017/fms.2021.67


2 Alexander P. Mangerel

6 Proof of Theorems 1.1 and 1.5 41
6.1 First Result: 𝑞 ≤ 𝑋3/4−𝜀 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Squarefree 𝑋3/4−𝜀 < 𝑞 ≤ 𝑋3/4+1/1044−𝜀 . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Non-squarefree 𝑞 > 𝑋3/4−𝜀 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1. Introduction

It is a classical problem in analytic number theory to study the distribution of well-known sequences
in arithmetic progressions. The example of interest to us here is the sequence of squarefree integers;
that is, integers n such that 𝑝2 � 𝑛 for all primes p. Writing the indicator function for this sequence as
𝜇2 (𝑛) for all 𝑛 ∈ N, where 𝜇 denotes the Möbius function,1 it is known that for a given modulus q, the
asymptotic equidistribution estimate∑

𝑛≤𝑋
𝑛≡𝑎 (mod 𝑞)

𝜇2(𝑛) = 1
𝜙(𝑞/(𝑞, 𝑎))

∑
𝑛≤𝑋

(𝑛,𝑞)=(𝑎,𝑞)

𝜇2 (𝑛) + 𝑜(𝑋/𝑞) (1)

for the count of squarefree integers in a progression 𝑎 (mod 𝑞) holds if X is sufficiently large relative
to q. It is a challenging question to determine the optimal constant 𝜃 ∈ [0, 1) such that (1) holds as soon
as 𝑞 ≤ 𝑋 𝜃 . It is widely believed that any 𝜃 < 1 should be admissible, but this is far from proven in
general. It has been known for some time (see [19]) that any 𝜃 < 2/3 is admissible. At present, the best
result that is available for all moduli q is that any 𝜃 < 25/36 = 0.694 is admissible, which is a recent
result of Nunes [16].

If we impose constraints on the modulus q, one might expect that it is possible to improve this range
of 𝜃. For instance, Hooley [8] showed that 𝜃 can be taken in the interval [2/3, 3/4) provided that q has
a moderately large2 prime factor p, the size of which depends on 𝜃. As a consequence, he deduced that
for a positive proportion of moduli 𝑞 ≤ 𝑋3/4−𝜀 the asymptotic (1) holds (the proportion depends on 𝜀
and tends toward 0 as 𝜀 → 0+). Recently, Liu, Shparlinski and Zhang [14] improved upon this result
by proving a Bombieri–Vinogradov-type theorem for squarefree integers, showing that the required
asymptotic formula holds for all residue classes (𝑎, 𝑞) = 1 for almost all 𝑞 ≤ 𝑋3/4−𝜀 .

In this article, we shall improve upon Nunes’s result for a different, natural collection of moduli,
specifically those q that are 𝑋 𝜂-smooth (otherwise called 𝑋 𝜂-friable); that is, such that all prime factors
p of q satisfy 𝑝 ≤ 𝑋 𝜂 for 𝜂 > 0 small. For many such moduli, including all squarefree 𝑋 𝜂-smooth
moduli, we shall in fact be able to improve upon the range of admissibility 𝜃 < 3/4 from the works of
Hooley and of Liu, Shparlinski and Zhang.

More precisely, our first main result is as follows.

Theorem 1.1. Let 𝜀 > 0 be small and let 0 < 𝜂 < 1/522. Let X be large in terms of 𝜂, 𝜀 and let
𝑞 ≤ 𝑋196/261−𝜀 be 𝑋 𝜂-smooth and squarefree. Then there is a 𝛿 > 0, depending only on 𝜂 and 𝜀, such
that for any 𝑎 (mod 𝑞) with (𝑎, 𝑞) ≤ 𝑋 𝜀 ,∑

𝑛≤𝑋
𝑛≡𝑎 (mod 𝑞)

𝜇2(𝑛) = 1
𝜙(𝑞/(𝑞, 𝑎))

∑
𝑛≤𝑋

(𝑛,𝑞/(𝑞,𝑎) )=1

𝜇2(𝑛) +𝑂 𝜀

(
𝑋1−𝛿

𝑞

)
.

Remark 1.2. Our proof actually shows that for 𝑞 ≤ 𝑋3/4−𝜀 one may take as the smoothness exponent
any 𝜂 ≤ 6/25, whereas for 𝑋3/4−𝜀 < 𝑞 ≤ 𝑋196/261−𝜀 the admissible range is 𝜂 < 1/522; it is probable
that this range in 𝜂 may be improved somewhat, though it was not our primary objective to obtain an
optimal such range.

1Recall that the Möbius function is the arithmetic function satisfying 𝜇 (𝑛) = 0 if n is not squarefree and otherwise
𝜇 (𝑝1 · · · 𝑝𝑘 ) = (−1)𝑘 if 𝑝1 , . . . , 𝑝𝑘 are distinct primes.

2For instance, when 𝜃 = 3/4 − 𝜀 for 𝜀 > 0 small, p must have size 𝑋2/3−𝜀 .
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Our result has the following trivial corollaries. The first improves upon the range3 of moduli that is
accessible in the density result of Hooley quoted earlier.

Corollary 1.3. For any 𝜀 > 0, a positive proportion of the moduli 𝑞 ≤ 𝑋196/261−𝜀 satisfies

max
(𝑎,𝑞)=1

�������
∑
𝑛≤𝑋

𝑛≡𝑎 (mod 𝑞)

𝜇2(𝑛) − 1
𝜙(𝑞)

∑
𝑛≤𝑋

(𝑛,𝑞)=1

𝜇2 (𝑛)

������� = 𝑜𝜀 (𝑋/𝑞).

Corollary 1.4. Let 𝜀 > 0 be small, 0 < 𝜂 < 1/522 and let X be sufficiently large in terms of 𝜂 and
𝜀. Let q be squarefree and 𝑋 𝜂-smooth and let a be a coprime residue class modulo q. Then provided
𝑋 ≥ 𝑞261/196+𝜀 , there is a squarefree integer in the set {𝑛 ≤ 𝑋 : 𝑛 ≡ 𝑎 (mod 𝑞)}.

It is desirable to remove the assumption that q is squarefree, so that the above results continue to
hold in some form for q merely 𝑋 𝜂-smooth. While we are not able to derive this conclusion for all such
moduli, we do show that almost all 𝑋 𝜂-smooth moduli do have this property.

Theorem 1.5. There is a 𝜆 > 0 such that the following is true. Let 𝜂 > 0 and set

Q𝜆(𝑋) := {𝑞 ≤ 𝑋3/4+𝜆 : 𝑃+(𝑞) ≤ 𝑋 𝜂}.

Then for all but 𝑂𝜂 (|Q𝜆(𝑋) |/log 𝑋) moduli 𝑞 ∈ Q𝜆 (𝑋), we have

max
(𝑎,𝑞)=1

�������
∑
𝑛≤𝑋

𝑛≡𝑎 (mod 𝑞)

𝜇2 (𝑛) − 1
𝜙(𝑞)

∑
𝑛≤𝑋

(𝑛,𝑞)=1

𝜇2(𝑛)

������� = 𝑜𝜂 (𝑋/𝑞).

Given 𝑦 ≥ 2 we will say that a positive integer q is y-ultrasmooth if, whenever 𝑝𝑛 | |𝑞 we have 𝑝𝑛 ≤ 𝑦.
What we will actually show is that the conclusion of Theorem 1.5 applies to all elements of

Q′
𝜆 (𝑋) := {𝑞 ∈ Q𝜆 (𝑋) : 𝑞 is 𝑋 𝜂-ultrasmooth}.

It is easy to see that by the union bound,

|Q𝜆 (𝑋)\Q′
𝜆 (𝑋) | ≤

∑
𝑝≤𝑋 𝜂

|{𝑞 ∈ Q𝜆 (𝑋) : 𝑝𝜈 | |𝑞, 𝑝𝜈 > 𝑋 𝜂}| ≤
∑
𝑝≤𝑋 𝜂

∑
𝑞≤𝑋3/4+𝜆−𝜂

1𝑃+ (𝑞) ≤𝑋 𝜂

�𝜂
𝑋 𝜂

log 𝑋
|Q𝜆 (𝑋) |𝑋−𝜂 �

|Q𝜆 (𝑋) |
log 𝑋

,

which implies the claimed bound on the exceptional set when 𝑋 ≥ 𝑋0 (𝜂).

Remark 1.6. To be precise, there are two reasons why we do not treat all smooth moduli in this article.
The first is that our method does not directly treat moduli q such that q has a large power of 2 or 3 as
a divisor. It is likely that it could be modified to treat this case but at the cost of adding a nontrivial
amount of pages to this already long article.

A more serious issue arises from the fact that in the course of the proof we need to be able to
factor our modulus q (or, more precisely, a suitably chosen divisor of it) into coprime parts with well-
controlled sizes (here we allow perturbations of size 𝑋 𝜂 only). If q were merely 𝑋 𝜂-smooth but not
𝑋 𝜂-ultrasmooth – for example, if q were divisible by a prime power 𝑝𝜈 > 𝑋1/100, say, with 𝑝 ≤ 𝑋 𝜂 –
then this prime power would have to arise in one of the factors, biasing its size in a manner that might
be incompatible with the bounds we obtain. The 𝑋 𝜂-ultrasmoothness condition is in place to prevent
such a bias in size from occurring.

3We emphasise that 196/261 = 3/4 + 1/1044 > 3/4.
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Remark 1.7. It is worth noting that our proof actually shows that we may asymptotically estimate the
number of squarefree integers in a progression modulo q when 𝑞 ≤ 𝑋3/4−𝜀 which is 𝑋 𝜂-smooth, without
further assumptions (see Subsection 6.1 for a proof). However, this by itself is not sufficient to improve
upon Hooley’s positive density result.

1.1. Proof Strategy

To prove Theorems 1.1 and 1.5, we will use a method of Heath-Brown that was used by Irving [9] to
study the distribution of the divisor function in arithmetic progressions. To motivate our argument, it
is useful to see where obstructions occur in the classical treatment of counting squarefree integers in
progressions, as found in [19].

Assume in what follows that (𝑎, 𝑞) = 1, for convenience. Using the classical identity

𝜇2(𝑛) =
∑
𝑘𝑙2=𝑛

𝜇(𝑙)

and decoupling the parameters k and l by localising them in short intervals (as we do in Section 2), it
can be shown that the error term in (1) is controlled by averaged incomplete exponential sums4

∑∗

𝑘 (mod 𝑞)

1
𝑘

�������
∑
𝑑∈𝐼

(𝑑,𝑞)=1

𝑒𝑞

(
𝑘𝑎𝑑

2)������� , (2)

where I is some interval of size < 𝑞. Using the completion method, one is led to bound averages of
‘quadratic Kloosterman sums’

𝐾2(𝐴, 𝐵; 𝑞) :=
∑∗

𝑥 (mod 𝑞)
𝑒𝑞

(
𝐴𝑥2 + 𝐵𝑥

)
,

where 𝐴 ∈ (Z/𝑞Z)× and 𝐵 ∈ Z/𝑞Z. Using the Chinese remainder theorem, we may, of course, factor 𝐾2
as a product of complete sums modulo prime powers 𝑝𝑛 | |𝑞. Each such factor can be estimated pointwise
by 𝑂 (𝑝𝑛/2), using either:

(i) a trivial application of the Bombieri–Dwork–Weil bound (see Lemma 2.2) when 𝑛 = 1 or
(ii) the p-adic method of stationary phase for 𝑛 ≥ 2 (see Lemma 2.1).

The resulting bound 𝑂 𝜀 (𝑋 𝜀𝑞1/2) for the complete sum modulo q is of size 𝑜(𝑋/𝑞) as required, as long
as 𝑞 ≤ 𝑋2/3−𝜀 .

One way to go beyond the 𝑋2/3 barrier is to try to exploit the averaging in k in (2), rather than
employing a pointwise bound. Indeed, when q factors sufficiently nicely, the q-analogue of the van der
Corput method of exponential sums, developed by Ringrose [21] and Heath-Brown [7, Theorem 2],
enables one to reduce the problem above to estimating correlations of complete exponential sums (to be
discussed momentarily). Using (a variant of) a result of Fouvry et al. [5] to estimate such correlations,
Irving is able to treat 𝑋 𝜀-smooth and squarefree moduli of size 𝑞 ≤ 𝑋2/3+1/246−𝜀 . Aside from the fact
that the sums 𝐾2 entering the picture differ in behaviour from genuine Kloosterman sums (so that the
results of [5] do not apply), this strategy by itself is insufficient in the case of squarefree integers, even
falling short of Nunes’s result (see Subsection 2.2.2 for further details).

To do better, we incorporate an additional idea. The key difficulty in understanding the distribution
of squarefree integers in progressions is to estimate the count of points on the curve 𝑥𝑦2 ≡ 𝑎 (mod 𝑞),
for x and y lying in certain ranges. Clearly, if 𝐼, 𝐽 ⊂ Z/𝑞Z are intervals and 𝑞′ is any divisor of q, then

|{(𝑥, 𝑦) ∈ 𝐼 × 𝐽 : 𝑥𝑦2 ≡ 𝑎 (mod 𝑞)}| ≤ |{(𝑥, 𝑦) ∈ 𝐼 × 𝐽 : 𝑥𝑦2 ≡ 𝑎 (mod 𝑞′)}|;

4Henceforth, given 𝑥 ∈ R and 𝑞 ∈ N we shall write 𝑒 (𝑥) := 𝑒2𝜋𝑖𝑥 and 𝑒𝑞 (𝑥) := 𝑒 (𝑥/𝑞) .
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moreover, observe that the analogous bound for (2) with 𝑞′ (of suitable size) in place of q – that
is, 𝑂 (𝑋 𝜀 (𝑞′)1/2) – can be of size 𝑜(𝑋/𝑞) for larger choices of q than 𝑋2/3−𝜀 . There is therefore an
advantage in working with exponential sums modulo a suitably sized divisor of q, whenever such a
divisor can be found; this was observed as well in [8], but its implementation differs from what we do
here. As we shall show below, the fact that q is 𝑋 𝜂-smooth means we can find divisors of q of any
prescribed size (up to factors of size 𝑋 𝜂), in particular the size required to use the trick above. We
therefore end up applying Irving’s method to treat Kloosterman-type sums modulo 𝑞′ instead, which,
when combined with the analysis of correlations described above, results in a gain not over the range
𝑞 ≤ 𝑋2/3−𝜀 but over a larger range of q instead.

Let us describe more precisely a key feature of our argument. A crucial step in Irving’s method (again
for the divisor function) involves giving nontrivial estimates for the correlations∑

𝑏∈𝐼
Kl(𝑎, 𝑏 + ℎ1; 𝑝) · · ·Kl(𝑎, 𝑏 + ℎ𝑘 ; 𝑝),

where 𝑝 | 𝑞, ℎ1, . . . , ℎ𝑘 ∈ F𝑝 , 𝑎 ∈ F×𝑝 , 𝐼 ⊂ F𝑝 is an interval and

Kl(𝐴, 𝐵; 𝑝) :=
∑
𝑥∈F×𝑝

𝑒𝑝 (𝐴𝑥 + 𝐵𝑥) for 𝐴, 𝐵 ∈ F𝑝

is the classical Kloosterman sum modulo p. In our circumstances, we treat 𝐾2 sums to both prime and
prime power moduli, each case of which requires a separate analysis.

In the prime case, the corresponding correlation sum that we need to treat is of the form5∑
𝑏∈𝐼

𝐾2(𝑎, 𝑏 + ℎ1; 𝑝) · · ·𝐾2(𝑎, 𝑏 + ℎ𝑘 ; 𝑝)𝐾2(𝑎, 𝑏 + ℎ′1; 𝑝) · · ·𝐾2(𝑎, 𝑏 + ℎ′𝑙; 𝑝),

where 𝑘 + 𝑙 ≥ 1. We treat (completions of) such sums, which are the subject of Theorem 3.1, in Section 3
of this article, using cohomological methods, in particular, the sheaf-theoretic Fourier transform of
Deligne.

Specifically, we view 𝐾2 as the ℓ-adic Fourier transform of the trace function of an Artin–Schreier
sheaf (ℓ ≠ 𝑝 being an auxiliary prime), which is itself a trace function, pointwise pure of weight 1.
Treating its correlations amounts to identifying cases in which tensor products of the underlying Galois
representations are, or are not, geometrically trivial, a task facilitated by the Goursat–Kolchin–Ribet
criterion (see [6] for an array of example applications of this method).

In the prime power case, our work is simplified (in terms of the required theoretical preliminaries but
not in the amount of technical details) by the fact that these 𝐾2 sums can be explicitly computed using the
p-adic stationary phase method. For instance, when 𝑛 ≥ 2 and 𝑝 > 3 is prime, we have (see Lemma 2.1)

𝐾2(𝐴, 𝐵; 𝑝𝑛) = 𝑝𝑛/2
(

3𝐴
𝑝𝑛

)
𝜀𝑝,𝑛

∑
𝑦 (mod 𝑝�𝑛/2� )

𝑦3≡2𝐴𝐵 (mod 𝑝�𝑛/2� )

𝑒𝑝𝑛 (3𝐴𝑦2),

for any 𝐴 ∈ (Z/𝑝𝑛Z)× and 𝐵 ∈ Z/𝑝𝑛Z, where 𝜀𝑝,𝑛 ∈ 𝑆1. The correlation problem then revolves around
bounding exponential sums over variables from a variety determined by the polynomials {𝑋3 − 2𝑎(𝑏 +
ℎ𝑖)}𝑖 and {𝑋3 − 2𝑎(𝑏 + ℎ′𝑗 )} 𝑗 , as b varies.

An important work treating such correlations, with 𝐾2 sums again replaced by Kloosterman sums,
was undertaken by Ricotta and Royer [20]. They used their estimates to establish distribution theorems
for Kloosterman sums modulo 𝑝𝑛, as 𝑝 → ∞. However, their method is efficient mainly when n is
fixed, as it relies on treating the correlation sum (via explicit formulae for Kloosterman sums to prime
powers) as an exponential sum whose phase function turns out to be a polynomial modulo 𝑝𝑛 of degree
essentially as large as n and then applying the standard van der Corput–Weyl method. We also employ

5We emphasise that unlike classical Kloosterman sums, the 𝐾2 sums are not real-valued in general.
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this strategy but instead use Vinogradov’s method (and the recent solution to the Vinogradov main
conjecture, due to Bourgain–Demeter–Guth [2] and Wooley [25]) independently in place of van der
Corput’s method, which leads to a stronger result when n is of bounded size as p grows.

In our circumstances we will also require a treatment that is effective for moduli 𝑝𝑛 with rather large
values of n and p possibly fixed. Fortunately, very recent work of Milićević and Zhang [15] introduced a
method that suits this situation, in which one iteratively applies the stationary phase method to recover
from the correlation sum a sum over a ‘generically trivial’ variety, up to small error (at least when n is
large enough), rather than using Weyl sum estimates. A combination of the arguments6 in each of these
regimes will suit our needs.

2. Setting up the Key Estimate

2.1. First reductions

Let 𝜀, 𝜂 > 0 be sufficiently small, let X be large relative to 𝜀 and 𝜂 and let 𝑋2/3−𝜀 ≤ 𝑞 ≤ 𝑋9/10−𝜀 be
𝑋 𝜂-smooth. Given a a residue class modulo q, an arithmetic function 𝑔 : N→ C and a set 𝐸 ⊂ N, define

Δ𝑔 (𝐸 ; 𝑞, 𝑎) :=
∑
𝑛∈𝐸

𝑛≡𝑎 (mod 𝑞)

𝑔(𝑛) − 1
𝜙(𝑞/(𝑎, 𝑞))

∑
𝑛∈𝐸

(𝑛,𝑞)=(𝑎,𝑞)

𝑔(𝑛).

We shall also use the shorthand Δ𝑔 (𝑋; 𝑞, 𝑎) := Δ𝑔 ([1, 𝑋] ∩ N; 𝑞, 𝑎). For the remainder of this section
we will assume that (𝑎, 𝑞) = 1.

Take 𝑔 = 𝜇2, the indicator function for the squarefree integers. Using the classical identity 𝜇2 (𝑛) =∑
𝑚𝑑2=𝑛 𝜇(𝑑) we obtain

Δ𝜇2 (𝑋; 𝑞, 𝑎) =
∑
𝑑≤

√
𝑋

(𝑑,𝑞)=1

𝜇(𝑑)Δ1(𝑋/𝑑2; 𝑞, 𝑎𝑑
2),

where 𝑑 denotes the residue class modulo q with 𝑑𝑑 ≡ 1 (mod 𝑞). Let 𝛿 ∈ (0, 1/20) and let

𝑋 𝛿+𝜀 ≤ 𝑉0 ≤ 𝑋1−𝛿/𝑞

be a parameter to be chosen. For 𝑚 ≤ 𝑌 and 1 ≤ 𝑏 ≤ 𝑚, note the trivial bound

Δ1 (𝑌 ;𝑚, 𝑏) =
⌊
𝑌 − 𝑏

𝑚

⌋
− 1

𝜙(𝑚)

(
𝜙(𝑚)
𝑚

𝑌 +𝑂 (𝜏(𝑚))
)
= 𝑂 (1),

whence it follows that

Δ𝜇2 (𝑋; 𝑞, 𝑎) =
∑

𝑉0<𝑑≤
√
𝑋

(𝑑,𝑞)=1

𝜇(𝑑)Δ1(𝑋/𝑑2; 𝑞, 𝑎𝑑
2) +𝑂 (𝑉0) .

It will be convenient in what follows later to remove the coefficient 𝜇(𝑑). Decomposing dyadically the
sum in d and applying the triangle inequality, we find that there is a 𝑉0 < 𝑉 ≤

√
𝑋 such that

Δ𝜇2 (𝑋; 𝑞, 𝑎) � (log 𝑋)

�������
∑
𝑑∼𝑉

(𝑑,𝑞)=1

𝜇(𝑑)Δ1(𝑋/𝑑2; 𝑞, 𝑎𝑑
2)

������� +𝑉0

≤ (log 𝑋)
∑
𝑑∼𝑉

(𝑑,𝑞)=1

���Δ1(𝑋/𝑑2; 𝑞, 𝑎𝑑
2)
��� +𝑉0.

6Unfortunately, the bounds for prime power moduli 𝑝𝑛 with 𝑛 ≥ 2 are rather poorer than the bounds for prime moduli. This is
due, in part, to the lack of rigid algebraic data. As a result of these weaker conclusions, we have chosen to leave the exponent 𝛿
in Theorem 1.5, which is necessarily weaker than what is obtainable in Theorem 1.1, inexplicit.
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Next, we further subdivide the range of 𝑚 ≤ 𝑋/𝑑2 into dyadic subintervals, leading to the existence of
U satisfying 𝑈𝑉2 ≤ 𝑋 , such that

Δ𝜇2 (𝑋; 𝑞, 𝑎) � (log 𝑋)2
∑
𝑑∼𝑉

(𝑑,𝑞)=1

�����������
∑
𝑚∼𝑈
𝑚𝑑2≤𝑋

𝑚≡𝑎𝑑2 (mod 𝑞)

1 − 1
𝜙(𝑞)

∑
𝑚∼𝑈
𝑚𝑑2≤𝑋
(𝑚,𝑞)=1

1

�����������
+𝑉0.

To remove the condition 𝑚𝑑2 ≤ 𝑋 , we split (𝑈, 2𝑈] and (𝑉, 2𝑉] into subintervals of respective lengths
𝑈𝑉−1

0 and𝑉𝑉−1
0 , of which there are� 𝑉2

0 in total. We thus find that there are𝑈1 ∈ (𝑈, 2𝑈],𝑉1 ∈ (𝑉, 2𝑉]
with 𝑈1𝑉

2
1 ≤ 8𝑋 such that

Δ𝜇2 (𝑋; 𝑞, 𝑎) � 𝑉2
0 (log 𝑋)2

∑
𝑑∈𝐼 (𝑉1 )
(𝑑,𝑞)=1

���Δ1(𝐼 (𝑈1); 𝑞, 𝑎𝑑
2)
��� +𝑉0 + E,

where

𝐼 (𝑈1) = (𝑈1,𝑈1 +𝑈𝑉−1
0 ], and 𝐼 (𝑉1) = (𝑉1, 𝑉1 +𝑉𝑉−1

0 ]

and E counts the number of pairs (𝑚, 𝑑) such that

(i) 𝑚𝑑2 > 𝑋 ,
(ii) 𝑚𝑑2 ≡ 𝑎 (mod 𝑞) and

(iii) 𝑑 ∈ 𝐼 (𝑉 ′
1), 𝑚 ∈ 𝐼 (𝑈 ′

1) with 𝑈 ′
1 ∈ (𝑈, 2𝑈], 𝑉 ′

1 ∈ (𝑉, 2𝑉] satisfying 𝑈 ′
1 (𝑉

′
1)

2 ≤ 𝑋 .

We easily see that

𝑋 < 𝑚𝑑2 ≤ (𝑈 ′
1 +𝑈

′𝑉−1
0 ) (𝑉 ′

1 +𝑉
′𝑉−1

0 )2

≤ 𝑈 ′
1 (𝑉

′
1)

2 +𝑈 ′𝑉 ′
1𝑉

−1
0 + 3𝑈 ′

1𝑉
′
1𝑉

′𝑉−1
0 + 3𝑈 ′𝑉 ′𝑉 ′

1𝑉
−2
0

≤ 𝑋 +𝑂 (𝑋𝑉−1
0 ).

As 𝑋/𝑉0 ≥ 𝑞1+𝛿 , by Shiu’s theorem [22] the contribution from these pairs is

E �
∑

𝑋<𝑛≤𝑋+𝑂 (𝑋/𝑉0 )
𝑛≡𝑎 (mod 𝑞)

𝜏(𝑛) + 1
𝜙(𝑞)

∑
𝑋<𝑛≤𝑋+𝑂 (𝑋/𝑉0 )

(𝑛,𝑞)=1

𝜏(𝑛) �𝛿
𝑋 log 𝑋

𝑞𝑉0
.

We thus find that

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝛿 𝑉
2
0 (log 𝑋)2

∑
𝑑∈𝐼 (𝑉1 )
(𝑑,𝑞)=1

���Δ1(𝐼 (𝑈1); 𝑞, 𝑎𝑑
2)
��� +𝑉0 + 𝑋 (log 𝑋)/(𝑞𝑉0), (3)

again with 𝑈1𝑉
2
1 ≤ 8𝑋 . Note that we may assume that 𝑉1 > 𝑋1−𝛿−𝜀/(𝑞𝑉0), since otherwise we

immediately obtain

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀, 𝛿 𝑉
2
0 𝑋

𝜀 |𝐼 (𝑉1) | +𝑉0 + 𝑋 (log 𝑋)/(𝑞𝑉0) � 𝑋1−𝛿/𝑞. (4)

Let 𝑞 be a divisor of q to be chosen later (the smoothness assumption on q will be useful in this selection).
Using the fact that when 𝑈1𝑉

2
1 ≤ 8𝑋 ,∑

𝑑∈𝐼 (𝑉1)

1
𝜙(𝑞′)

∑
𝑚∈𝐼 (𝑈1)

1(𝑚,𝑞′)=1 =
|𝐼 (𝑉1) |
𝜙(𝑞′)

(
𝜙(𝑞′)
𝑞′

|𝐼 (𝑈1) | +𝑂 (𝜏(𝑞′))
)
� 𝑋

𝑞′𝑉1𝑉
2
0
+ 𝑋 𝜀 𝑉1

𝑞′𝑉0
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for 𝑞′ ∈ {𝑞, 𝑞}, we obtain

∑
𝑑∈𝐼 (𝑉1 )
(𝑑,𝑞)=1

���Δ1(𝐼 (𝑈1); 𝑞, 𝑎𝑑
2)
��� ≤ ∑

𝑑∈𝐼 (𝑉1 )
(𝑑,𝑞)=1

����

∑
𝑚∈𝐼 (𝑈1 )

𝑚≡𝑎𝑑2 (mod 𝑞)

1 + 1
𝜙(𝑞)

∑
𝑚∈𝐼 (𝑈1 )
(𝑚,𝑞)=1

1
�����

≤
∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

����

∑
𝑚∈𝐼 (𝑈1 )

𝑚≡𝑎𝑑2 (mod �̃�)

1 + 1
𝜙(𝑞)

∑
𝑚∈𝐼 (𝑈1 )
(𝑚,�̃�)=1

1
����� +𝑂

(
𝑋

𝑞𝑉2
0𝑉1

+ 𝑋 𝜀 𝑉1
𝑞𝑉0

)

=
∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

Δ1(𝐼 (𝑈1); 𝑞, 𝑎𝑑
2) +𝑂

(
𝑋

𝑞𝑉1𝑉
2
0
+ 𝑋 𝜀𝑉1

𝑉0𝑞

)
.

Hence, from (3) and 𝑉1 � 𝑋1/2,

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀 𝑉
2
0 (log 𝑋)2

�������
∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

Δ1 (𝐼 (𝑈1); 𝑞, 𝑎𝑑
2)

������� +𝑉0 +
𝑋1+𝜀

𝑞𝑉0
+ 𝑋1+𝜀

𝑞𝑉1
+ 𝑉0𝑋

1/2+𝜀

𝑞

for 𝑞 | 𝑞, 𝑋 𝛿+𝜀 ≤ 𝑉0 ≤ 𝑋1−𝛿/𝑞 and 𝑉1 ≥ max{𝑉0, 𝑋
1−𝛿−𝜀/(𝑞𝑉0)}.

Having decoupled the variables d and m and removed the weight 𝜇(𝑑), we now introduce additive
characters into the fold. By orthogonality, we have

∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

����

∑
𝑚∈𝐼 (𝑈1 )

𝑚≡𝑎𝑑2 (mod �̃�)

1 − 1
𝜙(𝑞)

∑
𝑚∈𝐼 (𝑈1 )
(𝑚,�̃�)=1

1
����� =

1
𝑞

∑
𝑘 (mod �̃�)

���

∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

𝑒�̃� (−𝑘𝑎𝑑
2)
����
��


∑
𝑚∈𝐼 (𝑈1)

𝑒�̃� (𝑘𝑚)
���

− 1
𝜙(𝑞)

∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

∑
𝑚∈𝐼 (𝑈1 )
(𝑚,�̃�)=1

1.

By the sieve, ∑
𝑚∈𝐼 (𝑈1 )
(𝑚,�̃�)=1

1 =
𝜙(𝑞)
𝑞

|𝐼 (𝑈1) | +𝑂 (𝜏(𝑞)),

the main term of which cancels the sum with 𝑘 = 0 above and so we obtain

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀

𝑉2
0 (log 𝑋)2

𝑞

∑
𝑘 (mod �̃�)
𝑘≠0

�������
∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

𝑒�̃� (−𝑘𝑎𝑑
2)

∑
𝑚∈𝐼 (𝑈1)

𝑒�̃� (𝑘𝑚)

�������
+𝑉0 +

𝑋1+𝜀

𝑞𝑉0
+ 𝑋1+𝜀

𝑞𝑉1
+ 𝑉0𝑋

1/2+𝜀

𝑞

�𝜀

𝑉2
0 (log 𝑋)2

𝑞

∑
1≤ |𝑘 | ≤�̃�/2

�������
∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

𝑒�̃� (𝑘𝑎𝑑
2)

�������
������ ∑
𝑚∈𝐼 (𝑈1)

𝑒�̃� (−𝑘𝑚)

������
+𝑉0

(
1 + 𝑋1/2+𝜀

𝑞

)
+ 𝑋1+𝜀

𝑞𝑉1
+ 𝑋1+𝜀

𝑞𝑉0
.
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Applying the geometric series estimate∑
𝑚∈𝐼 (𝑈1)

𝑒�̃� (𝑘𝑚) � min{|𝐼 (𝑈1) |, ‖𝑘/𝑞‖−1} � 𝑞/𝑘

for 1 ≤ 𝑘 ≤ 𝑞/2, we thus obtain

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀 𝑉
2
0 (log 𝑋)2

∑
1≤𝑘≤�̃�/2

1
𝑘

�������
∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

𝑒�̃� (𝑘𝑎𝑑
2)

������� + 𝑋1+𝜀

𝑞𝑉1
+ 𝑋 log 𝑋

𝑞𝑉0
+𝑉0.

2.2. Bounding incomplete exponential sums on average

Our main objective from here on is to get a suitable estimate on average over k for

𝑆�̃�,𝑎 (𝑘;𝑉1) :=
∑
𝑑∈𝐼 (𝑉1 )
(𝑑,�̃�)=1

𝑒�̃�

(
𝑘𝑎𝑑

2)
.

To simplify matters further, we separate the range of k according to (𝑘, 𝑞) = 𝑓 , giving∑
1≤𝑘≤�̃�−1

|𝑆�̃�,𝑎 (𝑘;𝑉1) |
𝑘

=
∑
𝑓 |�̃�
𝑓 <�̃�

1
𝑓

∑∗

𝑘′ (mod �̃�/ 𝑓 )

|𝑆�̃�/ 𝑓 ,𝑎 (𝑘 ′;𝑉1) |
𝑘 ′

. (5)

Fix 𝑓 | 𝑞 with 𝑓 < 𝑞 for the moment and put 𝑞′ := 𝑞/ 𝑓 . Completing the sum, we obtain

𝑆𝑞′,𝑎 (𝑘 ′;𝑉1) =
∑∗

𝑙 (mod 𝑞′)
𝑒𝑞′ (𝑘 ′𝑎𝑙

2)
∑
𝑑∈𝐼 (𝑉1 )

𝑑≡𝑙 (mod 𝑞′)

1

=
1
𝑞′

∑
𝑟 (mod 𝑞′)

∑∗

𝑙 (mod 𝑞′)
𝑒𝑞′ (𝑘 ′𝑎𝑙

2 + 𝑟𝑙)
∑

𝑑∈𝐼 (𝑉1)
𝑒𝑞′ (−𝑟𝑑)

=
1
𝑞′

𝑞′∑
𝑟=1

𝑒𝑞′ (−𝑟𝑉1)𝐾2(𝑘 ′𝑎, 𝑟; 𝑞′)𝑔𝑞′ (𝑟), (6)

where for 𝑄 ≥ 2 we have set

𝐾2(𝐴, 𝐵;𝑄) :=
∑∗

𝑥 (mod 𝑄)
𝑒𝑄

(
𝐴𝑥2 + 𝐵𝑥

)
(𝐴 ∈ (Z/𝑄Z)×, 𝐵 ∈ Z/𝑄Z),

the complete exponential sum defined in the introduction, as well as

𝑔𝑞′ (𝑟) := 𝑒𝑞′ (𝑟𝑉1)
∑

𝑑∈𝐼 (𝑉1)
𝑒𝑞′ (−𝑟𝑑) =

∑
1≤𝑑≤𝑉1/𝑉0

𝑒𝑞′ (−𝑟𝑑) � min{𝑉1/𝑉0, 𝑞
′/𝑟}. (7)

We would like to use partial summation to remove the weight 𝑔𝑞′ in (6); however, the long sum in r will
make this inefficient in the sequel if we do not split the interval into shorter segments. To this end, let
1 ≤ 𝐾 ≤ 𝑞′ − 1 be a parameter that we will choose later. We split

𝑆𝑞′,𝑎 (𝑘 ′;𝑉1) =
1
𝑞′

∑
1≤𝑚≤𝑞′/𝐾

∑
𝐾 (𝑚−1)<𝑟 ≤𝐾𝑚

𝑒𝑞′ (−𝑟𝑉1)𝐾2(𝑘 ′𝑎, 𝑟; 𝑞′)𝑔𝑞′ (𝑟).

https://doi.org/10.1017/fms.2021.67 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.67


10 Alexander P. Mangerel

Given 1 ≤ 𝑚 ≤ 𝑞′/𝐾 , set

𝜅(𝑚; 𝑘 ′𝑎, 𝑞′) := max
1≤𝑅≤𝐾

������
𝐾 (𝑚−1)+𝑅∑
𝑟=𝐾 (𝑚−1)+1

𝑒𝑞′ (−𝑟𝑉1)𝐾2(𝑘 ′𝑎, 𝑟; 𝑞′)

������ .
Applying partial summation to estimate the derivative 𝑔′𝑞′ of 𝑔𝑞′ , we get

|𝑔𝑞′ (𝑟 + 1) − 𝑔𝑞′ (𝑟) | =
����∫ 𝑟+1

𝑟
𝑔′𝑞′ (𝑡)𝑑𝑡

���� ≤ max
𝑟 ≤𝑡<𝑟+1

|𝑔′𝑞′ (𝑡) | �
𝑉1
𝑞′𝑉0

min{𝑉1/𝑉0, 𝑞
′/𝑟}.

Combining this, (7) and partial summation once again, we obtain

𝑆𝑞′,𝑎 (𝑘 ′;𝑉1) �
1
𝑞′

∑
1≤𝑚≤𝑞′/𝐾

𝜅(𝑚; 𝑘 ′𝑎, 𝑞′) · 𝐾 max
(𝑚−1)𝐾<𝑟 ≤𝑚𝐾

|𝑔𝑞′ (𝑟 + 1) − 𝑔𝑞′ (𝑟) |

� 𝑉1
𝑞′𝑉0

∑
1≤𝑚≤𝑞′/𝐾

𝜅(𝑚; 𝑘 ′𝑎, 𝑞′)
𝑚

+ 𝐾

(
𝑉1
𝑞′𝑉0

)2
|𝐾2 (𝑘 ′𝑎, 0; 𝑞′) |. (8)

We may control the terms in (5) with large f directly using a square-root cancelling bound for
𝐾2(𝐴, 𝐵, 𝑄), which we derive below.

2.2.1. Point-wise bounds
Lemma 2.1 (p-adic stationary phase method). For any 𝑛 ≥ 2, 𝑎 ∈ (Z/𝑝𝑛Z)× and 𝑏 ∈ Z/𝑝𝑛Z, we have

𝐾2(𝑎, 𝑏; 𝑝𝑛) =
(

3𝑎
𝑝𝑛

)
𝜀𝑝,𝑛𝑝

𝑛/2
∑∗

𝑦 (mod 𝑝�𝑛/2� )
𝑦3≡2𝑎𝑏 (mod 𝑝�𝑛/2� )

𝑒𝑝𝑛 (3𝑎𝑦2), (9)

where 𝜀𝑝,𝑛 = 1 if n is even and 𝜀𝑝,𝑛 = 𝑖 (𝑝−1)2/4 if n is odd.

Proof. Applying Lemmas 12.2 and 12.3 of [10], we have that if 𝐴 ∈ (Z/𝑝𝑛Z)× and 𝐵 ∈ Z/𝑝𝑛Z, then

𝐾2(𝐴, 𝐵; 𝑝𝑛) = 𝑝𝑛/2
∑∗

𝑦 (mod 𝑝�𝑛/2� )
𝑦3≡2𝐴𝐵 (mod 𝑝�𝑛/2� )

𝑒𝑝𝑛 (𝐴𝑦2 + 𝐵𝑦)𝜃𝑝𝑛 (𝑦; 𝐴, 𝐵),

where for y satisfying 𝑦3 ≡ 2𝐴𝐵 (mod 𝑝 �𝑛/2� ) we have set

𝜃𝑝𝑛 (𝑦; 𝐴, 𝐵) :=

{
1 if 2 | 𝑛
𝑝−1/2 ∑

𝑧 (mod 𝑝) 𝑒𝑝
(
3𝐴𝑧2 + 𝑧

(
(2𝐴𝑦 − 𝐵𝑦2)/𝑝 (𝑛−1)/2

))
if 2 � 𝑛.

A key point here is that the set of critical points – that is, solutions to 𝑦3 ≡ 2𝐴𝐵 (mod 𝑝 �𝑛/2� ) – is
invariant under translations by 𝑝𝑛−�𝑛/2�Z/𝑝𝑛Z (see, e.g., [15, Lemma 1]); in particular, by choosing a
lift of such critical points to solutions to 𝑦3 ≡ 2𝐴𝐵 (mod 𝑝𝑛) via Hensel’s lemma, we may rewrite

𝐴𝑦2 + 𝐵𝑦 ≡ 3𝐴𝑦2 (mod 𝑝𝑛).
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When 𝑛 = 2𝑚, with 𝑚 ≥ 1, we simply have (with 𝐴 = 𝑎 and 𝐵 = 𝑏)

𝐾2(𝑎, 𝑏; 𝑝2𝑚) = 𝑝𝑚
∑∗

𝑦 (mod 𝑝𝑚)
𝑦3≡2𝑎𝑏 (mod 𝑝𝑚)

𝑒𝑝2𝑚 (3𝑎𝑦2),

which implies the claim in this case. On the other hand, completing the square and using the explicit
computation of Gauss sums modulo p when 𝑛 = 2𝑚 + 1, we get

𝜃𝑝2𝑚+1 (𝑦; 𝐴, 𝐵) = 𝑝−1/2
∑

𝑧 (mod 𝑝)
𝑒𝑝

��
3𝐴
(
𝑧 + 6𝐴

2𝐴𝑦 − 𝐵𝑦2

𝑝𝑚

)2

− 12𝐴
(2𝐴𝑦 − 𝐵𝑦2)2

𝑝2𝑚
���

=

(
3𝐴
𝑝

)
𝑖 (𝑝−1)2/4𝑒𝑝2𝑚+1

(
−3𝐴𝑦2 (1 − 2𝐴𝐵𝑦3)2

)
.

Again, using the 𝑝𝑚+1Z/𝑝2𝑚+1Z-translation invariance of the solutions to 𝑦3 ≡ 2𝐴𝐵 (mod 𝑝𝑚), at
critical points the exponential here is simply 1 and we obtain (when 𝐴 = 𝑎 and 𝐵 = 𝑏)

𝐾2(𝑎, 𝑏; 𝑝2𝑚+1) =
(

3𝑎
𝑝

)
𝑖 (𝑝−1)2/4𝑝 (2𝑚+1)/2

∑∗

𝑦 (mod 𝑝𝑚)
𝑦3≡2𝑎𝑏 (mod 𝑝𝑚)

𝑒𝑝2𝑚+1 (3𝑎𝑦2).

The claim is proved. �

Lemma 2.2. Let 𝑄 ≥ 2. Then

max
𝐴∈(Z/𝑄Z)×
𝐵∈Z/𝑄Z

|𝐾2(𝐴, 𝐵;𝑄) | �𝜀 𝑄
1/2+𝜀 .

Proof. We reduce to the case of prime power moduli using the Chinese remainder theorem. Indeed, if
𝑄 = 𝑚1𝑚2 where 𝑚1 and 𝑚2 are coprime, then selecting 𝑟1, 𝑟2 ∈ Z such that 𝑚1𝑟1 +𝑚2𝑟2 = 1, we have

𝐾2(𝐴, 𝐵;𝑄) = 𝐾2(𝑟2𝐴, 𝑟2𝐵;𝑚1)𝐾2(𝑟1𝐴, 𝑟1𝐵;𝑚2). (10)

Applying this inductively over the prime power divisors of Q and taking maxima over A and B, we obtain

max
𝐴∈(Z/𝑄Z)×
𝐵∈Z/𝑄Z

|𝐾2 (𝐴, 𝐵;𝑄) | ≤
∏
𝑝𝑛 | |𝑄

max
𝐴∈(Z/𝑝𝑛Z)×
𝐵∈Z/𝑝𝑛Z

|𝐾2 (𝐴, 𝐵; 𝑝𝑛) |.

Now, observe that for each 𝑝 | |𝑄 prime and 𝐴, 𝐵 ∈ Z/𝑝Z we can represent

𝐾2(𝐴, 𝐵; 𝑝) =
∑
𝑥∈F×𝑝

𝑒𝑝

(
𝐴𝑥2 + 𝐵𝑥

)
=
∑
𝑥∈F×𝑝

𝑒𝑝 ( 𝑓𝐴,𝐵 (𝑥)),

where 𝑓𝐴,𝐵 (𝑥) = 𝐴/𝑥2 + 𝐵𝑥 ∈ F𝑝 (𝑥). By the Bombieri–Dwork–Weil bound [1, Theorem 6] (see also
[3, Section 3.5]),

max
𝐴∈F×𝑝 ,𝐵∈F𝑝

|𝐾2 (𝐴, 𝐵; 𝑝) | ≤ 𝐶 ′√𝑝 (11)

for 𝐶 ′ > 0 an absolute constant. On the other hand, if 𝑝𝑛 | |𝑄 with 𝑛 ≥ 2, then by Lemma 2.1 we have

|𝐾2 (𝐴, 𝐵; 𝑝𝑛) | ≤ 𝑝𝑛/2 |{𝑦 (mod 𝑝 �𝑛/2� ) : 𝑦3 ≡ 2𝐴𝐵 (mod 𝑝 �𝑛/2� )}|.
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The solutions to 𝑦3 ≡ 2𝐴𝐵 (mod 𝑝) lift uniquely to solutions modulo 𝑝 �𝑛/2� by Hensel’s lemma, so
the cardinality in the previous line is ≤ 3. In particular,

max
𝐴∈(Z/𝑝𝑛Z)×
𝐵∈Z/𝑝𝑛Z

|𝐾2 (𝐴, 𝐵; 𝑝𝑛) | ≤ 𝐶𝑝𝑛/2

for 𝐶 := max{𝐶 ′, 3}.
We therefore conclude that

max
𝐴∈(Z/𝑄Z)×
𝐵∈Z/𝑄Z

|𝐾2 (𝐴, 𝐵;𝑄) | ≤ 𝐶𝜔 (𝑄)𝑄1/2 �𝜀 𝑄
1/2+𝜀

as claimed. �

Combining Lemma 2.2 with (6) and 𝑉1 � 𝑋1/2 gives

𝑆𝑞′,𝑎 (𝑘 ′;𝑉1) �𝜀 (log 𝑞) max
𝑟 (mod 𝑞′)
𝑟≠0

|𝐾2 (𝑘 ′𝑎, 𝑟; 𝑞′) | +
|𝑔𝑞′ (0) | |𝐾2 (𝑘 ′𝑎, 0; 𝑞′) |

𝑞′

�𝜀 (𝑞′)1/2+𝜀 + 𝑋 𝜀 (𝑋/𝑞′)1/2𝑉−1
0 .

Let 𝑍 ≥ 2 be a parameter to be chosen later. Applying this with 𝑞′ = 𝑞/ 𝑓 with 𝑓 > 𝑍 in particular, it
follows immediately that∑

𝑓 |𝑞
𝑓 >𝑍

1
𝑓

∑
1≤𝑘≤�̃�/(2 𝑓 )

|𝑆�̃�/ 𝑓 ,𝑎 (𝑘 ′;𝑉1) |
𝑘 ′

�𝜀 𝑞𝜀
∑
𝑓 |�̃�
𝑓 >𝑍

1
𝑓

(
(𝑞/ 𝑓 )1/2+𝜀 + 𝑋 𝜀 (𝑋/𝑞)1/2 𝑓 1/2𝑉−1

0

)
� 𝑋 𝜀

(
𝑞1/2𝑍−3/2 + 𝑍−1/2 (𝑋/𝑞)1/2𝑉−1

0

)
,

which, in combination with (8), thus gives

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀 𝑋 𝜀𝑉0𝑉1
𝑞

∑
𝑓 |�̃�
𝑓 ≤𝑍

∑
1≤𝑘′≤�̃�/(2 𝑓 )

�̃�/( 𝑓 𝐾 )∑
𝑚=1

𝜅(𝑚; 𝑘 ′𝑎, 𝑞/ 𝑓 )
𝑘 ′𝑚

(12)

+𝑉0

(
1 + 𝑋 𝜀

(
𝑋

𝑍𝑞

)1/2
)
+ 𝑋 𝜀

(
𝑉2

0 𝑞
1/2

𝑍3/2 + 𝑋

𝑞𝑉0
+ 𝑋

𝑞𝑉1
+ 𝐾𝑉2

1

(
𝑍

𝑞

)3/2
)
,

provided 𝐾 ≤ 𝑞/𝑍 .

2.2.2. Bounds on average
It turns out (see Subsection 6.1) that merely applying Lemma 2.2 directly to 𝐾2 (after replacing q by
𝑞 as we have done above) results in a power-saving upper bound for Δ𝜇2 (𝑋; 𝑞, 𝑎) for any 𝑞 ≤ 𝑋3/4−𝜀 ,
provided 𝑞 can be chosen with appropriate size. This is independent of squarefreeness considerations
and is modeled after Hooley’s idea in [8].

Ignoring the effect of the sum over divisors f (which will have little influence in the sequel), in order to
do better we will need to find a power savings in X over the pointwise estimate from Lemma 2.2; that is,

max
1≤𝑚≤�̃�/𝐾−1

max
1≤𝑘′ ≤�̃�−1

|𝜅(𝑚; 𝑘 ′𝑎, 𝑞) | ≤ 𝐾 max
𝐴∈(Z/�̃�Z)×
𝐵∈Z/�̃�Z

|𝐾2 (𝐴, 𝐵; 𝑞) | �𝜀 𝐾𝑞1/2+𝜀 ,

by utilising the averaging of 𝐾2 sums implicit in the definition of 𝜅(𝑚; 𝑘 ′𝑎, 𝑞). To this end, we will
apply the q-van der Corput method of Heath-Brown, as formulated by Irving in [9]. The following is
proved mutatis mutandis by the arguments in [9].
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Proposition 2.3. ([9, Lemma 4.3]). Let 𝐾, 𝐿 ≥ 1 and 𝑀 ∈ Z. Suppose 𝑄 ≥ 4 factors as 𝑄 = 𝑄0 · · ·𝑄𝐿 ,
with 𝑄 𝑗 ≥ 2 for each 0 ≤ 𝑗 ≤ 𝐿. Let J be an interval with |𝐽 | ≤ 𝐾 and set

𝑇 (𝑏, 𝑀) :=
∑
𝑘∈𝐽

𝑒𝑄 (−𝑀𝑘)𝐾2 (𝑏, 𝑘;𝑄),

where b is a coprime residue class modulo Q. If 𝐾 ≥ max{𝑄1, . . . , 𝑄𝐿}, then

|𝑇 (𝑏, 𝑀) | �𝜀,𝐿 𝑄1/2+𝜀𝐾
��

𝐿∑
𝑗=1

(
𝑄𝐿− 𝑗+1

𝐾

)2𝐿− 𝑗

+ 𝑄

𝐾 (𝐿+1)𝑄2𝐿−1+1
0

∑
1≤ |ℎ1 | ≤𝐾/𝑄1

· · ·
∑

1≤ |ℎ𝐿 | ≤𝐾/𝑄𝐿

|𝑇 (𝒉) |���
2−𝐿

where for each 𝒉 ∈ Z𝐿 with 1 ≤ |ℎ 𝑗 | ≤ 𝐾/𝑄 𝑗 there is an interval 𝐽 (𝒉) of size ≤ 𝐾 and 𝑏′ coprime to q
such that

𝑇 (𝒉) :=
∑

𝑘∈𝐽 (𝒉)

∏
𝐼 ⊆{1,...,𝐿 }

C |𝐼 |𝐾2

(
𝑏′, 𝑘 +

∑
𝑖∈𝐼

𝑄𝑖ℎ𝑖 , 𝑄0

)
,

C(𝑧) := 𝑧 being the complex conjugation map.

Proposition 2.3 indicates that our main point of focus for the remainder of the argument will be
the estimation of |𝑇 (𝒉) |, for 𝒉 satisfying 𝑄 𝑗 |ℎ 𝑗 | ∈ [1, 𝐾] for all 1 ≤ 𝑗 ≤ 𝐿. We will estimate these
terms pointwise in 𝒉, the key point being that, outside of a sparse set of 𝒉, we will obtain significant
cancellation. This will result in the following.

Proposition 2.4. Adopt the notation of Proposition 2.3.
i) Assume that 𝑄 = 𝑄0 · · ·𝑄𝐿 is squarefree. Then∑

1≤ |ℎ1 | ≤𝐾/𝑄1

· · ·
∑

1≤ |ℎ𝐿 | ≤𝐾/𝑄𝐿

|𝑇 (𝒉) | �𝜀,𝐿
𝐾𝐿

𝑄
𝑄2𝐿−1+3/2+𝜀

0

(
𝐾

𝑄0
+ 1

)
.

ii) Then there is a 𝛿′ = 𝛿′(𝐿) ∈ (0, 2−2𝐿 ] such that the following holds. Suppose 𝑄 = 𝑄0 · · ·𝑄𝐿 is such
that (𝑄𝑖 , 𝑄 𝑗 ) = 1 for all 0 ≤ 𝑖 < 𝑗 ≤ 𝐿 and (𝑄0, 6) = 1. Assume also that 𝐾/𝑄 𝑗 > 𝑄2𝛿′

0 for all 𝑝𝜈 | |𝑄0
and all 1 ≤ 𝑗 ≤ 𝐿. Then ∑

1≤ |ℎ1 | ≤𝐾/𝑄1

· · ·
∑

1≤ |ℎ𝐿 | ≤𝐾/𝑄𝐿

|𝑇 (𝒉) | �𝜀,𝐿
𝐾𝐿

𝑄
𝑄2𝐿−1+2−𝛿′+𝜀

0 .

Proposition 2.4 will be proved in the next two sections. As a first step, we shall replace 𝑇 (𝒉)
by analogous complete sums (13) modulo prime powers with an additional additive phase using the
following.

Lemma 2.5. Let 𝐼 ⊂ Z/𝑄0Z be an interval and let 𝐴0 ∈ (Z/𝑄0Z)×, 𝐵0 ∈ Z/𝑄0Z. Let 𝑁, 𝑀 ≥ 0 with
𝑁 + 𝑀 ≥ 1 and let 𝒉 ∈ Z𝑁 , 𝒉′ ∈ Z𝑀 . Write 𝑄0 =

∏
1≤ 𝑗≤𝑘 𝑝

𝛼𝑗
𝑗 for distinct primes 𝑝 𝑗 and 𝑘 = 𝜔(𝑄0).

Then there exist 𝑨, 𝑩 ∈
∏

1≤ 𝑗≤𝑘 Z/𝑝
𝛼𝑗
𝑗 Z such that∑

𝐵∈𝐼

∏
1≤𝑖≤𝑁

𝐾2(𝐴0, 𝐵0 + ℎ𝑖;𝑄0)
∏

1≤ 𝑗≤𝑀
𝐾2(𝐴, 𝐵 + ℎ′𝑗 ;𝑄0)

�
∑

𝐶 (mod 𝑄0)
min

{
|𝐼 |
𝑄0

,
1

𝑄0‖𝐶/𝑄0‖

} 𝑘∏
𝑗=1

���𝑇 (𝐴 𝑗 , 𝐵 𝑗 , 𝐶, 𝒉, 𝒉′; 𝑝𝛼𝑗𝑗 )��� ,
https://doi.org/10.1017/fms.2021.67 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.67


14 Alexander P. Mangerel

where for each 𝑄 | 𝑄0 we set

𝑇 (𝐴, 𝐵, 𝐶, 𝒉, 𝒉′;𝑄) :=
∑

𝑏 (mod 𝑄)
𝑒𝑄 (𝐶𝐵𝑏)

·
∏

1≤𝑖≤𝑁
𝐾2(𝐴, 𝑏 + ℎ𝑖;𝑄)

∏
1≤ 𝑗≤𝑀

𝐾2 (𝐴, 𝑏 + ℎ′𝑗 ;𝑄). (13)

Proof. For 𝐵 ∈ Z/𝑄0Z put

𝑔(𝐵) :=
∏

1≤𝑖≤𝑁
𝐾2(𝐴, 𝐵 + ℎ𝑖;𝑄0)

∏
1≤ 𝑗≤𝑀

𝐾2(𝐴, 𝐵 + ℎ′𝑗 ;𝑄0).

Completing the sum over B modulo 𝑄0, the left-hand side is

∑
𝐵 (mod 𝑄0)

1𝐼 (𝐵)𝑔(𝐵) =
1
𝑄0

∑
𝐶 (mod 𝑄0)

(∑
𝐷∈𝐼

𝑒𝑄0 (−𝐶𝐷)
) ��


∑
𝐵 (mod 𝑄0)

𝑔(𝐵)𝑒𝑄0 (𝐶𝐵)���
� 1

𝑄0

∑
𝐶 (mod 𝑄0)

min{|𝐼 |, ‖𝐶/𝑄0‖−1} |𝑇 (𝐴, 𝐵, 𝐶, 𝒉, 𝒉′;𝑄0) | .

It thus suffices to show the existence of 𝐴 𝑗 , 𝐵 𝑗 (mod 𝑝
𝛼𝑗
𝑗 ) for each 1 ≤ 𝑗 ≤ 𝑘 , such that

𝑇 (𝐴, 𝐵, 𝐶, 𝒉, 𝒉′;𝑄0) =
∏

1≤ 𝑗≤𝑘
𝑇 (𝐴 𝑗 , 𝐵 𝑗 , 𝐶, 𝒉, 𝒉′; 𝑝

𝛼𝑗
𝑗 ).

We prove this by induction on k, the number of distinct prime factors of 𝑄0. When 𝑘 = 1 there is
nothing to prove. Assume this works for any 𝑄0 having k distinct prime factors and now suppose that
𝑄0 has 𝑘 + 1 such factors. Write 𝑄0 = 𝑄 ′

0𝑝
𝛼, where 𝑝 � 𝑄 ′

0 and 𝛼 ≥ 1. Let 𝑟, 𝑠 ∈ Z be chosen such
that 𝑟𝑄 ′

0 + 𝑠𝑝𝛼 = 1. By the Chinese remainder theorem, every 𝐵 (mod 𝑄0) can be written uniquely as
𝐵 = 𝑢𝑄 ′

0 + 𝑣𝑝𝛼, where 0 ≤ 𝑢 ≤ 𝑝𝛼 − 1 and 0 ≤ 𝑣 ≤ 𝑄 ′
0 − 1. Thus,

𝑇 (𝐴, 𝐵, 𝐶, 𝒉, 𝒉′;𝑄0) =
∑

𝑢 (mod 𝑝𝛼)
𝑒𝑝𝛼 (𝐶𝑢)

∑
𝑣 (mod 𝑄′

0)
𝑒𝑄′

0
(𝐶𝑣)

·
∏

1≤𝑖≤𝑁
𝐾2(𝐴, 𝑢𝑄 ′

0 + 𝑣𝑝𝛼 + ℎ𝑖; 𝑝𝛼𝑄 ′
0)

∏
1≤ 𝑗≤𝑀

𝐾2(𝐴, 𝑢𝑄 ′
0 + 𝑣𝑝𝛼 + ℎ′𝑗 ; 𝑝

𝛼𝑄 ′
0).

Applying (10) and the symmetry 𝐾2(𝛼, 𝛾𝛽; 𝑞′) = 𝐾2(𝛾2𝛼, 𝛽; 𝑞′) for any 𝛾 ∈ (Z/𝑞′Z)×, we see that the
products are

��

𝑁∏
𝑖=1

𝐾2(𝑠3𝐴, 𝑢𝑄 ′
0 + ℎ𝑖; 𝑝𝛼)

𝑀∏
𝑗=1

𝐾2(𝑠3𝐴, 𝑢𝑄 ′
0 + ℎ′𝑗 ; 𝑝

𝛼)���
· ��


𝑁∏
𝑖=1

𝐾2(𝑟3𝐴, 𝑣𝑝𝛼 + ℎ𝑖;𝑄 ′
0)

𝑀∏
𝑗=1

𝐾2(𝑟3𝐴, 𝑣𝑝𝛼 + ℎ′𝑗 ;𝑄
′
0)
��� .

Making the change of variables 𝑢 ↦→ 𝑢𝑄 ′
0 and 𝑣 ↦→ 𝑣𝑝𝛼, we thus get

𝑇 (𝐴, 𝐵, 𝐶, 𝒉, 𝒉′;𝑄0) = 𝑇 (𝑠3𝐴,𝑄
′
0, 𝐶, 𝒉, 𝒉

′; 𝑝𝛼) · 𝑇 (𝑟3𝐴, 𝑝𝛼, 𝐶, 𝒉, 𝒉′;𝑄 ′
0),

where the inverses are taken modulo 𝑝𝛼 and 𝑄 ′
0 respectively.
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By induction, we can factor the second bracketed term similarly into k products and the claim
follows. �

In Irving’s work [9], where squarefree moduli specifically are treated, an application of a (variant of
a) result of Fouvry et al. on correlations of Kloosterman sums ([5, Proposition 3.2]) is used to control
the complete sums to prime moduli arising in the factorisation in Lemma 2.5. To achieve the same goal,
we will prove in full detail a similar result for correlations of the complete exponential sums 𝐾2 in the
next section. In Section 4, we treat the same problem for prime power moduli, using rather different
techniques.

3. Correlations of 𝐾2 Sums to Prime Moduli: Cohomological Methods

The goal of this section is to provide an estimate for sums like (13). We will prove, in full detail,
the following analogue of [5, Proposition 3.2] and [9, Section 4.3] (the latter of which cites private
communications for the corresponding result for Kloosterman sums). This will be the main input to the
proof of Proposition 2.4 i).

Throughout this section, fix a prime p. Given 𝑁, 𝑀 ≥ 1 and tuples 𝒉 ∈ F𝑁𝑝 and 𝒉′ ∈ F𝑀𝑝 , we define

𝑇 = 𝑇𝒉,𝒉′ := {ℎ1, . . . , ℎ𝑁 , ℎ
′
1, . . . , ℎ

′
𝑀 },

and for each 𝜏 ∈ 𝑇 define

𝜇(𝜏) = 𝜇𝒉 (𝜏) := |{1 ≤ 𝑗 ≤ 𝑁 : ℎ 𝑗 = 𝜏}|
𝜈(𝜏) = 𝜈𝒉′ (𝜏) := |{1 ≤ 𝑗 ≤ 𝑀 : ℎ′𝑗 = 𝜏}|.

Theorem 3.1. For 𝐴 ∈ F×𝑝 , 𝜓 ∈ F̂𝑝 a possibly trivial additive character and ℎ1, . . . , ℎ𝑁 , ℎ′1, . . . , ℎ
′
𝑀 ∈

F𝑝 (where 𝑁 + 𝑀 ≥ 1), we have

∑
𝐵∈F𝑝

𝜓(𝐵)
𝑁∏
𝑖=1

𝐾2(𝐴, 𝐵 + ℎ𝑖; 𝑝)
𝑀∏
𝑗=1

𝐾2 (𝐴, 𝐵 + ℎ′𝑗 ; 𝑝) � (𝑁 + 𝑀)3𝑁+𝑀 𝑝
𝑁+𝑀+1

2 (14)

unless 𝜓 is trivial and 𝜇(𝜏) ≡ 𝜈(𝜏) (mod 3) for all 𝜏 ∈ 𝑇 . The implied constant is absolute (e.g., does
not depend on N or M).

Remark 3.2. We can rewrite the left-hand side of (14) as∑
𝐵∈F𝑝

𝜓(𝐵)
∏
𝜏∈𝑇

𝐾2(𝐴, 𝐵 + 𝜏; 𝑝)𝜇 (𝜏)𝐾2(𝐴, 𝐵 + 𝜏; 𝑝)𝜈 (𝜏) .

Note that when 𝜓 is trivial and 𝜇(𝜏) = 𝜈(𝜏) for all 𝜏 ∈ 𝑇 , the summands are all nonnegative. We should
therefore not expect to find any improvement over the trivial bound in general (outside of the possibility
that the absolute values of 𝑝−1/2𝐾2(𝐴, 𝐵 + 𝜏; 𝑝) are small, which is atypical for large p given that these
normalised sums become equidistributed according to Haar measure on SU3(C) as B varies modulo p
and 𝑝 → ∞). It will transpire from the proof of Theorem 3.1 that our characterisation of when savings
are available for the above correlation sums is essentially sharp.

To prove Theorem 3.1 we will employ the method surveyed in [6]. Highlights of this method include

◦ the interpretation of 𝐾2 as the trace function of an ℓ-adic sheaf, pure of weight 1 and the
computation of its geometric monodromy group (following Katz [12]);

◦ the determination of geometric isomorphisms between shifts of these sheaves to find the
monodromy of a product sheaf via the Goursat–Kolchin–Ribet criterion; and
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◦ the application of the Grothendieck–Lefschetz trace formula and the
Grothendieck–Ogg–Shafarevich Euler–Poincaré formula.

We will use the statements from [18] that also track the dependencies in the number of factors (i.e., N
and M), for completeness. For the sake of concision, we refer the reader to these (and the references
therein) for additional definitions, notations and other details.

3.1. Cohomological Interpretation of 𝐾2 and (14)

In the language of [3], the pointwise bound on 𝐾2 modulo primes from Lemma 2.2 (see (11)) can be seen
as the outcome of applying the Grothendieck–Lefschetz trace formula and Deligne’s Riemann hypothesis
over finite fields [4] to the one-dimensional Artin–Schreier ℓ-adic sheaf L𝑒 ( 𝑓𝐴,𝐵/𝑝) on G𝑚 × F𝑝:������ ∑𝑥∈F×𝑝 𝑒( 𝑓𝐴,𝐵 (𝑥)/𝑝)

������ =
������ ∑𝑥∈F×𝑝 𝜄 tr

(
Frob𝑥,𝑝 | L𝑒 ( 𝑓𝐴,𝐵/𝑝)

) ������
=

����� 2∑
𝑖=0
(−1)𝑖 𝜄 tr

(
Frob𝑝 | 𝐻𝑖

𝑐 (G𝑚 × F𝑝 ,L𝑒 ( 𝑓𝐴,𝐵/𝑝) )
)�����

≤ √𝑝 · dim 𝐻1
𝑐

(
G𝑚 × F𝑝 ,L𝑒 ( 𝑓𝐴,𝐵/𝑝)

)
,

where ℓ ≠ 𝑝 is an auxiliary prime, 𝜄 : Qℓ → C is a compatible7 embedding, Frob𝑥,𝑝 ∈ 𝜋
geom
1 (G𝑚, 𝜂) is

the geometric Frobenius class at 𝑥 ∈ G𝑚 (F𝑝) for 𝜂 a geometric generic point and Frob𝑝 ∈ Gal(F𝑝/F𝑝)
is the geometric Frobenius (acting on the cohomology groups). The dimension of the first cohomology
group is bounded independently from p by the Grothendieck–Ogg–Shafarevich formula, giving the
constant 𝐶 ′ in (11) above.

To handle sums of 𝐾2 sums in Theorem 3.1, we adopt a different perspective and consider 𝐾2 as an
ℓ-adic trace function itself, using the ℓ-adic Fourier transform of Deligne. Some properties of the sheaf
thus produced are given in the following lemma.

Lemma 3.3. Assume that p is an odd prime, fix an auxiliary prime ℓ ≠ 𝑝, a compatible embedding
𝜄 : Qℓ → C and let 𝐴 ∈ F×𝑝 . There exists a middle-extension Qℓ-sheaf of Qℓ-modules G𝐴 that is lisse
on G𝑚 × F𝑝 and pointwise pure of weight 0, as well as 𝛾 ∈ C of modulus one, such that for every
𝐵 ∈ G𝑚(F𝑝),

𝜄 tr
(
Frob𝐵,𝑝 | G𝐴

)
=
−𝛾𝐾2 (𝐴, 𝐵; 𝑝)

√
𝑝

. (15)

Moreover:

1. G𝐴 has rank 3, with a unique ∞-break at 2/3;
2. Swan∞(G𝐴) = 2;
3. G𝐴 is tamely ramified at 0 and its local monodromy is a unipotent pseudoreflection;
4. if 𝑝 > 7, the arithmetic and geometric monodromy groups 𝐺arith, 𝐺geom (that is, the Zariski closures

of the images of the arithmetic/geometric fundamental groups by the corresponding representation
composed with 𝜄) are equal and isomorphic to SL3 (C).

Proof. A sheaf G′𝐴 satisfying all of the above properties but (4) is given by the ℓ-adic Fourier transform
of the Artin–Schreier sheaf L𝑒 ( 𝑓 (𝑋 )/𝑝) , where 𝑓 (𝑋) = 𝐴/𝑋2 ∈ F𝑝 (𝑋). The resulting trace function
(the left-hand side of (15)) is indeed the discrete Fourier transform of 𝑒( 𝑓 (𝑥)/𝑝), namely, 𝐾2. The

7By this we mean that 𝜄 must take ℓ-adic additive characters 𝜆 : F𝑝 → Qℓ , implicit in the definition of the ℓ-adic Fourier
transform defined below, to usual additive characters 𝜄 ◦ 𝜆 : F𝑝 → C; for example, 𝜄 (𝜆(𝑥)) := 𝑒 (𝑥/𝑝) for each 𝑥 ∈ F𝑝 .
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statements of the lemma are all contained in [12, Section 7.3, Section 7.12 (SL-Example(3)), Theorem
7.12.3.1], with ℎ = 𝑓 , 𝛼 = 0 and 𝑛0 = ord0( 𝑓 ) = 2. In particular, the rank is 1 + 𝑛0 = 3.

Regarding the last property, since 𝑓 (𝑥) + 𝑓 (−𝑥) is nonconstant, the geometric monodromy group
is isomorphic to SL3(C) for 𝑝 > 7 by the theorem [12, Theorem 7.12.3.1]. By [12, Section 7.12 (SL-
Example(3))], detG′𝐴 is geometrically trivial, whence arithmetically isomorphic to 𝛽 ⊗ Qℓ , where 𝛽 is
a p-Weil number of weight 0. Therefore, setting G𝐴 = 𝛽−1/3 ⊗ G′𝐴 yields

SL3(C) = 𝐺geom(G𝐴) = 𝐺geom(G′𝐴) ≤ 𝐺arith(G𝐴) ≤ SL3(C),

withG𝐴 still verifying the previous properties. The theorem then holds with the twist 𝛾 = 𝜄𝛽−1/3 ∈ C. �

Note that the purity and dimensionality statements encompass the bound (11) from Lemma 2.2:

|𝐾2 (𝐴, 𝐵; 𝑝) | ≤ dim(G𝐴)
√
𝑝 = 3√𝑝 (16)

(including at 𝐵 = 0, when 𝐾2(𝐴, 0; 𝑝) is, up to a unimodular factor, quadratic Gauss sum with modulus
exactly √𝑝).

The bound in (14) is trivial if 𝑝 ≤ 7, so we may assume in what follows that 𝑝 > 7. Using Lemma
3.3, we may bound the modulus of the left-hand side of (14) as

� 𝑝
𝑁+𝑀

2
��

������ ∑
𝐵∈𝑈 (F𝑝)

𝜄 tr
(
Frob𝐵,𝑝 | H𝐴,𝒉,𝜓

) ������ + 3𝑁+𝑀 (𝑁 + 𝑀)��� , (17)

setting

H𝐴,𝒉,𝜓 := L𝜓 ⊗ ��

⊗
𝜏∈𝑇𝒉,𝒉′

[+𝜏]∗G⊗𝜇 (𝜏)𝐴 ⊗ [+𝜏]∗𝐷 (G𝐴)⊗𝜈 (𝜏)���
and letting 𝑈 (F𝑝) denote its set of lisse points. Here, the tensor product ⊗ and dual D are understood at
the level of the corresponding ℓ-adic representations (as in [11, 12]). The second term in brackets in (17)
arises by applying (16) to the set of ramification points of the tensor product, of which there are ≤ 𝑁+𝑀 .

The trace formula will now be applied to (17).

3.2. Applying the trace formula

By the Grothendieck–Lefschetz trace formula and the Grothendieck–Ogg–Shafarevich formula (see the
references in [18, Theorem 2.5]),∑

𝐵∈𝑈 (F𝑝)
tr
(
Frob𝐵,𝑝 | H𝐴,𝒉,𝜓

)
= 𝑝 · tr

(
Frob𝑝 | (H𝐴,𝒉,𝜓)𝜋geom

1, 𝑝 (𝑈,𝜂)

)
+𝑂

(
𝐸 (H𝐴,𝒉,𝜓)

√
𝑝
)

(18)

with an absolute implied constant, where

𝐸 (H𝐴,𝒉,𝜓) = rank(H𝐴,𝒉,𝜓)
��
| Sing(H𝐴,𝒉,𝜓) | +

∑
𝑥∈Sing(H𝐴,𝒉,𝜓)

Swan𝑥 (H𝐴,𝒉,𝜓)
���

≤ 3𝑁+𝑀 (𝑁 + 𝑀 + (𝑁 + 𝑀) · 2 + 1) ≤ 4(𝑁 + 𝑀)3𝑁+𝑀 ,
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the inequality coming from Lemma 3.3 and the ramification properties of the tensor product recalled in
[11, Lemma 1.3]. Let

H+
𝐴,𝒉,𝜓 = L𝜓 ⊕ ��


⊕
𝜏∈𝑇𝒉,𝒉′

[+𝜏]∗G𝐴���
and note that

𝐺geom

(
H+
𝐴,𝒉,𝜓

)
≤ 𝐺arith

(
H+
𝐴,𝒉,𝜓

)
� Frob𝑝

≤ 𝐺geom(L𝜓) × 𝐺geom(G𝐴)𝐻 =

{
Z/𝑝 × SL3(C)𝐻 : 𝜓 ≠ 0
SL3 (C)𝐻 : 𝜓 = 0,

where 𝐻 := |𝑇𝒉,𝒉′ |. A very convenient case arises when these inclusions are equalities: in this event,
Frob𝑝 acts trivially on the coinvariant space in (18) and the right-hand side becomes

𝑝 · dim(H𝐴,𝒉,𝜓)𝐺 +𝑂
(
𝐸 (H𝐴,𝒉,𝜓)

√
𝑝
)

= 𝛿𝜓=0
∏
𝜏∈𝑇

mult1
(
Std⊗𝜇 (𝜏) ⊗𝐷 (Std)⊗𝜈 (𝜏)

)
+𝑂 ((𝑁 + 𝑀)3𝑁+𝑀 𝑝1/2),

by Schur’s lemma (see [17, Lemma 4.6, Proposition 4.8]), where mult1 is the multiplicity of the trivial
representation on a representation 𝜌. Finally, the multiplicities are zero if and only if, 3| (𝜇(𝜏) − 𝜈(𝜏))
for all 𝜏 ∈ 𝑇𝒉,𝒉′ : this is precisely the content of [13, Prop. 4.5(2)], in the case 𝑁 = 3 (in the notation
there, mult1

(
Std⊗𝜇 (𝜏) ⊗𝐷 (Std)⊗𝜈 (𝜏)

)
= 𝐴𝜈 (𝜏) ,𝜇 (𝜏) , for each 𝜏).

Therefore, it only remains to prove:

Lemma 3.4. The arithmetic and geometric monodromy groups of H𝐴,𝒉,𝜓 coincide and are isomorphic
to Z/𝑝 × SL3 (C)𝐻 if 𝜓 is nontrivial and SL3(C)𝐻 otherwise, where 𝐻 = |𝑇𝒉,𝒉′ |.

Proof. Let us first consider the case where 𝜓 is trivial. By the Goursat–Kolchin–Ribet criterion [12,
Section 1.8], since the pair (SL3(C), Std)𝑖=1,2 is Goursat-adapted (in the language given there), it suffices
to show that there exists no geometric isomorphism of the form

[+ℎ]∗G𝐴 � [+ℎ′]∗G𝐴 ⊗ L, ℎ ≠ ℎ′,

for a one-dimensional sheaf L. Without loss of generality, ℎ′ = 0. Let us assume by contradiction that
ℎ ≠ 0. Since the left-hand side is ramified exactly at −ℎ and ∞, L must be ramified at 0 and −ℎ (and
possibly at ∞). It follows that

G𝐼0𝐴 � ([+ℎ]
∗G𝐴)𝐼−ℎ � (G𝐴 ⊗ L)𝐼−ℎ � G𝐴 ⊗ L𝐼−ℎ = 0.

However, this contradicts Lemma 3.3(3), which states that the stalk at 0 ofG𝐴 is a rank 2 pseudoreflection.
If 𝜓 is nontrivial, let us write H+

𝐴,𝒉,𝜓 = L𝜓 ⊕ F, where we may assume by the above that the
arithmetic and geometric monodromy groups of F coincide and are isomorphic to SL3(C)𝐻 . We have

𝐺geom

(
H+
𝐴,𝒉,𝜓

)
≤ 𝐺arith

(
H+
𝐴,𝒉,𝜓

)
≤ F𝑝 × SL3(C)𝐻 ,

and 𝐺geom surjects onto both F𝑝 and SL3 (C)𝐻 . The surjection onto F𝑝 implies that 𝐺geom has at least
p connected components, of which the component at the identity contains SL3 (C)𝐻 . It follows that
𝐺geom = F𝑝 × SL3 (C)𝐻 , as claimed. �

This finishes altogether the proof of Theorem 3.1.
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4. Correlations of 𝐾2-sums to Prime Power Moduli: Stationary Phase Methods

In this section, we complement the results of the previous section, which applied to correlations of 𝐾2
sums to prime moduli, with a treatment of 𝐾2 sums to higher prime power moduli.

Before stating Theorem 4.1, we need a few elements of notation. Fix 𝑛 ≥ 2 and 𝑝 > 3. Let 𝑁, 𝑀 ≥ 0
with 𝐾 := 𝑁 + 𝑀 ≥ 1 and suppose 𝒉 ∈ Z𝑁 and 𝒉′ ∈ Z𝑀 . Similar to the previous section, given
𝜏 ∈ Z/𝑝𝑛Z we define

𝜇(𝜏) = 𝜇𝒉 (𝜏) := |{1 ≤ 𝑗 ≤ 𝑁 : ℎ 𝑗 ≡ 𝜏 (mod 𝑝𝑛)}|
𝜈(𝜏) = 𝜈𝒉′ (𝜏) := |{1 ≤ 𝑗 ≤ 𝑀 : ℎ′𝑗 ≡ 𝜏 (mod 𝑝𝑛)}|,

and we define

𝑇 = 𝑇𝜇,𝜈 := {𝜏 ∈ Z/𝑝𝑛Z : 𝜇(𝜏) + 𝜈(𝜏) ≥ 1}.

We will prove the following estimates.

Theorem 4.1. Let 𝑝 > 3 be prime and let 𝑛 ≥ 2. Let 𝑁, 𝑀 ≥ 0 with 𝑁 + 𝑀 ≥ 1 and let 𝒉 ∈ Z𝑁 and
𝒉′ ∈ Z𝑀 . Let 𝑐 ∈ Z/𝑝𝑛Z, 𝑎 ∈ (Z/𝑝𝑛Z)× and let 𝜇 = 𝜇𝒉 , 𝜈 = 𝜈𝒉′ and 𝑇 = 𝑇𝒉,𝒉′ be defined as above.
Further, put

𝜌 = 1𝑝≤3 |𝑇 |/2−1 +
⌈
log(20(𝑁 + 𝑀)3)

log 𝑝

⌉
,

and if 𝑛 > (𝑁 + 𝑀)32𝑁+𝑀 , assume in addition that

min{|𝜏 − 𝜏′ |𝑝 : 𝜏, 𝜏′ ∈ 𝑇, 𝜏 ≠ 𝜏′} ≥ 𝑝−2 |𝑇 |−2 ( �2−|𝑇 |𝑛�−𝜌) ,

where |𝑥 |𝑝 denotes the p-adic absolute value of 𝑥 ∈ Q. Then∑
𝑏 (mod 𝑝𝑛)

𝑒𝑝𝑛 (𝑐𝑏)
∏

1≤𝑖≤𝑁
𝐾2(𝑎, 𝑏 + ℎ𝑖; 𝑝𝑛)

∏
1≤ 𝑗≤𝑀

𝐾2(𝑎, 𝑏 + ℎ′𝑗 ; 𝑝
𝑛)

�𝑁 ,𝑀,𝜀 𝑝 (𝑁+𝑀+2)𝑛/2

{
𝑝
− 1
𝑛2 (𝑛−1)2

+𝜀 if 𝑛 ≤ (𝑁 + 𝑀)32𝑁+𝑀

𝑝−𝑛2−𝑁−𝑀+1 if 𝑛 > (𝑁 + 𝑀)32𝑁+𝑀 ,

unless either

(i) 𝑝 ≡ 2 (mod 3), 𝑐 = 0 and 𝜇(𝜏) = 𝜈(𝜏) for all 𝜏 ∈ 𝑇 ,
(ii) 𝑝 ≡ 1 (mod 3), 𝑐 = 0 and 3| (𝜇(𝜏) − 𝜈(𝜏)) for all 𝜏 ∈ 𝑇 or

(iii) 𝑝 ≡ 1 (mod 3), 𝑝𝑛−1 | |𝑐 and 3| (𝜇(𝜏) − 𝜈(𝜏)); in this case, the bound is 𝑂𝑁 ,𝑀 (𝑝 (𝑁+𝑀+2)𝑛/2−1/2).

Remark 4.2. The condition 3| (𝜇(𝜏)−𝜈(𝜏)) in (ii) of the above statement is the same condition that arose
in connection with the trivial bound in Theorem 3.1. This condition, along with (i) and (iii), arises in
this context for the following reason. Modulo prime powers 𝑝𝑛 with 𝑛 ≥ 2, a complete sum 𝐾2(𝑎, 𝑏; 𝑝𝑛)
may be explicitly evaluated as a sum over the set of critical points of a certain p-adic phase function. The
correlations of the 𝐾2 sums therefore expand as a linear combination of exponential sums modulo 𝑝𝑛,
each with a fixed frequency. The trivial bound cannot be improved whenever one of these frequencies
is zero, and this occurs precisely in the degenerate cases listed in the statement of Theorem 4.1 (this is
treated in Proposition 4.3).

The remainder of the section is devoted to proving this theorem.
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4.1. Preparation

Fix 𝑎 ∈ (Z/𝑝𝑛Z)×, 𝑐 ∈ Z/𝑝𝑛Z, 𝒉 ∈ Z𝑁 and 𝒉′ ∈ Z𝑀 and define 𝜇, 𝜈 and T as above. Set

𝑆𝑝𝑛 (𝒉, 𝒉′; 𝑐, 𝑎) :=
∑

𝑏 (mod 𝑝𝑛)
𝑒𝑝𝑛 (𝑐𝑏)

∏
1≤𝑖≤𝑁

𝐾2(𝑎, 𝑏 + ℎ𝑖; 𝑝𝑛)
∏

1≤ 𝑗≤𝑀
𝐾2(𝑎, 𝑏 + ℎ′𝑗 ; 𝑝

𝑛).

We can rewrite this expression as

𝑆𝑝𝑛 (𝒉, 𝒉′; 𝑐, 𝑎) =
∑

𝑑 (mod 𝑝)

∑
𝑏 (mod 𝑝𝑛 )
𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛 (𝑐𝑏)
∏
𝜏∈𝑇

𝐾2(𝑎, 𝑏 + 𝜏; 𝑝𝑛)𝜇 (𝜏)𝐾2 (𝑎, 𝑏 + 𝜏; 𝑝𝑛)𝜈 (𝜏)

=:
∑

𝑑 (mod 𝑝)
S𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑).

We deduce from Lemma 2.1 that unless 4𝑎2 (𝑏 + 𝜏) ≡ 4𝑎2 (𝑑 + 𝜏) ∈ (Z/𝑝Z)×3 (i.e., the cube of a
residue class prime to p) for all 𝜏 ∈ 𝑇 we get that S𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) = 0. We will henceforth assume the
condition

(�) : 4𝑎2 (𝑑 + 𝜏) ∈ (Z/𝑝Z)×3 for all 𝜏 ∈ 𝑇,

which, as T and a are fixed, depends only on d.
Now, depending on whether 𝑝 ≡ 1 (mod 3) or 𝑝 ≡ 2 (mod 3), if d satisfies (�), then there are either

◦ exactly 3 critical points, when 𝑝 ≡ 1 (mod 3), or
◦ exactly one critical point, when 𝑝 ≡ 2 (mod 3).

Letting 𝑢0 be a primitive cube root modulo 𝑝 �𝑛/2� (by Hensel’s lemma, this is necessarily a lift of
a primitive cube root modulo p), we may define a fixed branch of the cube root 𝑟 ↦→ 𝑠(𝑟) such that
𝑠(𝑟)3 ≡ 𝑟 (mod 𝑝) whenever 𝑟 ∈ (Z/𝑝Z)×3 and lift this branch to a branch of cube root modulo 𝑝 �𝑛/2�

as well; then, if 𝑥3 ≡ 𝑟 (mod 𝑝 �𝑛/2� ), we obtain that

𝑥 ≡ 𝑠(𝑟)𝑢 𝑗0 (mod 𝑝𝑚) for some 0 ≤ 𝑗 ≤ 𝑑𝑝 − 1,

setting 𝑑𝑝 = 1 if 𝑝 ≡ 2 (mod 3) and 𝑑𝑝 = 3 if 𝑝 ≡ 1 (mod 3). In this way, we can write (in the notation
of Lemma 2.1)

𝐾2(𝑎, 𝑏 + 𝜏; 𝑝𝑛) =
(

3𝑎
𝑝𝑛

)
𝜀𝑝,𝑛𝑝

𝑛/2
∑

0≤ 𝑗≤𝑑𝑝−1
𝑒𝑝𝑛 (3𝑎𝑠(2𝑎(𝑏 + 𝜏))2𝑢 𝑗0).

Fix d satisfying (�). For ease of notation, in the sequel we will write

S∗𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) =
(

3𝑎
𝑝𝑛

)𝑁+𝑀
𝜀𝑝,𝑛

𝑁+𝑀S𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑)

and study S∗𝑝𝑛 as d varies.
For each 𝜏 ∈ 𝑇 set

𝑈 (𝜏) := {0, . . . , 𝑑𝑝 − 1}𝜇 (𝜏) , 𝑉 (𝜏) := {0, . . . , 𝑑𝑝 − 1}𝜈 (𝜏) ,

as well as

U :=
∏
𝜏∈𝑇

𝑈 (𝜏), V :=
∏
𝜏∈𝑇

𝑉 (𝜏).
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With these notations, we can write

S∗𝑝𝑛 (𝑐, 𝜇, 𝜈, 𝑎, 𝑑) = 𝑝 (𝑁+𝑀 )𝑛/2
∑

𝒋=( 𝒋 (𝜏))𝜏∈𝑇 ∈U
𝒋′=( 𝒋′ (𝜏))𝜏∈𝑇 ∈V

∑
𝑏 (mod 𝑝𝑛 )
𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛

(
𝑏𝑐 + 3𝑎

∑
𝜏∈𝑇

𝑠(2𝑎(𝑏 + 𝜏))2

× ��

∑

1≤𝑖≤𝜇 (𝜏)
𝑢
𝑗𝑖 (𝜏)
0 −

∑
1≤𝑖′≤𝜈 (𝜏)

𝑢
𝑗′
𝑖′ (𝜏)

0
������ .

For notational convenience, we simplify the above expression further as follows. Given 𝝐 = (𝜖𝜏)𝜏∈𝑇 ∈
(Z/𝑝𝑛Z) |𝑇 | and 𝑏 ∈ Z/𝑝𝑛Z, define

𝑓𝑇 ,𝝐 (𝑏) := 𝑏𝑐 + 3𝑎
∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑏 + 𝜏))2. (19)

Provided d satisfies (�), we may thus write

S∗𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) = 𝑝 (𝑁+𝑀 )𝑛/2
∑

𝝐 ∈(Z/𝑝𝑛Z) |𝑇 |
𝜙(𝝐)

∑
𝑏 (mod 𝑝𝑛 )
𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)),

where we have set

𝜙(𝝐) :=

�����
{
( 𝒋 , 𝒋 ′) ∈ U × V : 𝜖𝜏 =

∑
𝑖

𝑢
𝑗𝑖 (𝜏)
0 −

∑
𝑖′

𝑢
𝑗′
𝑖′ (𝜏)

0 for all 𝜏 ∈ 𝑇

}����� ≥ 0,

for each 𝝐 ∈ (Z/𝑝𝑛Z) |𝑇 | . Note that ∑
𝝐 ∈(Z/𝑝𝑛Z) |𝑇 |

𝜙(𝝐) = |U| |V| � 3𝑁+𝑀 ,

and if 𝑝 ≡ 2 (mod 3), then 𝜙(𝝐) = 1 if 𝜖𝜏 = 𝜇(𝜏) − 𝜈(𝜏) for all 𝜏 ∈ 𝑇 and 0 otherwise.
We now separate the 𝝐 = 0 term from the remaining 𝝐 , so that8∑�

𝑑 (mod 𝑝)
S∗𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑)

=
∑�

𝑑 (mod 𝑝)
S∗,≠0
𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) + 𝜙(0)𝑝 (𝑁+𝑀 )𝑛/2

∑�

𝑑 (mod 𝑝)

∑
𝑏 (mod 𝑝𝑛 )
𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛 ( 𝑓𝑇 ,0 (𝑏))

=:
∑�

𝑑 (mod 𝑝)
S∗,≠0
𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) +

∑�

𝑑 (mod 𝑝)
S∗,0𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑).

4.2. The 𝝐 = 0 Terms

The contribution to 𝑆𝑝𝑛 (𝒉, 𝒉′; 𝑐, 𝑎) from 𝝐 = 0 can be estimated as follows.

Proposition 4.3. With the above notation, we have∑�

𝑑 (mod 𝑝)
S∗,0𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) = 0

8We use the notation
∑�

𝑑 (mod 𝑝)
to denote a sum over 𝑑 (mod 𝑝) satisfying (�) (for a and T fixed).
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unless 𝑝𝑛−1 |𝑐 and 3| (𝜇(𝜏) −𝜈(𝜏)) for all 𝜏 ∈ 𝑇 . In this latter case, the following nontrivial bounds hold:∑�

𝑑 (mod 𝑝)
S∗,0𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑)

�𝑁 ,𝑀 𝑝 (𝑁+𝑀+2)𝑛/2 ·
{
𝑝−1/2 : 𝑝 ≡ 1 (mod 3), 𝑐 ≠ 0, 3| (𝜇(𝜏) − 𝜈(𝜏))∀𝜏 ∈ 𝑇

𝑝−1 : 𝑝 ≡ 2 (mod 3), 𝑐 ≠ 0, 𝜇(𝜏) = 𝜈(𝜏)∀𝜏 ∈ 𝑇.

To prove this result, we need several lemmas.

Lemma 4.4. Let 𝑝 ≡ 1 (mod 3) be prime and let 𝑛 ≥ 2 and 𝐷 ≥ 1. Let 𝛼1, 𝛼2, 𝛼3 ∈ Z with
max{|𝛼1 |, |𝛼2 |, |𝛼3 |} ≤ 𝐷. Assume that 𝑝𝑛/2 > 20𝐷3 and let 1 ≤ 𝑢0 ≤ 𝑝 �𝑛/2� − 1 be a primitive cube
root modulo 𝑝 �𝑛/2� . Then either 𝛼1 = 𝛼2 = 𝛼3 or else

𝜈𝑝 (𝛼1 + 𝛼2𝑢0 + 𝛼3𝑢
2
0) <

⌈
log(20𝐷3)

log 𝑝

⌉
.

Proof. Set 𝑟 :=
⌈

log(20𝐷3)
log 𝑝

⌉
≤ 𝑛/2. Assume the claim is false, so that 𝑝𝑟 | (𝛼1 + 𝛼2𝑢0 + 𝛼3𝑢

2
0) and

𝛼1, 𝛼2, 𝛼3 are not all the same. As 𝑝 ≡ 1 (mod 3) and 𝑢0 is a primitive cube root, we must have 𝑢0 � 1
(mod 𝑝 �𝑛/2� ). By assumption, at least one of 𝛼1, 𝛼2, 𝛼3 does not vanish and up to multiplication by 𝑢

𝑗
0

for 𝑗 ∈ {0, 1, 2} (which does not change the p-adic valuation), we may suppose 𝛼3 does not. As 𝑢3
0 ≡ 1

(mod 𝑝𝑟 ), we have

𝛼1 + 𝛼2𝑢0 + 𝛼3𝑢
2
0 = (𝛼1 − 𝛼3) + (𝛼2 − 𝛼3)𝑢0 + 𝛼3(1 + 𝑢0 + 𝑢2

0)
≡ (𝛼1 − 𝛼3) + (𝛼2 − 𝛼3)𝑢0 (mod 𝑝𝑟 ).

Now, on one hand this implies that

𝛼1 − 𝛼3 ≡ −𝑢0(𝛼2 − 𝛼3) (mod 𝑝𝑟 ). (20)

On the other, taking cubes, we obtain that

(𝛼1 − 𝛼3)3 + (𝛼2 − 𝛼3)3 ≡ 0 (mod 𝑝𝑟 ).

However, as

| (𝛼1 − 𝛼3)3 + (𝛼2 − 𝛼3)3 | ≤ 2 · (2𝐷)3 < 20𝐷3 ≤ 𝑝𝑟 ,

it follows that (𝛼1 − 𝛼3)3 = −(𝛼2 − 𝛼3)3 and therefore that 𝛼1 − 𝛼3 = −(𝛼2 − 𝛼3). Plugging this into the
earlier congruence implies that either 𝛼1 − 𝛼3 = 𝛼2 − 𝛼3 = 0, or else 𝑢0 ≡ 1 (mod 𝑝𝑟 ). Since the 𝛼 𝑗
are not all the same by assumption, the first of these is impossible. To see that the second fails as well,
note that if 𝑢0 � 1 (mod 𝑝 �𝑛/2� ) but 𝑢0 = 1 + 𝑚𝑝𝑟 for some 𝑚 ∈ Z, then of course 𝑝 �𝑛/2�−𝑟 � 𝑚. On
the other hand, since 𝑢0 is a cube root of unity modulo 𝑝 �𝑛/2� ,

𝑢3
0 = (1 + 𝑚𝑝𝑟 )3 = 1 + 𝑚𝑝𝑟 (3 + 3𝑝𝑟𝑚 + 𝑚2𝑝2𝑟 ) ≡ 1 (mod 𝑝 �𝑛/2� ),

which is only possible for 𝑝 ≠ 3 if 𝜈𝑝 (𝑚) ≥ �𝑛/2� − 𝑟 , a contradiction. The claim follows. �

Lemma 4.5. Let 𝑇 ⊆ Z/𝑝𝑛Z and suppose 𝜙(0) ≠ 0. Assume furthermore that 𝑝𝑛 > 20(𝑁 + 𝑀)3.

a) If 𝑝 ≡ 2 (mod 3), then 𝜇(𝜏) = 𝜈(𝜏) for all 𝜏 ∈ 𝑇 .
b) If 𝑝 ≡ 1 (mod 3), then 𝜇(𝜏) ≡ 𝜈(𝜏) (mod 3) for all 𝜏 ∈ 𝑇 .
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Proof. In each case, 𝜙(0) ≠ 0 if and only if there exist tuples 𝒋 ∈ U, 𝒋 ′ ∈ V such that

0 =
∑

1≤𝑖≤𝜇 (𝜏)
𝑢
𝑗𝑖 (𝜏)
0 −

∑
1≤𝑖′≤𝜈 (𝜏)

𝑢
𝑗′
𝑖′ (𝜏)

0 for all 𝜏 ∈ 𝑇.

a) When 𝑝 ≡ 2 (mod 3), we may (trivially) take 𝑢0 = 1 and 𝑗𝑖 (𝜏) = 𝑗 ′𝑖′ (𝜏) = 0 for all 𝑖, 𝑖′ and 𝜏, which
leads immediately to the conclusion 𝜇(𝜏) = 𝜈(𝜏) for all 𝜏 ∈ 𝑇 .

b) When 𝑝 ≡ 1 (mod 3), we write the above expression as

0 =
(
𝑚𝜏 + 𝑛𝜏𝑢0 + 𝑝𝜏𝑢

2
0

)
−
(
𝑚′
𝜏 + 𝑛′𝜏𝑢0 + 𝑝′𝜏𝑢

2
0

)
= (𝑚𝜏 − 𝑚′

𝜏) + (𝑛𝜏 − 𝑛′𝜏)𝑢0 + (𝑝𝜏 − 𝑝′𝜏)𝑢2
0,

where 𝑚𝜏 , 𝑛𝜏 , 𝑝𝜏 and 𝑚′
𝜏 , 𝑛

′
𝜏 , 𝑝

′
𝜏 are nonnegative integers satisying

𝑚𝜏 + 𝑛𝜏 + 𝑝𝜏 = 𝜇(𝜏) 𝑚′
𝜏 + 𝑛′𝜏 + 𝑝′𝜏 = 𝜈(𝜏),

for all 𝜏 ∈ 𝑇 . By Lemma 4.4, it follows that 𝑚𝜏 − 𝑚′
𝜏 = 𝑛𝜏 − 𝑛′𝜏 = 𝑝𝜏 − 𝑝′𝜏 = ℓ, say. We conclude that

𝜇(𝜏) − 𝜈(𝜏) = (𝑚𝜏 + 𝑛𝜏 + 𝑝𝜏) −
(
𝑚′
𝜏 + 𝑛′𝜏 + 𝑝′𝜏

)
= 3ℓ,

which implies the claim. �

Lemma 4.6. Let 𝑝 > 3 be prime and let 𝐶 ∈ Z/𝑝Z. Let 𝐴 ∈ (Z/𝑝Z)× and let 𝑇 ⊆ Z/𝑝Z.

a) If 𝑝 ≡ 2 (mod 3), then ∑
𝑑 (mod 𝑝)

4𝐴2 (𝑑+𝜏) ∈(Z/𝑝Z)×3

∀𝜏∈�̃�

𝑒𝑝 (𝑑𝐶) = 𝑝1𝐶≡0 (mod 𝑝) +𝑂 (|𝑇 |).

b) If 𝑝 ≡ 1 (mod 3), then ∑
𝑑 (mod 𝑝)

4𝐴2 (𝑑+𝜏) ∈(Z/𝑝Z)×3

∀𝜏∈�̃�

𝑒𝑝 (𝑑𝐶) = 3−|�̃� | 𝑝1𝐶≡0 (mod 𝑝) +𝑂
(
|𝑇 |2𝑝1/2

)
.

Proof. a) When 𝑝 ≡ 2 (mod 3) every residue class modulo p is a cube. Thus, if d satisfies the condition
in the sum on the left-hand side, then as 𝑝 > 3 this is equivalent to

∏
𝜏∈�̃� (𝑑 + 𝜏) ∈ (Z/𝑝Z)×, which is

satisfied for all but 𝑂 (|𝑇 |) residue classes d modulo p. Thus, the sum in question is simply∑
𝑑 (mod 𝑝)

𝑒𝑝 (𝑑𝐶) +𝑂 (|𝑇 |) = 𝑝1𝐶≡0 (mod 𝑝) +𝑂 (|𝑇 |),

as required.
b) Let Ξ3(𝑝) := {𝜒 (mod 𝑝) : 𝜒3 = 𝜒0}, where 𝜒0 denotes the trivial multiplicative character

modulo p. Since the set of multiplicative characters modulo p is a cyclic group of order 𝑝 − 1 and
3| (𝑝 − 1), we can write

Ξ3(𝑝) = {𝜉 𝑗 : 𝑗 ∈ {−1, 0, 1}}, where 𝜉 := 𝜒 (𝑝−1)/3
1

for some fixed generator 𝜒1 for the group of characters mod p. We note that for any 𝑏 ∈ Z/𝑝Z,∑
−1≤ 𝑗≤1

𝜉 𝑗 (𝑏) =
{

3 if 𝑏 ∈ (Z/𝑝Z)×3

0 otherwise
,
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and so the exponential sum in question is∑
𝑑 (mod 𝑝)

𝑒𝑝 (𝑑𝐶)
∏
𝜏∈�̃�

14𝐴2 (𝑑+𝜏) ∈(Z/𝑝Z)×3

= 3−|�̃� |
∑

𝒋∈{−1,0,1}|�̃� |
𝜉 (4𝐴2)𝑡 ( 𝒋)

∑
𝑑 (mod 𝑝)

𝜉

(∏
𝜏∈�̃�

(𝑑 + 𝜏) 𝑗𝜏
)
𝑒𝑝 (𝑑𝐶), (21)

where we have written 𝑡 ( 𝒋) :=
∑
𝜏∈�̃� 𝑗𝜏 .

When 𝒋 = 0 we get

3−|�̃� |
∑

𝑑 (mod 𝑝)
𝜒0

(∏
𝜏∈�̃�

(𝑑 + 𝜏)
)
𝑒𝑝 (𝑑𝐶)

= 3−|�̃� |
∑

𝑑 (mod 𝑝)
𝑒𝑝 (𝑑𝐶) +𝑂 (|𝑇 |3−|�̃� | ) = 3−|�̃� |

(
𝑝1𝐶≡0 (mod 𝑝) +𝑂 (|𝑇 |)

)
. (22)

For 𝒋 ≠ 0, we define

𝑔 𝒋 (𝑑) :=
∏
𝜏∈�̃�
𝑗𝜏=1

(𝑑 + 𝜏), ℎ 𝒋 (𝑑) :=
∏
𝜏∈�̃�
𝑗𝜏=−1

(𝑑 + 𝜏),

and what remains to be estimated is the expression

3−|�̃� |
∑

𝒋∈{−1,0,1}|�̃� |
𝒋≠0

∑
𝑑 (mod 𝑝)
𝑝�(𝑑+𝜏)∀𝜏∈𝑇

𝜉 (𝑔 𝒋 (𝑑)ℎ 𝒋 (𝑑))𝑒𝑝 (𝑑𝐶) � max
𝒋≠0

��������
∑

𝑑 (mod 𝑝)
𝑝�(𝑑+𝜏)∀𝜏∈𝑇

𝜉 (𝑔 𝒋 (𝑑)ℎ 𝒋 (𝑑))𝑒𝑝 (𝑑𝐶)

�������� .
We interpret the latter sum as a sum over F𝑝 and estimate the sum using the language of ℓ-adic trace
functions, for an auxiliary prime ℓ ≠ 𝑝. For each 𝒋 ≠ 0 let K𝒋 denote the Kummer sheaf attached
to 𝜉 ◦ (𝑔 𝒋/ℎ 𝒋) and let L𝐶 be the Artin–Schreier sheaf attached 𝑑 ↦→ 𝑒𝑝 (𝑑𝐶). Then the sum we must
estimate is ∑

𝑑∈𝑈𝒋 (F𝑝)
𝑡K𝒋 (𝑑)𝑡L𝐶 (𝑑) =

∑
𝑑∈𝑈𝒋 (F𝑝)

𝑡F(𝑑),

where F := K𝒋 ⊗ L𝐶 and 𝑈𝒋 (F𝑝) := {𝑑 ∈ F𝑝 : 𝑑 ≠ −𝜏 ∀𝜏 ∈ 𝑇}. By Corollary 2.31 of [17], this is

𝑝1F geom. trivial +𝑂 (cond(F)2𝑝1/2).

When 𝒋 ≠ 0, we claim thatF is not geometrically trivial; that is, thatK𝒋 and 𝐷 (L𝐶 ) are not geometrically
isomorphic. Indeed, on one hand, if 𝐶 ≠ 0, then L𝐶 (and thus 𝐷 (L𝐶 )) has a lone wild ramification
point at ∞ (with Swan∞(L𝐶 ) = 1), while in contrast K𝒋 has only tame ramification points at the zeros
of 𝑔 𝒋ℎ 𝒋 (and, in particular, Swan∞(K𝒋) = 0). If 𝐶 = 0, then because 𝑔 𝒋 (𝑑)ℎ 𝒋 (𝑑) has only distinct roots
and is nonconstant, it is not the cube of a polynomial. Thus, K𝒋 is ramified in at least one point and
hence not geometrically trivial in this case as well. Finally,

cond(F) = cond(K𝒋)cond(L𝐶 ) ≤ 3(deg 𝑔 𝒋 + deg ℎ 𝒋 + 1) � |𝑇 |,
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so that indeed ∑
𝑑 (mod 𝑝)
𝑝�𝑔𝒋 (𝑑)ℎ𝒋 (𝑑)
𝑝�(𝑑+𝜏)∀𝜏∈𝑇

𝜉 (𝑔 𝒋 (𝑑)ℎ 𝒋 (𝑑))𝑒𝑝 (𝑑𝐶) � |𝑇 |2𝑝1/2,

for all 𝒋 ≠ 0. Inserting this and (22) into (21) and summing over 𝒋, we reach the claim. �

Proof of Proposition 4.3. Suppose 𝝐 = 0. Since 𝑓𝑇 ,0(𝑏) = 𝑐𝑏, we have∑�

𝑑 (mod 𝑝)
S∗,0𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) = 𝜙(0)𝑝 (𝑁+𝑀 )𝑛/2

∑�

𝑑 (mod 𝑝)

∑
𝑡 (mod 𝑝𝑛−1)

𝑒𝑝𝑛 (𝑐(𝑝𝑡 + 𝑑))

= 𝜙(0)𝑝 (𝑁+𝑀+2)𝑛/2−11𝑝𝑛−1 |𝑐
∑�

𝑑 (mod 𝑝)
𝑒𝑝 (𝑑𝑐′),

where 𝑐′ = 0 if 𝑝𝑛−1 � 𝑐 and otherwise 𝑐 ≡ 𝑐′𝑝𝑛−1 (mod 𝑝𝑛). By Lemma 4.6, we have∑�

𝑑 (mod 𝑝)
𝑒𝑝 (𝑑𝑐′) = 3−|�̃� |1𝑝≡1 (mod 3) 𝑝1𝑐′≡0 (mod 𝑝) +𝑂 |�̃� | (𝑝1/21𝑝≡1 (mod 3) + 1𝑝≡2 (mod 3) ),

where 𝑇 := {𝜏 (mod 𝑝) : 𝜏 ∈ 𝑇}. As |𝑇 | ≤ |𝑇 | ≤ 𝑁 + 𝑀 , the above expression is thus

�𝑁 ,𝑀 𝑝 (𝑁+𝑀+2)𝑛/2
(
1𝑐≡0 (mod 𝑝𝑛) + 1𝑝𝑛−1 |𝑐

(
𝑝−1/21𝑝≡1 (mod 3) + 𝑝−11𝑐=01𝑝≡2 (mod 3)

))
.

By Lemma 4.5, this gives∑�

𝑑 (mod 𝑝)
S∗,0𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑)

�𝑁 ,𝑀 𝑝 (𝑁+𝑀+2)𝑛/21𝑝≡1 (mod 3)

(
1𝑐≡0 (mod 𝑝𝑛) + 𝑝−1/21𝑝𝑛−1 |𝑐

) ∏
𝜏∈𝑇

13 | (𝜇 (𝜏)−𝜈 (𝜏))

+ 𝑝 (𝑁+𝑀+2)𝑛/21𝑝≡2 (mod 3)

(
1𝑐≡0 (mod 𝑝𝑛) + 𝑝−11𝑝𝑛−1 |𝑐

) ∏
𝜏∈𝑇

1𝜇 (𝜏)=𝜈 (𝜏) ,

which implies the claim. �

In the next two subsections, we treat the estimation of∑�

𝑑 (mod 𝑝)
S∗,≠0
𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑)

in two ways: first, we will prove an estimate that is efficient when n is large and subsequently a different
estimate that is most efficient when n is not large (but p is).

4.3. Bounds for Large 𝑛

The main result of this subsection is the following.

Proposition 4.7. Let 𝑝 > 3 be prime. Assume that 𝑛 ≥ 2𝑁+𝑀 (𝑁 + 𝑀)3. Then we have∑�

𝑑 (mod 𝑝)
S∗,≠0
𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) �𝑁 ,𝑀 𝑝 (𝑁+𝑀+2−2𝛿1)𝑛/2
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with 𝛿1 := 2−𝑁−𝑀 , unless there are at least two distinct 𝜏, 𝜏′ ∈ 𝑇 such that

𝜏 ≡ 𝜏′ (mod 𝑝𝑟𝑝 (𝑛) ),

where we define

𝑟𝑝 (𝑛) :=
⌊

2
(𝑁 + 𝑀) (𝑁 + 𝑀 − 1)

(⌊
2−𝑁−𝑀𝑛

⌋
− 1𝑝≤3(𝑁+𝑀 )/2−1 −

⌈
log(20(𝑁 + 𝑀)3)

log 𝑝

⌉)⌋
.

The above proposition will be proved using a method of Milićević and Zhang [15, Section 4], a
consequence of which is the following proposition concerning exponential sums with argument function
𝑓𝑇 ,𝝐 (see (19) for the definition).

Proposition 4.8. There exist constants 𝛿𝑖 = 𝛿𝑖 (|𝑇 |) > 0 for 𝑖 = 1, 2, 3 and 𝜌 = 𝜌(𝑁, 𝑀, |𝑇 |) > 0 such
that the following holds.

For any positive integer 𝑛 ≥ 2 such that 𝑝𝑛/2 > 20(𝑁 + 𝑀)3, any 𝑑 ∈ Z/𝑝Z and any nonzero
𝝐 ∈ (Z/𝑝𝑛Z) |𝑇 | with 𝜙(𝝐) ≠ 0, either

◦ the estimate ∑
𝑏∈Z/𝑝𝑛Z

𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)) �|𝑇 | 𝑝
(1−𝛿1)𝑛

holds or else
◦ there are at least two distinct 𝜏, 𝜏′ ∈ 𝑇 such that 𝜖𝜏 , 𝜖𝜏′ � 0 (mod 𝑝𝑛) and

𝜏 ≡ 𝜏′ (mod 𝑝 �𝛿3 ( �𝛿2𝑛�−𝜌) � ).

In particular, the values 𝛿1 = 𝛿2 = 2−|𝑇 | , 𝛿3 =
( |𝑇 |

2
)−1

and

𝜌 = 1𝑝≤3 |𝑇 |/2−1 +
⌈
log(20(𝑁 + 𝑀)3)

log 𝑝

⌉
are admissible.

We need the following simple lemma about p-adic valuations of generalised binomial coefficients.

Lemma 4.9. Let 𝑝 > 3. Then for any 𝑘 ≥ 1,

0 ≤ max
0≤ 𝑗≤𝑘

𝜈𝑝

((
2/3
𝑗

))
≤ 1𝑝≤3𝑘/2−1.

Proof. Notice that (
2/3
𝑗

)
= ( 𝑗!)−1

∏
0≤𝑙≤ 𝑗−1

(2/3 − 𝑙) = (−1) 𝑗−12
3 𝑗 𝑗!

∏
1≤𝑙≤ 𝑗−1

(3𝑙 − 2),

and so as 𝑝 > 3,

𝜈𝑝

((
2/3
𝑗

))
= 𝜈𝑝

��

∏

1≤𝑙≤ 𝑗−1
(3𝑙 − 2)��� − 𝜈𝑝 ( 𝑗!).
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Note that

max
0≤ 𝑗≤𝑘

𝜈𝑝

((
2/3
𝑗

))
≥ 𝜈𝑝

((
2/3
0

))
≥ 0.

By Legendre’s formula for p-adic valuations of factorials, it suffices to show that

𝜈𝑝
��


∏
1≤𝑙≤ 𝑗−1

(3𝑙 − 2)��� ≤
∑
𝑟 ≥1

⌊
𝑗

𝑝𝑟

⌋
+ 1𝑝≤3 𝑗/2−1,

for each 1 ≤ 𝑗 ≤ 𝑘 . To check this inequality, we observe first that if 1 ≤ 𝑙0 ≤ 𝑗 is minimal such
that 𝑝 | (3𝑙0 − 2) and 𝑙 > 𝑙0 also has this property then 𝑝 | (𝑙 − 𝑙0). Clearly, by minimality we must have
𝜈𝑝 (3𝑙0 − 2) = 1: if 𝑝 ≡ 1 (mod 3) then 𝑙0 satisfies 𝑝 = 3𝑙0 − 2; if 𝑝 ≡ 2 (mod 3) then 2𝑝 = 3𝑙0 − 2. In
particular, if 𝑝 > 3 𝑗/2 − 1, then 𝑙0 does not exist.

Consider next when 𝑝 ≤ 3 𝑗/2 − 1. Then we have

𝜈𝑝
��


∏
1≤𝑙≤ 𝑗−1

(3𝑙 − 2)��� =
∑
𝑟 ≥1

|{1 ≤ 𝑙 ≤ 𝑗 − 1 : 𝑙 ≡ 23 (mod 𝑝𝑟 )}| ≤
∑
𝑟 ≥1

⌊
𝑗 − 𝑎𝑟
𝑝𝑟

⌋
,

where 0 ≤ 𝑎𝑟 ≤ 𝑝𝑟 − 1 is a minimal representative of the residue class 23 (mod 𝑝𝑟 ). We clearly have
�( 𝑗 − 𝑎𝑟 )/𝑝𝑟 � ≤ � 𝑗/𝑝𝑟 �, so that, summing over r, we obtain the desired bound. �

The following further observations will be key. If 𝑏 ∈ (Z/𝑝𝑛Z)×, 𝜅 ∈ N and 𝑡 ∈ Z/𝑝𝑛Z, we note
that

𝑠(2𝑎(𝑏 + 𝜏 + 𝑝𝜅 𝑡))2 = 𝑠(2𝑎(𝑏 + 𝜏) (1 + 𝑝𝜅 𝑡/(𝑏 + 𝜏)))2

= 𝑠(2𝑎(𝑏 + 𝜏))2
∑
𝑙≥0

(
2/3
𝑙

)
(𝑝𝜅 𝑡)𝑙 (𝑏 + 𝜏)−𝑙 =

∑
𝑙≥0

(
2/3
𝑙

)
(𝑝𝜅 𝑡)𝑙𝑠(2𝑎(𝑏 + 𝜏))2−3𝑙

≡ 𝑠(2𝑎(𝑏 + 𝜏))2 + 2
3
𝑠(2𝑎(𝑏 + 𝜏))−1𝑝𝜅 𝑡 (mod 𝑝min{𝑛,2𝜅 }),

where the second equality is owed to the convergence in the p-adic topology of the power
series

(1 + 𝑥)2/3 =
∑
𝑙≥0

(
2/3
𝑙

)
𝑥𝑙 , (23)

as long as |𝑥 |𝑝 < 1. It follows from this that

𝑓𝑇 ,𝝐 (𝑏 + 𝑝𝜅 𝑡)

≡
(
𝑏𝑐 + 3𝑎

∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑏 + 𝜏))2
)
+ 𝑝𝜅 𝑡

(
𝑐 + 2𝑎

∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑏 + 𝜏))−1

)
(mod 𝑝min{2𝜅,𝑛}).

(24)

Analogously, we also define the ‘derivative’ functions

𝑓
( 𝑗)
𝑇 ,𝝐 (𝑏) := 𝑏1− 𝑗𝑐1 𝑗∈{0,1} + 3𝑎

(
2/3
𝑗

) ∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑏 + 𝜏))2−3 𝑗 .
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Proof of Proposition 4.8. We begin by noting that if |{𝜏 ∈ 𝑇 : 𝜖𝜏 � 0 (mod 𝑝𝑛)}| ≤ 1, then since 𝝐 is
nonzero the p-adic stationary phase method (see, e.g., Lemma 1 (1) of [15]) implies that for some 𝜏0 ∈ 𝑇 ,∑

𝑏∈Z/𝑝𝑛Z
𝑏≡𝑑 (mod 𝑑)

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)) =
∑
𝑏∈Z/𝑝𝑛Z

𝑏≡𝑑 (mod 𝑑)

𝑒𝑝𝑛 (𝑏𝑐 + 𝜖𝜏0 𝑠(2𝑎(𝑏 + 𝜏0))2)

= 𝑝𝑛/2
∑

𝑏∈Z/𝑝𝑛Z
𝑏≡𝑑 (mod 𝑝)

𝜖𝜏0 𝑠 (2𝑎 (𝑏+𝜏0))2≡−𝑐 (mod 𝑝�𝑛/2� )

𝑒𝑝𝑛 (𝑏𝑐 + 𝜖𝜏0 𝑠(2𝑎(𝑏 + 𝜏0))2)

� 𝑝𝑛/2,

since the inner sum has at most a single summand. As 𝑁 + 𝑀 ≥ 1 this satisfies the first claim, so
henceforth we may assume that |{𝜏 ∈ 𝑇 : 𝜖𝜏 � 0 (mod 𝑝𝑛)}| ≥ 2.

The second condition is now vacuously satisfied if 0 < 𝛿2𝑛 < 1, so we may assume that 𝛿2𝑛 ≥ 1. We
put 𝑋 := {𝑏 (mod 𝑝𝑛) : 𝑏 ≡ 𝑑 (mod 𝑝)}, noting that this is 𝑝 �𝛿2𝑛�Z/𝑝𝑛Z-invariant. Putting

E |𝑇 | :=
{
𝑏 ∈ Z/𝑝𝑛Z : 𝑓 ( 𝑗) (𝑏) ≡ 0 (mod 𝑝 �𝛿2𝑛� ) for all 1 ≤ 𝑗 ≤ |𝑇 |

}
,

the proof of Proposition 8 of [15] shows that∑
𝑏∈𝑋

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)) =
∑

𝑏∈𝑋∩E|𝑇 |

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)) +𝑂 |𝑇 |

(
𝑝 (1−𝛿1)𝑛

)
, (25)

as long as (writing 𝑓 (0)𝑇 ,𝝐 = 𝑓𝑇 ,𝝐 ) the relations

𝑓
( 𝑗)
𝑇 ,𝝐 (𝑏 + 𝑝𝜅 𝑡) ≡ 𝑓

( 𝑗)
𝑇 ,𝝐 (𝑏) + 𝑝𝜅 𝑡 𝑓

( 𝑗+1)
𝑇 ,𝝐 (𝑏) (mod 𝑝min{2𝜅,𝑛})

hold for 0 ≤ 𝑗 ≤ |𝑇 | − 1; this is guaranteed by a calculation analogous to (24). The proof of Proposition
9 there shows that if

𝜌0 := max
1≤ 𝑗≤ |𝑇 |

𝜈𝑝

((
2/3
𝑗

))
+min
𝜏∈𝑇

𝜈𝑝 (𝜖𝜏),

then E𝑇 = ∅ whenever

min{|𝜏 − 𝜏 |𝑝 : 𝜏, 𝜏′ ∈ 𝑇, 𝜏 ≠ 𝜏′, 𝜖𝜏 , 𝜖𝜏′ � 0 (mod 𝑝𝑛)} ≥ 𝑝−𝛿3 ( �𝛿2𝑛�−𝜌0)

or, equivalently, whenever

𝜏 � 𝜏′ (mod 𝑝 �𝛿3 ( �𝛿2𝑛�−𝜌) � ) for all distinct 𝜏, 𝜏′ with nonzero 𝜖𝜏 , 𝜖𝜏′ .

Let us assume the latter condition. Then (25) yields the estimate∑
𝑏∈𝑋

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)) �|𝑇 | 𝑝
(1−𝛿1)𝑛,

and it remains to check that the required constraints on the constants hold. As noted above the proof
of Proposition 8 in [15], we may take 𝛿1 = 𝛿2 = 2−|𝑇 | and 𝛿3 =

( |𝑇 |
2
)−1

. Now, if 𝑝 ≡ 2 (mod 3), then
𝜖𝜏 can be identified with an integer in [−𝑁, 𝑀] and we deduce that 𝜈𝑝 (𝜖𝜏) ≤ �log(2(𝑁 + 𝑀))/log 𝑝�,
which is acceptable. Thus, consider when 𝑝 ≡ 1 (mod 3). We may then write

𝜖𝜏 = 𝛼𝜏 + 𝛽𝜏𝑢0 + 𝛾𝜏𝑢
2
0,
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and as 𝜙(𝝐) ≠ 0 such a representation exists with |𝛼𝜏 |, |𝛽𝜏 |, |𝛾𝜏 | ≤ 𝑁 + 𝑀 for all 𝜏 ∈ 𝑇 . Since 𝝐 is
nonzero we may find 𝜏′ ∈ 𝑇 such that 𝜖𝜏′ � 0 (mod 𝑝𝑛) and therefore 𝛼𝜏′ , 𝛽𝜏′ and 𝛾𝜏′ are not the same.
By Lemma 4.4 we get

min
𝜏∈𝑇

𝜈𝑝 (𝜖𝜏) ≤ 𝜈𝑝 (𝜖𝜏′ ) ≤
⌈
log(20(𝑁 + 𝑀)3)

log 𝑝

⌉
.

Finally, by Lemma 4.9, we have

max
1≤ 𝑗≤ |𝑇 |

𝜈𝑝

((
2/3
𝑗

))
≤ 1𝑝≤3 |𝑇 |/2−1.

We thus obtain

𝜌0 ≤ 1𝑝≤3 |𝑇 |/2−1 +
⌈
log(20(𝑁 + 𝑀)3)

log 𝑝

⌉
=: 𝜌.

The claim then follows by replacing 𝜌0 with its upper bound 𝜌 in the second alternative of the proposition,
which relaxes the condition there. �

Proof of Proposition 4.7. Note that by the assumed lower bound for 𝑛, we must have 𝑝𝑛=2 > 20(𝑁+𝑀)3.
We may partition the nonzero 𝝐 into the sets

A𝑇 :=
⎧⎪⎪⎨⎪⎪⎩𝝐 ∈ (Z/𝑝𝑛Z) |𝑇 |\{0} : min

𝜏≠𝜏′
𝜖𝜏 , 𝜖𝜏′�0 (mod 𝑝𝑛)

|𝜏 − 𝜏′|𝑝 ≥ 𝑝−𝛿3 ( �𝛿2𝑛�−𝜌)
⎫⎪⎪⎬⎪⎪⎭

B𝑇 :=
(
(Z/𝑝𝑛Z) |𝑇 |\{0}

)
\A𝑇 .

Noting that |𝑇 | ≤ 𝑁 + 𝑀 , we apply Proposition 4.8 to bound

𝑝 (𝑁+𝑀 )𝑛/2
∑�

𝑑 (mod 𝑝)

∑
𝝐 ∈A𝑇

𝜙(𝝐)
∑

𝑏 (mod 𝑝𝑛 )
𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛
(
𝑓𝑇 ,𝝐 (𝑏)

)
�𝑁 ,𝑀 𝑝 (𝑁+𝑀 )𝑛/2+1 · 𝑝 (1−𝛿1)𝑛

� 𝑝 (𝑁+𝑀+2−2𝛿1)𝑛/2+1.

On the other hand, if B𝑇 ≠ ∅, then the second alternative of the proposition holds. This implies the
claim. �

4.4. Bounds for Small 𝑛 and Large 𝑝

The above estimates are useful for n sufficiently large in terms of 𝑁, 𝑀 . In this subsection we provide
an estimate which is more efficient for 𝑛 �𝑁 ,𝑀 1 but with 𝑝 �𝑁 ,𝑀 1. As before, we write∑�

𝑑 (mod 𝑝)
𝑆∗,≠0
𝑝𝑛 (𝑐, 𝜇, 𝜈; 𝑎, 𝑑) =

∑�

𝑑 (mod 𝑝)

∑
𝝐∈(Z/𝑝𝑛Z) |𝑇 |

𝝐≠0

𝜙(𝝐)
∑

𝑏 (mod 𝑝𝑛 )
𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)),

where 𝑇 = 𝑇𝒉,𝒉′ is as above. The estimate we prove in this case is as follows.

Proposition 4.10. Let 𝝐 ≠ 0. Assume that 𝑛 ≤ (𝑁 + 𝑀)32𝑁+𝑀 . Then∑�

𝑑 (mod 𝑝)

∑
𝑏 (mod 𝑝𝑛 )
𝑏≡𝑑 (mod 𝑝)

𝑒𝑝𝑛 ( 𝑓𝑇 ,𝝐 (𝑏)) �𝜀,𝑁 ,𝑀 𝑝
𝑛− 1
𝑛2 (𝑛−1)2

+𝜀
.
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Remark 4.11. Note that the upper bound is trivially satisfied for 𝑝 = 𝑂𝑁 ,𝑀 (1), by choosing a suitable
constant. We make no attempt to specify this dependence in the sequel, though this could be done in
principle provided that one had an effective bound in the critical case 𝑠 = 1

2 𝑘 (𝑘 + 1) in Vinogradov’s
mean value theorem (see Theorem 4.13). For some work in this direction for s slightly larger, see [23].

In preparation for the proof of Proposition 4.10, note that from the identity (23) for |𝑥 |𝑝 < 1, given
𝑏 = 𝑑 + 𝑝𝑡 with 𝑡 ∈ Z/𝑝𝑛−1Z we can write

𝑓𝑇 ,𝝐 (𝑑 + 𝑝𝑡) = (𝑑 + 𝑝𝑡)𝑐 +
∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑑 + 𝜏 + 𝑝𝑡))2 ≡
𝑛−1∑
𝑙=0

𝑡𝑙𝑎𝑙 (𝝐 , 𝑑) (mod 𝑝𝑛)

=: 𝑃𝝐 ,𝑑 (𝑡) (mod 𝑝𝑛),

where we have put

𝑎𝑙 (𝝐 , 𝑑) := 𝑝𝑙

((
2/3
𝑙

)
(2𝑎)𝑙

∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑑 + 𝜏))2−3𝑙 + 𝑐𝑑1−𝑙1𝑙∈{0,1}

)
.

Note that 𝑃𝝐 ,𝑑 (𝑡) is a polynomial in t modulo 𝑝𝑛−1. To evaluate the exponential sum over b (and thus
over 𝑡 (mod 𝑝𝑛−1)), we will, roughly speaking, split the set of d according to the degree (modulo 𝑝𝑛)
of 𝑃𝝐 ,𝑑 (𝑡) and use bounds for Weyl sums of that degree. As we will not be able to extract cancellation
when 𝑃𝝐 ,𝑑 has degree 0 or 1, we will need to check that the number of d (satisfying (�)) for which this
happens is small. To this end, we need the following lemma, which is a modification of Proposition 4.8
of [20].

Lemma 4.12. Let 𝑤 ∈ Z/𝑝Z and 𝑇 ⊂ Z/𝑝Z. Let also 𝝐 ∈ (Z/𝑝Z) |�̃� |\{0}. Then for 𝑗 = 1, 2,

|{𝑑 (mod 𝑝) : 4𝑎2 (𝑑 + 𝜏) ∈ (Z/𝑝Z)×3∀ 𝜏 ∈ 𝑇 and
∑
𝜏∈�̃�

𝜖𝜏𝑠(2𝑎(𝑑 + 𝜏))2−3 𝑗 ≡ 𝑤 (mod 𝑝)}|

is 𝑂 |�̃� | (1).

Proof. The proof when 𝑗 = 2 is completely similar to that of 𝑗 = 1, so we focus only on the latter case.
As in the proof of Lemma 4.6, we translate the problem to F𝑝 , so that, for example, 𝑇 is identified

with a subset of F𝑝 . Put F := F𝑝 if 𝑝 ≡ 1 (mod 3) and F := F𝑝 [𝑋]/(𝑋2 + 𝑋 + 1)F𝑝 [𝑋] when 𝑝 ≡ 2
(mod 3). Define also

𝑁�̃� (𝑤) := |{𝑑 ∈ F : 4𝑎2 (𝑑 + 𝜏) ∈ F×3∀ 𝜏 ∈ 𝑇 and
∑
𝜏∈�̃�

𝜖𝜏𝑠((2𝑎)−1(𝑑 + 𝜏))−1 = 𝑤}|.

When 𝑝 ≡ 1 (mod 3), 𝑁�̃� (𝑤) is precisely the count on the left-hand side in the statement of the lemma;
when 𝑝 ≡ 2 (mod 3), 𝑁�̃� (𝑤) is an upper bound for the desired quantity, since F𝑝 ⊆ F. In what follows
we let 𝑈0 denote a primitive cube root of unity in F; naturally, this satisfies 1 +𝑈0 +𝑈2

0 = 0.
Let 𝒂 ∈ F |�̃� |𝑝 . Consider the product

𝑄𝑤 (𝒂) :=
∏

𝒋∈{−1,0,1}|�̃� |

(
𝑤 −

∑
𝜏∈�̃�

𝑈
𝑗𝜏
0 𝑎𝜏

)
,

which is a polynomial of total degree ≤ 3 |�̃� | in the variables (𝑎𝜏)𝜏∈�̃� ∈ F |�̃� |𝑝 . Note that 𝑄𝑤 (𝒂) =

𝑄𝑤 ((𝑎𝜏𝑈 𝑗𝜏
0 )𝜏∈�̃� ) for all 𝒋 ∈ {−1, 0, 1} |�̃� | . This implies that we can find a polynomial �̃�𝑤 , defined over
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F, such that9 𝑄𝑤 (𝒂) = �̃�𝑤 ((𝑎3
𝜏)𝜏∈�̃� ). In particular, we can write

𝑄𝑤 (𝒂) =
∑

𝑟1 ,...,𝑟|�̃� | ≥0

𝑟1+···+𝑟|�̃� | ≤3|�̃� |−1

𝑏𝑟1 ,...,𝑟|�̃� | (𝑤)𝑎
3𝑟1
𝜏1 · · · 𝑎

3𝑟|�̃� |
𝜏|�̃� |

,

where {𝜏1, . . . , 𝜏|�̃� | } is an enumeration of 𝑇 . Now, define

�̃�𝑤 (𝑌 ) :=

(∏
𝜏∈�̃�

(𝑌 + 𝜏)3|�̃� |−1

)
· 𝑄𝑤 ((𝜖𝜏𝑠((2𝑎)−1 (𝑌 + 𝜏))−1)𝜏∈�̃� )

=
∑

𝑟1 ,...,𝑟|�̃� | ≥0

𝑟1+···+𝑟|�̃� | ≤3|�̃� |−1

𝑏𝑟1 ,...,𝑟|�̃� | (𝑤)
∏

1≤ 𝑗≤ |�̃� |

(2𝑎𝜖3
𝜏 𝑗 )

𝑟 𝑗 ·
∏

1≤ 𝑗≤ |�̃� |

(𝑌 + 𝜏𝑗 )3
|�̃� |−1−𝑟 𝑗 ,

which is a polynomial in Y of degree ≤ |𝑇 |3 |�̃� |−1 �|�̃� | 1 over F. Every 𝑑 ∈ F counted by 𝑁�̃� (𝑤) is a
root of �̃�𝑤 (𝑌 ) over F, since it is a root of 𝑄𝑤 ((𝜖𝜏𝑠((2𝑎)−1(𝑌 + 𝜏))−1)𝜏∈�̃� ). It follows that, provided
�̃�𝑤 (𝑌 ) is a nonzero polynomial, we get 𝑁�̃� (𝑤) �|�̃� | 1 as required. It therefore suffices to show that
�̃�𝑤 (𝑌 ) is nonzero.

Assume first that 𝑤 ≠ 0. The leading coefficient (in Y) of 𝑅𝑤 (𝑌 ) is 𝑏0,...,0 (𝑤) = 𝑤3|�̃� | ≠ 0, so that
�̃�𝑤 (𝑌 ) is necessarily nonzero in this case.

Suppose next that 𝑤 = 0. Note that by hypothesis there is a 𝜏1 ∈ 𝑇 such that 𝜖𝜏1 ≠ 0. Setting 𝑌 = −𝜏1
and expanding the product we see that only the term with 𝑟1 = 3 |�̃� |−1 (and 𝑟 𝑗 = 0 for 𝑗 ≠ 1) survives,
arising as the monomial in 𝑎3|�̃� |

𝜏1 in 𝑄0(𝒂). Explicitly, this term has coefficient

[𝑎3|�̃� |
𝜏1 ]𝑄0 (𝒂) =

∏
𝒋∈{−1,0,1}

(−𝑈 𝑗𝜏1
0 ) = −1.

It follows that 𝑏3|�̃� |−1 ,0,...,0 = −(2𝑎𝜖3
𝜏1 )

3|�̃� |−1 and thus

�̃�0(−𝜏1) = −((2𝑎)𝜖3
𝜏1)

3|�̃� |−1 ∈ F×.

The claim thus follows when 𝑤 ≠ 0 as well. �

For larger degree polynomials we need bounds for Weyl sums. In contrast to the work in [20], where
Weyl differencing is used to obtain cancellation, we will instead apply Vinogradov’s method in order
to obtain a stronger Weyl sum estimate. For this, we recall the Vinogradov main conjecture, proved
in the groundbreaking work of Bourgain, Demeter and Guth [2] (and independently in the work of
Wooley [25]).

Theorem 4.13. (Theorem 1.1 of [2]). Let 𝑘 ≥ 1, 𝑃 ≥ 1. Given 𝒙 ∈ [0, 1]𝑘 , put

𝑓𝑘 (𝒙, 𝑃) :=
∑

1≤𝑛≤𝑃
𝑒(𝑥1𝑛 + 𝑥2𝑛

2 + · · · + 𝑥𝑘𝑛𝑘 ).

9This can be seen, for example, by noting that

3𝑄𝑤 (𝒂) = 𝑄𝑤 ( (𝑎𝜏 )𝜏 ) +𝑄𝑤 ( (𝑎𝜏𝑈
1𝜏′=𝜏
0 )𝜏 ) +𝑄𝑤 ( (𝑎𝜏𝑈

21𝜏′=𝜏
0 )𝜏 )

and then expanding the product and noting that only terms in 𝑎3
𝜏′ survive, for each 𝜏′ ∈ 𝑇 .
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Furthermore, for 𝑠 ∈ N define

𝐽𝑠,𝑘 (𝑃) :=
∫
[0,1]𝑘

| 𝑓𝑘 (𝒙, 𝑃) |2𝑠𝑑𝒙.

Then

𝐽𝑠,𝑘 (𝑃) �𝜀 𝑃𝜀
(
𝑃𝑠 + 𝑃2𝑠−𝑘 (𝑘+1)/2

)
.

Proof of Proposition 4.10. Recall that

𝑃𝝐 ,𝑑 (𝑡) =
∑

0≤ 𝑗≤𝑛−1
𝑎 𝑗 (𝝐 , 𝑑)𝑡 𝑗 for 0 ≤ 𝑡 ≤ 𝑝𝑛−1 − 1.

We wish to estimate ∑�

𝑑 (mod 𝑝)

∑
𝑡 (mod 𝑝𝑛−1)

𝑒𝑝𝑛
(
𝑃𝝐 ,𝑑 (𝑡)

)
.

Let 𝑅 ≥ 1, 𝑁 := 1
2 𝑝

𝑛−1. Also, put

𝑃𝝐 ,𝑑,𝑡 (𝑧) := 𝑃𝝐 ,𝑑 (𝑡 + 𝑧) =
∑

0≤𝑖≤𝑛−1
𝑧𝑖

∑
𝑖≤ 𝑗≤𝑛−1

(
𝑗

𝑖

)
𝑡 𝑗−𝑖𝑎 𝑗 (𝝐 , 𝑑) =

∑
0≤𝑖≤𝑛−1

𝐴𝑖 (𝝐 , 𝑑, 𝑡)𝑧𝑖 ,

where we have defined

𝐴𝑖 (𝝐 , 𝑑, 𝑡) := 𝑝𝑖
∑

𝑖≤ 𝑗≤𝑛−1
(𝑝𝑡) 𝑗−𝑖

(
𝑗

𝑖

) ((
2/3
𝑖

)
(2𝑎) 𝑗

∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑑 + 𝜏))2−3 𝑗 + 𝑐𝑑1− 𝑗1 𝑗∈{0,1}

)
.

We define

𝐹𝝐 (𝑑) := 𝑅−2
∑

𝑡 (mod 𝑝𝑛)
𝑆𝝐 ,𝑑,𝑡 (𝑅) := 𝑅−2

∑
|𝑡 | ≤𝑁

∑
1≤𝑦,𝑧≤𝑅

𝑒𝑝𝑛 (𝑃𝝐 ,𝑑,𝑡 (𝑦𝑧)) +𝑂 (𝑅2).

Set ℓ := 𝑛(𝑛 − 1)/2. We invoke Vinogradov’s method, as exposed in Subsection 8.5 of [10]. Given
𝛼 ∈ R and 𝑌 ≥ 1, define

𝐷 (𝛼,𝑌 ) := 𝑌−2
∑
|𝑚 | ≤𝑌

������ ∑|𝑛 | ≤𝑌 𝑒(𝛼𝑚𝑛)

������ .
Now, for each |𝑡 | ≤ 1

2 𝑝
𝑛−1, we obtain (cf. [10, equation (8.76)])

|𝑆𝝐 ,𝑑,𝑡 (𝑅) | ≤
(
ℓ2(𝑛−1)𝑅4ℓ (ℓ−1)+𝑛(𝑛−1) 𝐽2

ℓ,𝑛−1 (𝑅)Δ (𝑡)
) 1

2ℓ2 , (26)

where we have written

Δ (𝑡) :=
∏

1≤ℎ≤𝑛−1
𝐷 (𝐴ℎ (𝝐 , 𝑑, 𝑡)/𝑝𝑛, ℓ𝑅ℎ).

Our goal is to extract savings over the trivial bound Δ (𝑡) � 1. To this end, we consider 𝐷 (𝛼,𝑌 ) for 𝛼 a
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p-adic rational. Put 𝛼 = 𝑎/𝑝𝑠 , for (𝑎, 𝑝) = 1 and 𝑠 ≥ 1. We obtain

𝐷 (𝑎/𝑝𝑠 , 𝑌 ) � 𝑌−2
∑
|𝑚 | ≤𝑌

min{𝑌, ‖𝑎𝑚/𝑝𝑠 ‖−1}

= 𝑌−2
∑

0≤𝑟 ≤𝑠

∑
1≤|𝑢 |≤max{1, 12 𝑝

𝑠−𝑟 }
𝑝�𝑢

∑
|𝑚|≤𝑌

𝑎𝑚≡𝑢𝑝𝑟 (mod 𝑝𝑠 )

min{𝑌, 𝑝𝑠−𝑟/|𝑢 |}

= 𝑌−2
∑

0≤𝑟 ≤𝑠−1
𝑝𝑠−𝑟

∑
1≤|𝑢 |≤ 1

2 𝑝
𝑠−𝑟

𝑝�𝑢

1
|𝑢 |

∑
|𝑚|≤𝑌

𝑎𝑚≡𝑢𝑝𝑟 (mod 𝑝𝑠 )

1 + 𝑌−1
∑
|𝑚|≤𝑌
𝑝𝑠 |𝑚

1

� 𝑌−1 (𝑝𝑠/𝑌 + 1) log(𝑝𝑠) + 𝑝−𝑠

in this case. We specialise 𝑌 = ℓ𝑅ℎ and

𝛼 = 𝐴ℎ (𝝐 , 𝑑, 𝑡)/𝑝𝑛 = �̃�ℎ/𝑝𝑛−𝜃ℎ ,

where 𝜃ℎ = 𝜃ℎ (𝝐 , 𝑑, 𝑡) := 𝜈𝑝 (𝐴ℎ (𝝐 , 𝑑, 𝑡)) and 𝑝 � �̃�ℎ , for each 1 ≤ ℎ ≤ 𝑛− 1. Note that 𝜃ℎ (𝝐 , 𝑑, 𝑡) ≥ ℎ,
with equality if and only if we have

(2𝑎)ℎ
(
2/3
ℎ

) ∑
𝜏∈𝑇

𝜖𝜏𝑠(2𝑎(𝑑 + 𝜏))2−3ℎ � −𝑐1ℎ=1 (mod 𝑝),

this condition being independent of t.
For 𝝐 , 𝑑 and t fixed, let

𝔇 = 𝔇(𝝐 , 𝑑, 𝑡) := max{1 ≤ 𝑗 ≤ 𝑛 − 1 : 𝜃 𝑗 (𝝐 , 𝑑, 𝑡) < 𝑛},

if this maximum is defined, and let 𝔇(𝝐 , 𝑑, 𝑡) = 0 otherwise. If 𝔇 ≥ 1, then we obtain

Δ (𝑡) �𝑛 𝑅−𝔇(𝑝𝑛−𝔇𝑅−𝔇 + 1) log 𝑝 + 𝑝𝜃𝔇−𝑛.

Suppose now that 𝔇 ≥ 2. Applying Theorem 4.13, we obtain from (26) that

|𝑆𝝐 ,𝑑,𝑡 (𝑅) | �𝜀,𝑛

(
𝑅4ℓ (ℓ−1)+𝑛(𝑛−1)+𝜀

(
𝑅2ℓ + 𝑅4ℓ−𝑛(𝑛−1)

) (
𝑅−𝔇(𝑝𝑛−𝔇𝑅−𝔇 + 1) + 𝑝𝜃𝔇−𝑛

)) 1
2ℓ2

� 𝑅2+𝜀
(
𝑅−𝔇/2ℓ

2 ((𝑝𝑛−𝔇/𝑅𝔇)1/2ℓ2 + 1) + 𝑝−(𝑛−𝜃𝔇)/2ℓ
2
)
,

recalling that 2ℓ = 𝑛(𝑛 − 1). Taking 𝑅 = (𝑁/√𝑝)1/2 � 𝑝𝑛/2−3/4, we deduce that

𝐹𝝐 (𝑑) �𝜀,𝑑,𝑡 |{𝑡 (mod 𝑝𝑛−1) : ∃𝑑 : 4𝑎2 (𝑑 + 𝜏) ∈ (Z/𝑝Z)×3∀𝜏 ∈ 𝑇 and D(𝝐 , 𝑑, 𝑡) ∈ {0, 1}}|

+ 𝑝𝜀
∑
|𝑡 |≤𝑁

𝔇=𝔇(𝝐 ,𝑑,𝑡 )≥2

(
(𝑁/√𝑝)−𝔇/4ℓ2 + (𝑝𝑛−𝔇 (𝑁/√𝑝)−𝔇)1/2ℓ2 + 𝑝−(𝑛−𝜃𝔇)/2ℓ

2
)
+ (𝑁/√𝑝)2

�𝜀 |{𝑡 (mod 𝑝𝑛−1) : ∃𝑑 : 4𝑎2 (𝑑 + 𝜏) ∈ (Z/𝑝Z)×3∀𝜏 ∈ 𝑇 and D(𝝐 , 𝑑, 𝑡) ∈ {0, 1}}|

+ 𝑝
𝑛−1− 1

𝑛2 (𝑛−1)2
+𝜀
.
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In this way, we obtain∑�

𝑑 (mod 𝑝)
𝐹𝝐 (𝑑)

�𝜀,𝑛

∑
𝑡 (mod 𝑝𝑛−1)

|{𝑑 (mod 𝑝) : 4𝑎2 (𝑑 + 𝜏) ∈ (Z/𝑝Z)×3∀𝜏 ∈ 𝑇 and D(𝝐 , 𝑑, 𝑡) ∈ {0, 1}}|

+ 𝑝
𝑛− 1
𝑛2 (𝑛−1)2

+𝜀
.

It remains to treat the contribution from pairs (𝑡, 𝑑) for which D(𝝐 , 𝑑, 𝑡) ∈ {0, 1}. By construction, if
D(𝝐 , 𝑑, 𝑡) = 0, then 𝜃1 (𝝐 , 𝑑, 𝑡) ≥ 𝑛 > 1. Similarly, if D(𝝐 , 𝑑, 𝑡) = 1 and 𝑛 ≥ 3, then 𝜃2(𝑑, 𝑡) ≥ 𝑛 > 2. In
either of these cases, provided p is large enough in terms of n, we get∑

𝜏∈𝑇
𝜖𝜏𝑠(2𝑎(𝑑 + 𝜏))2−3(D+1) ≡ 0 (mod 𝑝).

Applying Lemma 4.12, we find that for each 𝑡 (mod 𝑝𝑛−1) the number of d satisfying (�) such that
this latter congruence holds is �𝑁 ,𝑀 1. Since 𝑛 �𝑁 ,𝑀 1, we deduce that∑�

𝑑 (mod 𝑝)
𝐹𝝐 (𝑑) �𝜀,𝑁 ,𝑀 𝑝

𝑛− 1
𝑛2 (𝑛−1)2

+𝜀 + 𝑝𝑛−1 � 𝑝
𝑛− 1
𝑛2 (𝑛−1)2

+𝜀
.

It remains to consider those d for which D(𝝐 , 𝑑, 𝑡) = 1 and 𝑛 = 2. In this case, we know that 𝑝2 �
𝐴1 (𝝐 , 𝑑, 𝑡) and, moreover, that 𝐴1(𝝐 , 𝑑, 𝑡) = 𝑎1 (𝝐 , 𝑑); that is, 𝐴1 (𝝐 , 𝑑, 𝑡) is independent of t. The sum
we wish to bound is therefore∑�

𝑑 (mod 𝑝)
𝑝2�𝑎1 (𝝐 ,𝑑)

𝑒𝑝2 (𝑎0 (𝝐 , 𝑑))
∑

𝑡 (mod 𝑝)
𝑒𝑝 (𝑡 (𝑎1 (𝝐 , 𝑑)/𝑝)) = 0,

so the bound required is satisfied in this case as well. �

5. Applying the 𝐾2 Correlations Bounds: Proof of Propositon 2.4

In this section we will prove Proposition 2.4. Suppose 𝑄 ≥ 2 factors as 𝑄 = 𝑄0 · · ·𝑄𝐿 , where the 𝑄𝑖

are mutually coprime. Let 𝑝𝜈 | |𝑄0 with 𝜈 ≥ 1 and 𝑝 > 3 prime. Let 𝐶 ∈ Z/𝑝𝜈Z and 𝒉 ∈ Z𝐿 and define

𝑀𝑝𝜈 (𝐶, 𝒉) := max
𝐴,𝐵∈(Z/𝑝𝜈Z)×

�������
∑

𝑏 (mod 𝑝𝜈)
𝑒𝑝𝜈 (𝐶𝐵𝑏)

∏
𝐼⊆{1,...,𝐿}

|𝐼 |≡0 (mod 2)

𝐾2(𝐴, 𝑏 + 𝐻𝐼 ; 𝑝𝜈)

·
∏

𝐽⊆{1,...,𝐿}
|𝐽 |≡1 (mod 2)

𝐾2(𝐴, 𝑏 + 𝐻𝐽 ; 𝑝𝜈)

������� ,
where for each 𝐼 ⊆ {1, . . . , 𝐿} we set 𝐻𝐼 :=

∑
𝑖∈𝐼 𝑄𝑖ℎ𝑖 . Writing N to denote the number of subsets of

{1, . . . , 𝐿} of even cardinality and M the number of subsets with odd cardinality, the total number of
𝐾2 factors in the sum is clearly 𝑁 + 𝑀 = 2𝐿 .

Define now 𝑇𝒉 := {𝐻𝐼 : 𝐼 ⊆ {1, . . . , 𝐿}}, as well as

𝜇𝒉 (𝜏) := |{𝐼 ⊆ {1, . . . , 𝐿} : |𝐼 | ≡ 0 (mod 2), 𝐻𝐼 ≡ 𝜏 (mod 𝑝𝜈)}|
𝜈𝒉 (𝜏) := |{𝐼 ⊆ {1, . . . , 𝐿} : |𝐼 | ≡ 1 (mod 2), 𝐻𝐼 ≡ 𝜏 (mod 𝑝𝜈)}|.
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Further, define

T𝑝𝜈 := {𝒉 ∈ Z𝐿 : 𝜇𝒉 (𝜏) ≡ 𝜈𝒉 (𝜏) (mod 3) for all 𝜏 ∈ 𝑇𝒉}.

The following lemma, which is analogous to [9, Lemma 4.5], allows us to control how frequently either
𝒉 ∈ T𝑝𝜈 or 𝜇𝒉 (𝜏) ≡ 𝜈𝒉 (𝜏) (mod 3).

Lemma 5.1. Let 𝑝 > 3, 𝑝 | 𝑄0 and let 𝒉 ∈ Z𝐿 . If 𝜇𝒉 (𝜏) ≡ 𝜈𝒉 (𝜏) (mod 3) for all 𝜏 ∈ 𝑇𝒉 , then there is
1 ≤ 𝑖 ≤ 𝐿 such that 𝑝 |ℎ𝑖 . In particular, if 𝒉 ∈ T𝑝𝜈 then 𝑝 |

∏
1≤𝑖≤𝐿 ℎ𝑖 .

Proof. If 𝒉 ∈ T𝑝𝜈 , then by definition 𝜇𝒉 (𝜏) ≡ 𝜈𝒉 (𝜏) (mod 3) for all 𝜏 ∈ 𝑇 and the second assertion
immediately follows from the first. Thus, it suffices to prove that 𝑝 |

∏
1≤𝑖≤𝐿 ℎ𝑖 whenever 3| (𝜇𝒉 (𝜏) −

𝜈𝒉 (𝜏)) for all 𝜏 ∈ 𝑇 .
We denote

𝐸 (𝒉) :=
∏

1≤𝑖≤𝐿

(
1 − 𝑒𝑝 (𝑄𝑖ℎ𝑖)

)
.

Let Φ𝑝 (𝑧) :=
∑

0≤ 𝑗≤𝑝−1 𝑧
𝑗 =

∏
𝑎∈(Z/𝑝Z)× (𝑧 − 𝑒𝑝 (𝑎)) the cyclotomic polynomial of order p. Assume

for the sake of contradiction that 𝑝 � ℎ𝑖∀𝑖. Then∏
𝑎∈(Z/𝑝Z)×

𝐸 (𝑎𝒉) =
∏

1≤𝑖≤𝐿

∏
𝑎∈(Z/𝑝Z)×

(1 − 𝑒𝑝 (𝑎ℎ𝑖𝑄𝑖)) =
∏

𝑏∈(Z/𝑝Z)×
(1 − 𝑒𝑝 (𝑏))𝐿 = Φ𝑝 (1)𝐿 = 𝑝𝐿 ,

using the fact (𝑄𝑖 , 𝑄0) = 1 and thus that 𝑝 � 𝑎ℎ𝑖𝑄𝑖 whenever 𝑝 � 𝑎, for all 1 ≤ 𝑖 ≤ 𝐿.
On the other hand, we have

𝐸 (𝑎𝒉) =
∏

1≤𝑖≤𝐿
(1 − 𝑒𝑝 (𝑎ℎ𝑖𝑄𝑖)) =

∑
𝐼 ⊆{1,...,𝐿 }

(−1) |𝐼 |𝑒𝑝 (𝑎𝐻𝐼 ) =
∑
𝜏∈𝑇

(𝜇𝒉 (𝜏) − 𝜈𝒉 (𝜏))𝑒𝑝 (𝑎𝜏),

and since 3| (𝜇𝒉 (𝜏) − 𝜈𝒉 (𝜏)) for each 𝜏 ∈ 𝑇 , we can find 𝑚𝜏 ∈ Z such that

𝐸 (𝑎𝒉) = 3
∑
𝜏∈𝑇

𝑚𝜏𝑒𝑝 (𝑎𝜏).

It follows that

𝑝𝐿 =
∏

𝑎∈(Z/𝑝Z)×
𝐸 (𝑎𝒉) = 3𝑝−1

∏
𝜎∈Gal(Q(𝑒𝑝 (1))/Q)

𝜎

(∑
𝜏∈𝑇

𝑚𝜏𝑒𝑝 (𝜏)
)

= 3𝑝−1𝑁Q(𝑒𝑝 (1))/Q

(∑
𝜏∈𝑇

𝑚𝜏𝑒𝑝 (𝜏)
)
.

Note that the bracketed sum over 𝜏 ∈ 𝑇 on the right-hand side is an algebraic integer in Q(𝑒𝑝 (1)), so
its norm is a rational integer. This implies that 3 | 𝑝𝐿 , which is false since 𝑝 > 3. This contradiction
implies that there must be an i for which 𝑝 | ℎ𝑖 , as claimed. �

Using Lemma 5.1, we can finally give the following bounds on the correlation sums 𝑀𝑝𝜈 (𝐶, 𝒉).

Proposition 5.2. Let 𝐿 ≥ 2. Fix parameters 𝑌 = 𝑌 (𝐿) = 23𝐿+5 and 𝑍 = 𝑍 (𝐿) = 23𝐿22𝐿 . Let 𝑝𝜈 | |𝑄0
and let 𝐶 ∈ Z/𝑝𝜈Z. Assume additionally that

min
𝐼 ,𝐽 ⊆{1,...,𝐿 }

{|𝐻𝐼 − 𝐻𝐽 |𝑝 : 𝐻𝐼 ≠ 𝐻𝐽 } ≥
{
𝑝−𝑟 (𝜈) if 𝑝 > 𝑌 and 𝜈 > 𝑍

𝑝−�𝑟 (𝜈)/2� if 3 < 𝑝 ≤ 𝑌, 𝜈 > 𝑍,
(27)
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where 𝑟 (𝜈) := 21−2𝐿
⌊
𝜈2−2𝐿

⌋
− 1. Then we have

𝑀𝑝𝜈 (𝐶, 𝒉)
𝑝𝜈 (2𝐿−1+1)

�𝜀,𝐿 (𝑝−1/2 + 1𝐶=0)1𝑝𝜈−1 |𝐶1𝑝 |∏𝑖 ℎ𝑖

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑝−1/2 if 𝜈 = 1
𝑝−𝜈/2

2𝐿 if 𝑝 > 𝑌 and 𝜈 > 𝑍

𝑝−𝜈/2
2𝐿 if 3 < 𝑝 ≤ 𝑌 and 𝜈 > 𝑍

𝑝−1/𝜈2 (𝜈−1)2+𝜀 if 𝑝 > 𝑌 and 2 ≤ 𝜈 ≤ 𝑍.

Proof. Write 𝑄0 = 𝔮1𝔮2𝔮3𝔮4𝔮5, where the 𝔮 𝑗 satisfy (𝔮𝑖 ,𝔮 𝑗 ) = 1 for 𝑖 ≠ 𝑗 , according to the following
rules:

(i) 𝑝 | |𝑄0 ⇒ 𝑝 |𝔮1.
(ii) 𝑝𝜈 | |𝑄0, 𝑝 > 𝑌 and 𝜈 > 𝑍 ⇒ 𝑝𝜈 |𝔮2.

(iii) 𝑝𝜈 | |𝑄0, 𝑝 ≤ 𝑌 and 𝜈 > 𝑍 ⇒ 𝑝𝜈 |𝔮3.
(iv) 𝑝𝜈 | |𝑄0, 𝑝 > 𝑌 and 𝜈 ≤ 𝑍 ⇒ 𝑝𝜈 |𝔮4.
(v) 𝔮5 = 𝑄0/(𝔮1𝔮2𝔮3𝔮4).

We summarise (in an effective form) the bounds that the previous sections imply for each prime power
divisor of 𝑄0, according to which of the 𝔮𝑖 they divide.

(I) If 𝑝 |𝔮1, Theorem 3.1 yields

𝑀𝑝 (𝐶, 𝒉) � 32𝐿 𝑝2𝐿−1
(
2𝐿√𝑝 + 𝑝1𝑝 |𝐶1T𝑝 (𝒉)

)
. (28)

By Lemma 5.1, if 𝒉 ∈ T𝑝 , then 𝑝 |
∏
𝑖 ℎ𝑖 , so we may conclude that

𝑀𝑝 (𝐶, 𝒉) �𝐿 𝑝2𝐿−1+1
(
𝑝−1/2 + 1𝑝 |𝐶1𝑝 |∏𝑖 ℎ𝑖 ) , (29)

which implies the bound in the first case.
(II) Suppose 𝑝𝜈 | |𝔮2 and 𝑝𝜈−1 � 𝐶 then as |𝑇 | ≤ 2𝐿 . With a view towards applying Theorem 4.1,

recall the definition

𝜌 = 1𝑝≤3·2𝐿−1−1 +
⌈
log(20 · 23𝐿)

log 𝑝

⌉
.

Since 𝑝 > 23𝐿+5, we have 𝜌 = 1 and so

2|𝑇 |−2 (
⌊
𝜈2−|𝑇 |

⌋
− 𝜌) = 21−𝐿 (

⌊
2−2𝐿 𝜈

⌋
− 1) = 𝑟 (𝜈).

In light of (27), Theorem 4.1 yields

𝑀𝑝𝜈 (𝐶, 𝒉) �𝐿 𝑝𝜈 (2
𝐿−1+1)−𝜈/22𝐿

.

If, in addition 𝑝𝜈−1 |𝐶, then Lemma 5.1 implies that

𝑀𝑝𝜈 (𝐶, 𝒉) �𝐿 max
𝑎 (mod 𝑝𝑟 )

𝑝𝜈 (2
𝐿−1+1)

(
𝑝−𝜈/2

2𝐿 + 1𝑝 |∏𝑖 ℎ𝑖 (𝑝−1/2 + 1𝐶=0

))
, (30)

and the bound in the second case is proved.
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(III) Suppose 𝑝𝜈 | |𝔮3; then 3 < 𝑝 ≤ 23𝐿+5. We thus have the uniform bound

𝜌 ≤ 1 +
⌈
log(23𝐿+5)

log 5

⌉
≤ 1 + 2(𝐿 + 2).

As in case (II), we have

𝑀𝑝𝜈 (𝐶, 𝒉) �𝐿 𝑝𝜈 (2
𝐿−1+1)

(
𝑝−𝜈/2

2𝐿 + 1𝑝 |∏𝑖 ℎ𝑖 (𝑝−1/2 + 1𝐶=0

))
(31)

where we used the fact that since Z is chosen suitably,

21−2𝐿
( ⌊
𝜈2−2𝐿

⌋
− 2𝐿 − 5

)
≥ 𝜈2−2𝐿−2𝐿 ≥ 𝑟 (𝜈)/2

whenever 𝐿 ≥ 2.
(IV) If 𝑝𝜈 | |𝔮4, then, again by Theorem 4.1,

𝑀𝑝𝜈 (𝐶, ℎ) �𝜀,𝐿 𝑝𝜈 (2
𝐿−1+1)

(
𝑝
− 1
𝜈2 (𝜈−1)2

+𝜀 + 1𝑝𝑛−1 |𝐶

(
𝑝−1/2 + 1𝐶=0

)
1𝑝 |∏𝑖 ℎ𝑖

)
, (32)

as required.
(V) For all of the primes powers 𝑝𝜈 | |𝔮5 the bound given is trivial. �

The following simple lemma allows us to bound the number of tuples 𝒉 where (27) fails.

Lemma 5.3. Let 𝑐 ∈ (0, 2−2𝐿 ] and let 𝑑 |𝑄0. Assume that 𝐾/𝑄 𝑗 ≥ 𝑄2𝑐
0 for all 1 ≤ 𝑗 ≤ 𝐿. Then the

number of tuples 𝒉 ∈ Z𝐿 with 1 ≤ |ℎ 𝑗 | ≤ 𝐾/𝑄 𝑗 for all j, such that for each 𝑝𝜈 | |𝑑

min
𝐼 ,𝐽 ⊆{1,...,𝐿 }

𝐻𝐼≠𝐻𝐽

|𝐻𝐼 − 𝐻𝐽 |𝑝 < 𝑝−𝑐𝜈

is � 2𝐿𝜏(𝑑)2𝐿−1𝑑−𝑐𝐾𝐿/(𝑄1 · · ·𝑄𝐿).

Proof. Write 𝑑 =
∏

1≤𝑖≤𝑚 𝑝𝜈𝑖𝑖 , so that 𝑚 = 𝜔(𝑑). For each 1 ≤ 𝑖 ≤ 𝑚, choose a pair of disjoint subsets
𝐼𝑖 , 𝐽𝑖 ⊆ {1, . . . , 𝐿}, such that 𝐼𝑖∪𝐽𝑖 ≠ ∅. We may define a matrix 𝐴𝑰 ,𝑱 = {𝑎𝑖, 𝑗 }𝑖, 𝑗 with integer entries via

𝑎𝑖, 𝑗 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑄 𝑗 if 𝑗 ∈ 𝐼𝑖 ,

−𝑄 𝑗 if 𝑗 ∈ 𝐽𝑖 ,

0 otherwise.

By composing 𝐴𝑰 ,𝑱 with projections, we may view it as a homomorphism 𝐴𝑰 ,𝑱 : Z𝐿 →∏
1≤𝑖≤𝑚(Z/𝑝

�𝑐𝜈𝑖 �
𝑖 Z), such that for each 1 ≤ 𝑖 ≤ 𝑚 the ith entry of 𝐴𝑰 ,𝑱 𝒉 is

(𝐴𝑰 ,𝑱 𝒉)𝑖 :=
∑

1≤ 𝑗≤𝐿
𝑎𝑖, 𝑗ℎ 𝑗 (mod 𝑝 �𝑐𝜈𝑖 �𝑖 ) =

∑
𝑙∈𝐼𝑖

𝑄𝑙ℎ𝑙 −
∑
𝑙∈𝐽𝑖

𝑄𝑙ℎ𝑙 (mod 𝑝 �𝑐𝜈𝑖 �𝑖 ),

whenever 𝒉 ∈ Z𝐿 . Note that ker(𝐴𝑰 ,𝑱 ) is a lattice in Z𝐿 with covolume 𝑑 :=
∏

1≤𝑖≤𝑚 𝑝 �𝑐𝜈𝑖 �𝑖 ≥ 𝑑𝑐 and
trivially 𝐴𝑰 ,𝑱 is injective on the quotient Z𝐿/ker(𝐴𝑰 ,𝑱 ), with the unique reduced zero class being 0. By
lattice periodicity (and 𝑑 ≤ 𝑄2𝑐

0 ≤ 𝐾/𝑄 𝑗 for each j), we deduce that

|{𝒉 ∈ ker(𝐴𝑰 ,𝑱 ) : 1 ≤ |ℎ 𝑗 | ≤ 𝐾/𝑄 𝑗∀1 ≤ 𝑗 ≤ 𝐿}| � 𝑑−1(2𝐾)𝐿/(𝑄1 · · ·𝑄𝐿)
� 𝑑−𝑐 (2𝐾)𝐿/(𝑄1 · · ·𝑄𝐿). (33)
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Given these remarks, we may prove the lemma as follows. Let H𝑑 be the set of tuples 𝒉 described in
the statement of the lemma. Given 𝒉 ∈ H𝑑 , for each prime 𝑝𝜈 | |𝑑 there are distinct subsets 𝐼𝑝 = 𝐼𝑝 (𝒉),
𝐽𝑝 = 𝐽𝑝 (𝒉) of {1, . . . , 𝐿} such that |𝐻𝐼𝑝 − 𝐻𝐽𝑝 |𝑝 ≤ 𝑝−�𝑐𝜈� . Now, put 𝐼 ′𝑝 := 𝐼𝑝\(𝐼𝑝 ∩ 𝐽𝑝) and
𝐽 ′𝑝 := 𝐽𝑝\(𝐼𝑝 ∩ 𝐽𝑝), so that 𝐼 ′𝑝 ∪ 𝐽 ′𝑝 ≠ ∅, 𝐼 ′𝑝 and 𝐽 ′𝑝 are disjoint and, moreover, 𝐻𝐼𝑝 −𝐻𝐽𝑝 = 𝐻𝐼 ′𝑝 −𝐻𝐽 ′𝑝 .
We thus have, for each 𝑝𝜈 | |𝑑, ∑

𝑙∈𝐼 ′𝑝

𝑄𝑙ℎ𝑙 −
∑
𝑙∈𝐽 ′𝑝

𝑄𝑙ℎ𝑙 ≡ 0 (mod 𝑝 �𝑐𝜈� ).

By the previous definitions, it follows that 𝒉 ∈ ker(𝐴{𝐼 ′𝑝 }𝑝 , {𝐽 ′𝑝 }𝑝 ). Hence, we obtain the upper bound

|H𝑑 | ≤
∑

𝑰 ,𝑱⊆{1,...,𝐿 }𝑚
𝐼𝑖∩𝐽𝑖=∅∀𝑖
𝐼𝑖∪𝐽𝑖≠∅∀𝑖

|{𝒉 ∈ ker(𝐴𝑰 ,𝑱 ) : 1 ≤ |ℎ 𝑗 | ≤ 𝐾/𝑄 𝑗∀1 ≤ 𝑗 ≤ 𝐿}|.

The number of pairs of tuples of sets 𝑰, 𝑱 is ≤
(2𝐿

2
)𝑚

≤ 2(2𝐿−1)𝜔 (𝑑) ≤ 𝜏(𝑑)2𝐿−1, so by (33) we obtain

|H𝑑 | � 2𝐿𝜏(𝑑)2𝐿−1𝑑−𝑐𝐾𝐿/(𝑄1 · · ·𝑄𝐿),

as claimed. �

Proof of Proposition 2.4. i) Assume 𝑄0, . . . , 𝑄𝐿 are all coprime and squarefree. Case (I) of Proposition
5.2 gives

𝑀𝑝 (𝐶, 𝒉) �𝐿 𝑝2𝐿−1+1/2 min{(𝑝, 𝐶)1/2, (𝑝,
∏
𝑖

ℎ𝑖)1/2},

for each 𝑝 | 𝑄0. Combining this with Lemma 2.5, we obtain that

𝑇 (𝒉) =
∑

𝑘∈𝐽 (𝒉)

∏
𝐼 ⊆{1,...,𝐿 }

C |𝐼 |𝐾2

(
𝑏, 𝑘 +

∑
𝑖∈𝐼

𝑄𝑖ℎ𝑖;𝑄0

)
�

∑
𝐶∈Z/(𝑄0Z)

min
{
|𝐽 (𝒉) |
𝑄0

,
1

𝑄0‖𝐶/𝑄0‖

} ∏
𝑝 |𝑄0

𝑀𝑝 (𝐶, 𝒉)

�𝜀,𝐿 𝑄2𝐿−1+1/2+𝜀
0

∑
𝐶∈Z/(𝑄0Z)

min
{
|𝐽 (𝒉) |
𝑄0

,
1

𝑄0‖𝐶/𝑄0‖

} ∏
𝑝 |𝑞0

min{(𝑝, 𝐶)1/2, (𝑝,
∏
𝑖

ℎ𝑖)1/2}

�𝜀 𝑄
2𝐿−1+1/2+𝜀
0

∑
𝑑 |𝑄0
𝑑<𝑄0

(𝑑,
∏
𝑖 ℎ𝑖)1/2
𝑑

∑∗

𝐶′ (mod 𝑄0/𝑑)

1
𝐶 ′ +

𝐾

𝑄0
(𝑄0,

∏
𝑖

ℎ𝑖)1/2

�𝜀 (1 + 𝐾/𝑄0)𝑄2𝐿−1+1/2+𝜀
0 (𝑄0,

∏
𝑖

ℎ𝑖)1/2,

using |𝐽 (𝒉) | ≤ 𝐾 and the obvious inequality (𝑑,
∏
𝑖 ℎ𝑖) ≤ (𝑄0,

∏
𝑖 ℎ𝑖) for any 𝑑 |𝑄0. Employing

(𝑄0,
∏
𝑖 ℎ𝑖)1/2 ≤

∏
𝑖 (𝑄0, ℎ𝑖)1/2 and summing in ℎ1, . . . , ℎ𝐿 yields
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1≤ |ℎ1 | ≤𝐾/𝑄1

· · ·
∑

1≤ |ℎ𝐿 | ≤𝐾/𝑄𝐿

|𝑇 (𝒉) |

�𝜀,𝐿 (1 + 𝐾/𝑄0)𝑄2𝐿−1+1/2+𝜀
0

∏
1≤ 𝑗≤𝐿

∑
1≤ |ℎ 𝑗 | ≤𝐾/𝑄 𝑗

(𝑄0, ℎ 𝑗 )1/2

� (1 + 𝐾/𝑄0)𝑄2𝐿−1+1/2+𝜀
0

∑
𝑒1 ,...,𝑒𝐿 |𝑄0

(𝑒1 · · · 𝑒𝐿)1/2
∏

1≤ 𝑗≤𝐿

∑
1≤|ℎ′

𝑗
|≤𝐾/(𝑒𝑗𝑄𝑗 )

(ℎ′
𝑗
,𝑄0 )=1

1

�𝐿 (1 + 𝐾/𝑄0)𝑄2𝐿−1+1/2+𝜀
0

𝐾𝐿

𝑄1 · · ·𝑄𝐿

��

∑
𝑒 |𝑄0

𝑒−1/2���
𝐿

�𝜀,𝐿 (1 + 𝐾/𝑄0)𝑄2𝐿−1+1/2+𝜀
0

𝐾𝐿

𝑄1 · · ·𝑄𝐿
= (1 + 𝐾/𝑄0)𝑄2𝐿−1+3/2+𝜀

0 𝐾𝐿/𝑄,

using 𝑄/𝑄0 = 𝑄1 · · ·𝑄𝐿 in the last line. This implies i).
ii) As above, we would like to estimate

T :=
∑

1≤ |ℎ1 | ≤𝐾/𝑄1

· · ·
∑

1≤ |ℎ𝐿 | ≤𝐾/𝑄𝐿

∑
𝐶 (mod 𝑄0)

min
{
𝐾

𝑄0
,

1
𝑄0‖𝐶/𝑄0‖

} ∏
𝑝𝜈 | |𝑄0

𝑀𝑝𝜈 (𝐶, 𝒉).

Here, we are assuming that (𝑄0, 6) = 1. We factor 𝑄0 = 𝔮1𝔮2𝔮3𝔮4𝔮5, where

𝔮1 =
∏
𝑝 | |𝑄0

𝑝, 𝔮2 =
∏
𝑝𝜈 | |𝑄0
𝑝>𝑌 ,𝜈>𝑍

𝑝𝜈 , 𝔮3 =
∏
𝑝𝜈 | |𝑄0

3<𝑝≤𝑌 ,𝜈>𝑍

𝑝𝜈 ,𝔮4 =
∏
𝑝𝜈 | |𝑄0

𝑝>𝑌 ,2≤𝜈≤𝑍

𝑝𝜈 and 𝔮5 =
∏
𝑝𝜈 | |𝑄0

𝑝≤𝑌 ,2≤𝜈≤𝑍

𝑝𝜈 .

By construction, 𝔮5 �𝐿 1, so that∏
𝑝𝜈 | |𝔮5

𝑀𝑝𝜈 (𝐶, 𝒉) � 𝔮 (𝑁+𝑀+2)/2
5 �𝐿 1.

We focus next on the prime power divisors of 𝑄 ′
0 := 𝑄0/𝔮5. As above, define 𝑟 (𝜈) :=⌊

21−2𝐿
⌊
𝜈2−2𝐿−2𝐿

⌋⌋
. For each 1 ≤ 𝑖 ≤ 4 and each 𝑝𝜈 | |𝔮𝑖 , we write

𝑀𝑝𝜈 (𝐶, 𝒉) = 𝑝 (2
𝐿−1+1)𝜈 (𝑀𝑝𝜈 ,1 (𝐶, 𝒉) + 𝑀𝑝𝜈 ,2 + 𝑀𝑝𝜈 ,3 (𝒉)

)
,

where we have defined

𝑀𝑝𝜈 ,1 (𝐶, 𝒉) =
{

1𝑝𝜈−1 |𝐶1𝑝 |∏ 𝑗 ℎ 𝑗 (𝑝−1/2 + 1𝑝𝜈 |𝐶
)

if 𝑖 = 2, 3, 4
1𝑝 |𝐶1𝑝 |∏ 𝑗 ℎ 𝑗 if 𝑖 = 1,

as well as

𝑀𝑝𝜈 ,2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝−1/2 if 𝑖 = 1
𝑝−𝜈/2

2𝐿 if 𝑖 = 2, 3
𝑝−𝜈/𝑍

5+𝜀 if 𝑖 = 4
, 𝑀𝑝𝜈 ,3 (𝒉) =

{
0 if 𝑖 = 1, 4
1 if 𝑖 = 2, 3 and (27) fails.
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Note that 𝑀𝑝𝜈 ,1 depends only on (𝐶,𝑄 ′
0) =

∏
1≤𝑖≤4(𝐶,𝔮𝑖). We factor 𝐶 = 𝐶 ′𝑑 and 𝑑 = 𝑑1𝑑2𝑑3𝑑4𝑑5,

where 𝑑 𝑗 = (𝐶,𝔮 𝑗 ), for each 1 ≤ 𝑗 ≤ 5 and get

T �𝐿

∑
𝑑 |𝑄0

𝑑=𝑑1𝑑2𝑑3𝑑4𝑑5

��

∑∗

𝐶′ (mod 𝑄0/𝑑)
min

{
𝐾

𝑄0
,

1
𝑄0‖𝐶 ′𝑑/𝑄0‖

}���
·

∑
1≤ |ℎ1 | ≤𝐾/𝑄1

· · ·
∑

1≤ |ℎ𝐿 | ≤𝐾/𝑄𝐿

∏
1≤𝑖≤4

∏
𝑝𝜈 | |𝒒𝑖

𝑝 (2
𝐿−1+1)𝜈 (𝑀𝑝𝜈 ,1 (𝑑𝑖 , 𝒉) + 𝑀𝑝𝜈 ,2 + 𝑀𝑝𝜈 ,3(𝒉)

)
�𝜀,𝐿 𝑄2𝐿−1+1

0

∑★

𝑒1 𝑓1=𝔮1

𝑓 −1/2
1

∑★

𝑒4 𝑓4=𝔮4

𝑓 −𝑍
−5+𝜀

4

∑★

𝑒2 𝑓2𝑔2=𝔮2

𝑓 −2−2𝐿

2

∑★

𝑒3 𝑓3𝑔3=𝔮3

𝑓 −2−2𝐿

3

·
∑
𝑑 |𝑄0

𝑑=𝑑1𝑑2𝑑3𝑑4𝑑5
𝑝𝜈 | |𝑒 𝑗⇒𝑝𝜈−1 |𝑑 𝑗

1≤ 𝑗≤4

��

∑∗

𝐶′ (mod 𝑄0/𝑑)
min

{
𝐾/𝑄0,

1
𝑄0‖𝐶 ′𝑑/𝑄0‖

}��� ��

∏

1≤ 𝑗≤4

∏
𝑝 |𝑒 𝑗

(
𝑝−1/21 𝑗≠1 + 1𝜈𝑝 (𝑒 𝑗 )=𝜈𝑝 (𝑑 𝑗 )

)���
·

∑
1≤ |ℎ1 | ≤𝐾/𝑄1

· · ·
∑

1≤ |ℎ𝐿 | ≤𝐾/𝑄𝐿
𝑝 |𝑔2𝑔3⇒∃ 𝑗:𝑀𝑝𝜈 ,3≠0
rad(𝑒1𝑒2𝑒3𝑒4) |

∏
𝑗 ℎ 𝑗

1, (34)

where the summation symbol
∑★

𝑢𝑣𝑤=𝑥
indicates that (𝑢, 𝑣) = (𝑣, 𝑤) = (𝑤, 𝑢) = 1 (and, analogously,∑★

𝑢𝑣=𝑥
indicates that (𝑢, 𝑣) = 1), so that if 𝑝 |𝑢, say, then 𝜈𝑝 (𝑢) = 𝜈𝑝 (𝑥).

By dropping the constraint on 𝑒1, 𝑒2, 𝑒3, 𝑒4, the innermost sum over the tuples 𝒉 can be bounded
above by

|{𝒉 ∈ Z𝐿 : 1 ≤ |ℎ 𝑗 | ≤ 𝐾/𝑄 𝑗∀ 𝑗 , 𝑝 |𝑔2𝑔3 ⇒ min
𝐼 ,𝐽 ⊆{1,...,𝐿 }

𝐻𝐼≠𝐻𝐽

|𝐻𝐼 − 𝐻𝐽 | < 𝑝−𝑟 (𝜈)/2}|.

If we define

𝛿′ := min
{
2−2𝐿 , 𝑍−5,min

𝜈>𝑍

�𝑟 (𝜈)/2�
𝜈

}
,

then by applying Lemma 5.3 with 𝑐 = 𝛿′ and 𝑑 = 𝑔2𝑔3 (which is a divisor of 𝑄0) and using the crude
bound 𝜏(𝑑)2𝐿−1 �𝜀,𝐿 𝑑 𝜀 we may bound this cardinality by

�𝜀,𝐿 𝑋 𝜀 𝐾𝐿

(𝑔2𝑔3) 𝛿′𝑄1 · · ·𝑄𝐿
= 𝑋 𝜀 𝐾𝐿𝑄0

(𝑔2𝑔3) 𝛿′𝑄
.

Inserting this into our earlier upper bound for T, we obtain

T �𝜀,𝐿

𝑋 𝜀𝐾𝐿𝑄2𝐿−1+2
0

𝑄

∑★

𝑒1 𝑓1=𝔮1
𝑒4 𝑓4=𝔮4

1
𝑓 1/2
1 𝑓 𝑍

−5

4

∑★

𝑒2 𝑓2𝑔2=𝔮2
𝑒3 𝑓3𝑔3=𝔮3

1
( 𝑓2 𝑓3)2−2𝐿 (𝑔2𝑔3) 𝛿′

·
∑
𝑑 |𝑄0

𝑑=𝑒1𝑑2𝑑3𝑑4𝑑5
𝜈𝑝 (𝑑 𝑗 ) ≥𝜈𝑝 (𝑒 𝑗 )−1

2≤ 𝑗≤4

��

∑∗

𝐶′ (mod 𝑄0/𝑑)
min

{
𝐾/𝑄0,

1
𝑄0‖𝐶 ′𝑑/𝑄0‖

}��� ��

∏

2≤ 𝑗≤4

∏
𝑝 |𝑒 𝑗

(
𝑝−1/2 + 1𝜈𝑝 (𝑒 𝑗 )=𝜈𝑝 (𝑑 𝑗 )

)��� .
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We parametrise 𝑑 = 𝑒1𝑑2𝑑3𝑑4𝑑5 with 𝑑 𝑗 = 𝑒 𝑗𝐷 𝑗 , where 𝐷 𝑗 |rad(𝑒 𝑗 ), for each 2 ≤ 𝑗 ≤ 4. Using
𝛿′ ≤ 2−2𝐿 and 𝛿′ ≤ 𝑍−5, we find

T �𝜀,𝐿

𝑋 𝜀𝐾𝐿𝑄2𝐿−1+2
0

𝑄

∑★

𝑒1 𝑓1=𝔮1
𝑒4 𝑓4=𝔮4

1
𝑓 1/2
1 𝑓 𝛿

′
4

∑★

𝑒2 𝑓2𝑔2=𝔮2
𝑒3 𝑓3𝑔3=𝔮3

1
( 𝑓2 𝑓3) 𝛿′ (𝑔2𝑔3) 𝛿′

·
∑

𝐷𝑗 |rad(𝑒𝑗 )
2≤ 𝑗≤4

(𝐷2𝐷3𝐷4)−1/2 ��

∑∗

𝐶′ (mod 𝑄0/(𝑒1𝑒2𝐷2𝑒3𝐷3𝑒4𝐷4))
min

{
𝐾/𝑄0,

1
𝑄0‖𝐶 ′𝑒1𝑒2𝐷2𝑒3𝐷3𝑒4𝐷4/𝑄0‖

}��� .
If we bound the sum over 𝐶 ′ trivially, we obtain � log𝑄0

𝑒1𝑒2𝑒3𝑒4𝐷2𝐷3𝐷4
, which finally leads to

T �𝜀,𝐿

𝑋 𝜀𝐾𝐿𝑄2𝐿−1+2
0

𝑄

∑★

𝑒1 𝑓1=𝔮1
𝑒4 𝑓4=𝔮4

1
( 𝑓1 𝑓4) 𝛿′𝑒1𝑒4

∑★

𝑒2 𝑓2𝑔2=𝔮2
𝑒3 𝑓3𝑔3=𝔮3

1
( 𝑓2 𝑓3) 𝛿′ (𝑔2𝑔3) 𝛿′𝑒2𝑒3

�𝜀

𝑋 𝜀𝐾𝐿𝑄2𝐿−1+2
0

𝑄
(𝔮1𝔮2𝔮3𝔮4)−𝛿

′ �𝐿 𝑋 𝜀𝐾𝐿𝑄2𝐿−1+2−𝛿′
0 /𝑄,

again using 𝔮5 �𝐿 1 and 𝑄0 = 𝔮1𝔮2𝔮3𝔮4𝔮5. This proves claim ii). �

6. Proof of Theorems 1.1 and 1.5

This section is devoted to the proofs of Theorems 1.1 and 1.5.
Let 𝜀 > 0 be sufficiently small and let 0 < 𝜂 < 1/522. Let X be sufficiently large in terms of 𝜀 and let

𝑋2/3−𝜀 < 𝑞 ≤ 𝑋3/4+1/1044−𝜀 be 𝑋 𝜂-smooth. We wish to show that there is a 𝛿 = 𝛿(𝜀, 𝜂) > 0 such that

Δ𝜇2 (𝑋; 𝑞, 𝑎) =
∑
𝑛≤𝑋

𝑛≡𝑎 (mod 𝑞)

𝜇2(𝑛) − 1
𝜙(𝑞/(𝑎, 𝑞))

∑
𝑛≤𝑋

(𝑛,𝑞)=(𝑎,𝑞)

𝜇2 (𝑛) � 𝑋1−𝛿/𝑞,

for any residue class 𝑎 (mod 𝑞) with (𝑎, 𝑞) ≤ 𝑋 𝜀 , with further size constraints on q depending on
whether or not q is squarefree.

Replacing 𝑋, 𝑞 and a by 𝑋/(𝑎, 𝑞), 𝑞/(𝑞, 𝑎) and 𝑎/(𝑎, 𝑞) if necessary, we may reduce our problem to
the case in which a is coprime to q: indeed, 𝑞/(𝑞, 𝑎) is still 𝑋 𝜂-smooth and as (𝑎, 𝑞) ≤ 𝑋 𝜀 the bound
above is implied by the case (𝑎, 𝑞) = 1 (upon taking 𝛿 slightly smaller). In what follows, we will focus
solely on when the residue class a is coprime to q.

We begin by summarising the analysis in Section 2, which is valid when (𝑎, 𝑞) = 1. Let 𝛿 > 0 be fixed,
to be selected later. We fixed a scale 𝑉0 ≥ 𝑋 𝛿+𝜀 and found a second scale max{𝑋1−𝛿−𝜀/(𝑞𝑉0), 𝑉0} ≤
𝑉1 � 𝑋1/2 and an interval 𝐼 (𝑉1) = (𝑉1, 𝑉1 +𝑉1/𝑉0] such that (see (12))

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀 𝑋 𝜀𝑉0𝑉1
𝑞

∑
𝑓 |�̃�
𝑓 ≤𝑍

∑∗

𝑘 (mod �̃�/ 𝑓 )

∑
𝑚 (mod �̃�/ 𝑓 )

𝑚≠0

𝜅(𝑚; 𝑘𝑎, 𝑞/ 𝑓 )
𝑘𝑚

+𝑉0

(
1 + 𝑋 𝜀𝑉0𝑞

1/2𝑍−3/2
)

+ 𝑋 𝜀

(
𝑋

𝑞𝑉0
+ 𝑋

𝑞𝑉1
+
(
𝑋

𝑍𝑞

)1/2
+ 𝐾𝑉2

1

(
𝑍

𝑞

)3/2
)
, (35)
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for any divisor 𝑞 of q and any 𝑍 ≥ 1. We recall here that, given 𝑄 ≥ 1 and 𝐾 ≥ 1, we have set

𝜅(𝑀, 𝑁;𝑄) := max
1≤𝑅≤𝐾

������ ∑
𝐾 (𝑀−1)<𝑟 ≤𝐾 (𝑀−1)+𝑅

𝑒𝑄 (−𝑟𝑉1)𝐾2(𝑁, 𝑟;𝑄)

������ ,
for each 𝑀 ≥ 1 and 𝑁 ∈ Z coprime to Q.

To proceed, we need to be able to choose 𝑞 of suitable size in order to obtain the desired 𝑂 𝜀 (𝑋1−𝛿/𝑞)
bound. The following lemma will be useful in this vein, especially in order to apply the results of the
last few sections.

Lemma 6.1. Let 𝜂 > 0 and suppose 𝑋 ≥ 3 is large enough relative to 𝜂. Let 𝑞 ∈ N be 𝑋 𝜂-smooth.

a) If 0 < 𝑣 < 1, then there is a divisor 𝑞′ of q such that 𝑞′ ∈ (𝑞𝑣 , 𝑋 𝜂𝑞𝑣 ].
b) Assume furthermore that 𝑞 ∈ (𝑋, 2𝑋] is 𝑋 𝜂-ultrasmooth. Let 𝑘 ≥ 4 and let 𝑢1, . . . , 𝑢𝑘 ∈ (𝜂, 1 − 𝜂)

with 𝑢1 + · · · + 𝑢𝑘 = 1. Then we can find 𝑞1, . . . , 𝑞𝑘 , mutually coprime with (𝑞𝑘 , 6) = 1, such that
𝑞1 ∈ (𝑋𝑢1 , 𝑋𝑢1+𝜂2𝜈2 (𝑞)3𝜈3 (𝑞) ], 𝑞2 ∈ (𝑋𝑢2 , 𝑋𝑢2+𝜂], 𝑞 𝑗 ∈ (𝑋𝑢 𝑗 , 𝑋𝑢 𝑗+𝜂] for each 3 ≤ 𝑗 ≤ 𝑘 − 1 and
𝑞𝑘 ∈ (𝑋𝑢𝑘−(𝑘−1)𝜂2−𝜈2 (𝑞)3−𝜈3 (𝑞) , 2𝑋𝑢𝑘 ] such that 𝑞 = 𝑞1 · · · 𝑞𝑘 .

Proof. a) Enumerate the prime factors of q in ascending order as 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝜔 (𝑞) . Let r
be chosen maximally such that 𝑝1 · · · 𝑝𝑟 ≤ 𝑞𝑣 . Then 𝑞′ := 𝑝1 · · · 𝑝𝑟 𝑝𝑟+1 > 𝑞𝑣 by maximality and,
moreover, 𝑞′ ≤ 𝑞𝑣 𝑝𝑟+1 ≤ 𝑞𝑣𝑋 𝜂 . This establishes the first claim.

b) Arguing similarly as in a), order the prime power factors of q as 𝑝𝛼1
1 < · · · < 𝑝

𝛼𝜔 (𝑞)
𝜔 (𝑞) ≤ 𝑋 𝜂 . Pick

1 ≤ 𝑁1 ≤ 𝑁 to be the minimal integer such that
∏

1≤ 𝑗≤𝑁1 𝑝
𝛼𝑗
𝑗 > 𝑋𝑢1 and set 𝑞1 :=

∏
1≤ 𝑗≤𝑁1 𝑝

𝛼𝑗
𝑗 . By

minimality, 𝑞1/𝑝
𝛼𝑁1
𝑁1

≤ 𝑋𝑢1 , whence 𝑞1 ∈ (𝑋𝑢1 , 𝑋𝑢1+𝜂].
We set 𝑋 ′ := 𝑋/𝑞1 ∈ [𝑋1−𝑢1−𝜂 , 𝑋1−𝑢1 ) and 𝑞′ := 𝑞/𝑞1. As 𝑢2 > 0, 𝑁1 < 𝑁 . We then select

𝑁1 < 𝑁2 ≤ 𝑁 such that 𝑞2 :=
∏
𝑁1< 𝑗≤𝑁2 𝑝

𝛼𝑗
𝑗 > 𝑋𝑢2 , so that 𝑞2 ∈ (𝑋𝑢2 , 𝑋𝑢2+𝜂].

Repeating this process 𝑘 − 1 times, we obtain integers 𝑞1, . . . , 𝑞𝑘−1 such that 𝑞 𝑗 ∈ (𝑋𝑢 𝑗 , 𝑋𝑢 𝑗+𝜂].
We replace 𝑞1 by 𝑞12𝜈2 (𝑞)3𝜈3 (𝑞) if the powers of 2 and 3 dividing q are not already divisors of
𝑞1, . . . , 𝑞𝑘−1. The factors 𝑞 𝑗 are mutually coprime by construction. Putting 𝑞𝑘 := 𝑞/(𝑞1 · · · 𝑞𝑘−1), the
above construction and 𝑞 ∈ (𝑋, 2𝑋] forces (𝑞𝑘 , 6) = 1 and

𝑞𝑘 ∈ (𝑋1−𝑢1−...−𝑢𝑘−1−(𝑘−1)𝜂2−𝜈2 (𝑞)3−𝜈3 (𝑞) , 2𝑋1−𝑢1−...−𝑢𝑘−1],

which implies the claim since 𝑢𝑘 = 1 − 𝑢1 − . . . − 𝑢𝑘−1 by definition. �

6.1. First Result: 𝑞 ≤ 𝑋3/4−𝜀

We begin by considering the easier range 𝑋2/3−𝜀 < 𝑞 ≤ 𝑋3/4−𝜀 , in which we need not assume that
q is squarefree. Let 𝜂/12 ≤ 𝛿 < 1/50. By Lemma 6.1 a), we can choose a divisor 𝑞 of q with
𝑞 ∈ (𝑋1/2+12𝛿 , 𝑋1/2+12𝛿+𝜂]. Take 𝑉0 = 𝐾 = 𝑋 𝛿+𝜀 and 𝑍 = 𝑋10𝛿 . Using Lemma 2.2, we can bound

max
𝑞′ |�̃�

max
1≤𝑘′≤𝑞′
(𝑘′,𝑞′)=1

max
1≤𝑚≤𝑞′/𝐾

𝜅(𝑚; 𝑘 ′𝑎, 𝑞′) � 𝐾𝑞1/2+𝜀 � 𝑋 𝛿+𝜀𝑋1/4+6𝛿+𝜂/2.

From (35) and the above parameter choices, as well as the lower bound 𝑉1 ≥ 𝑋1−𝛿−𝜀/(𝑞𝑉0) ≥
𝑋1/4−2𝛿−3𝜀 that we may assume (see (4) above), we obtain

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀
𝑋2𝛿+2𝜀+1/2

𝑞1/2 + 𝑋2𝛿+3𝜀−15𝛿𝑞1/2 + 𝑋 𝛿+𝜀 + 𝑋1−𝛿

𝑞
+ 𝑋1+𝜀

𝑞𝑉1

+ 𝑋 𝛿+𝜀𝑋1/2(1−10𝛿)𝑞−1/2 + 𝑋1+𝛿+𝜀+15𝛿𝑞−3/2
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�𝜀 𝑋1/4−4𝛿+2𝜀 + 𝑋1/4−7𝛿+𝜂/2+𝜀 + 𝑋1/4−𝛿+𝜀 + 𝑋1−𝛿

𝑞
+ 𝑋1/4−10𝛿+2𝜀

+ 𝑋1/4−10𝛿+4𝜀 + 𝑋1/4−2𝛿+𝜀

� 𝑋1−𝛿/𝑞,

using the fact that 𝜂 ≤ 12𝛿 in the last line. This implies the claim for 𝑞 ≤ 𝑋3/4−𝜀 .

Remark 6.2. The above proof shows that we can obtain power-savings in the range 𝑞 ≤ 𝑋3/4−𝜀 for q
that are 𝑋 𝜂-smooth with any 𝜂 < 6/25, since in this case the choice 𝛿 = 𝜂/12 is admissible.

6.2. Squarefree 𝑋3/4−𝜀 < 𝑞 ≤ 𝑋3/4+1/1044−𝜀

In this range of the modulus q we will invoke Propositions 2.3 and 2.4 i), and to this end we need a
suitable divisor 𝑞 of q as well as a suitable factorisation for 𝑞. We begin this subsection by outlining the
parameter choices needed to this end.

Let 𝐿 ≥ 2. Fix 0 < 𝛿 < 1/10 to be chosen later and let 𝜃 := 3/4 + 𝜆, where 𝜂/2 < 𝜆 <
min{1/20, 1/(2𝐿)}. We will determine constraints on 𝜆 momentarily, from which we will conclude that
any 𝜆 < 1/1044 will be admissible.

Set 𝛾 := 2𝛿 + 𝜆 + 𝜀 for 𝜀 > 0 small and put

𝜎 :=
1
𝐿
+ 2(2𝐿+2 + 𝐿)

𝐿
𝛾,

assuming that 𝛾 and L are chosen so that this is < 1/4 + 𝜆. Also, put 𝐾 :=
⌊
𝑋𝜎/2−𝜆⌋ . Suppose that

𝑞 ∈ (𝑋 𝜃 , 2𝑋 𝜃 ] is squarefree and 𝑋 𝜂-smooth. As 𝜎 < 1/4 + 𝜆, by Lemma 6.1 a) we may choose
𝑞 ∈ (𝑋1/2+𝜎 , 𝑋1/2+𝜎+𝜂].

Of course, 𝑞 is also 𝑋 𝜂-smooth. Applying Lemma 6.1 b), we can find a factorisation 𝑞 = 𝑞0𝑞1 · · · 𝑞𝐿 ,
such that

𝑞𝐿− 𝑗+1 ∈ (𝑋𝜎/2−(2 𝑗+1)𝛾−𝜂 , 𝑋𝜎/2−(2 𝑗+1)𝛾] for all 1 ≤ 𝑗 ≤ 𝐿 − 1,

𝑞1 ∈ (𝑋𝜎/2−(2𝐿+1)𝛾−𝜂 , 6𝑋𝜎/2−(2𝐿+1)𝛾],

𝑞0 ∈ [𝑋𝜎−(2𝐿+1+2)𝛾/6, 2𝑋𝜎−(2𝐿+1+2)𝛾+𝐿𝜂).

This is indeed possible since 𝑞 ∈ (𝑋1/2+𝜎 , 𝑋1/2+𝜎+𝜂] and

𝜎 − (2𝐿+1 + 2)𝛾 + 𝐿𝜂 +
∑

1≤ 𝑗≤𝐿

(𝜎
2
− (2 𝑗 + 1)𝛾 − 𝜂

)
= (𝐿/2 + 1)𝜎 − (2𝐿+2 + 𝐿)𝛾

=
1
2
+ 𝜎 + 𝐿

2

(
𝜎 − 1

𝐿
− 2(2𝐿+2 + 𝐿)

𝐿
𝛾

)
=

1
2
+ 𝜎.

Note that, by construction, we have 𝐾 ≥ max{𝑞1, . . . , 𝑞𝐿} and, moreover,

max
⎧⎪⎪⎨⎪⎪⎩
(
𝑞1/2

0
𝐾

)2−𝐿

,

(
𝑞𝐿− 𝑗+1

𝐾

)2− 𝑗 ⎫⎪⎪⎬⎪⎪⎭ � 𝑋−𝛾 for all 1 ≤ 𝑗 ≤ 𝐿. (36)

In addition, since 𝛾 ≤ 𝜎/2,

𝑞−2−(𝐿+1)

0 � 𝑋−2−(𝐿+1) 𝜎+(1+2−𝐿 )𝛾 � 𝑋−𝛾 . (37)
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Next, select 𝑉0 = 𝑋 𝛿+𝜀 and 𝑍 = 𝑋
2
3 (𝜎/2+4𝛿+2𝜆−2𝜀) , which satisfies 𝑍 ≤ 𝑞/𝐾 . We apply all of these

parameter choices in (35), as well as the inequalities

(i) 𝜂/2 < 𝜆 < 1/20 and 𝛿 < 1/10,
(ii) 𝑋1−𝛿/𝑞 ≥ 1

2 𝑋
1/4−𝛿−𝜆,

(iii) 𝜎 > 10𝛾 > 10(𝛿 + 𝜆) and
(iv) 𝑋1−𝛿−𝜀/(𝑞𝑉0) ≤ 𝑉1 � 𝑋1/2,

to obtain

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀 𝑋
1
2+𝛿+2𝜀𝑞−1 max

𝑓 |�̃�
𝑓 ≤𝑍

∑∗

𝑘 (mod �̃�/ 𝑓 )

∑
𝑚 (mod �̃�/ 𝑓 )

𝑚≠0

|𝜅(𝑚; 𝑘𝑎, 𝑞/ 𝑓 ) |
𝑘𝑚

+ 𝑋2𝛿−(𝜎/2+4𝛿+2𝜆−2𝜀)+3𝜀𝑞1/2

+ 𝑋1−𝛿

𝑞
+ 𝑋1+𝜀

𝑞𝑉1
+ 𝑋1/2− 1

3 (𝜎/2+4𝛿+2𝜆−2𝜀)+𝜀𝑞−1/2 + 𝑋1+𝜎/2+(𝜎/2+4𝛿+2𝜆−2𝜀)−𝜆+𝜀𝑞−3/2

= 𝑋−𝜎+𝛿+2𝜀 max
𝑓 |�̃�
𝑓 ≤𝑍

∑∗

𝑘 (mod �̃�/ 𝑓 )

∑
𝑚 (mod �̃�/ 𝑓 )

𝑚≠0

|𝜅(𝑚; 𝑘𝑎, 𝑞/ 𝑓 ) |
𝑘𝑚

+ 𝑋1−𝛿

𝑞
· 𝑋−𝛿−𝜆+𝜂/2+5𝜀

+ 𝑋1−𝛿

𝑞

(
1 + 𝑋−𝜎+3𝛿+2𝜆+2𝜀 + 𝑋−

2𝜎
3 −𝛿/3+𝜆/3+5𝜀/3 + 𝑋−𝜎/2+5𝛿+𝜆+𝜂−𝜀

)
�𝜀 𝑋−𝜎+𝛿+2𝜀 max

𝑓 |�̃�
𝑓 ≤𝑍

∑∗

𝑘 (mod �̃�/ 𝑓 )

∑
𝑚 (mod �̃�/ 𝑓 )

𝑚≠0

|𝜅(𝑚; 𝑘𝑎, 𝑞/ 𝑓 ) |
𝑘𝑚

+ 𝑋1−𝛿

𝑞
, (38)

provided that 𝜀 > 0 is sufficiently small.
Fix 𝑓0 | 𝑞 with 𝑓0 ≤ 𝑍 that maximises the sum over f in (35) and let 𝑞′ := 𝑞/ 𝑓0. We can

factor 𝑞′ = 𝑞′0 · · · 𝑞
′
𝐿 as in Proposition 2.3 by writing 𝑞 = 𝑞0 · · · 𝑞𝐿 and setting 𝑞′𝑗 := 𝑞 𝑗/(𝑞 𝑗 , 𝑓0),

for each j. Putting 𝑄 = 𝑞′ and recalling that 𝐾 ≥ max1≤ 𝑗≤𝐿 𝑞 𝑗 , we may combine Proposition 2.4
i) with Proposition 2.3 to get that for each 1 ≤ 𝑚 ≤ 𝑞′ − 1 and each 1 ≤ 𝑘 ≤ 𝑞′ − 1 coprime
to 𝑞′,

|𝜅(𝑚; 𝑘𝑎, 𝑞′) |

�𝜀,𝐿 (𝑞′)1/2+𝜀𝐾
��

∑

1≤ 𝑗≤𝐿

(
𝑞′𝐿− 𝑗+1

𝐾

)2− 𝑗

+
(
𝑞′(𝑞′) 𝜀 (𝑞′0)

2𝐿−1+3/2

𝐾𝐿+1(𝑞′0)2
𝐿−1+1

(2𝐾)𝐿
𝑞′

(𝐾/𝑞′0 + 1)
)2−𝐿���

�𝐿 (𝑞/ 𝑓0)1/2+𝜀𝐾
��

∑

1≤ 𝑗≤𝐿

(
𝑞𝐿− 𝑗+1

( 𝑓0, 𝑞𝐿− 𝑗+1)𝐾

)2− 𝑗

+
(√

𝑞0/(𝑞0, 𝑓0)
𝐾

)2−𝐿

+ (𝑞0/(𝑞0, 𝑓0))−2−𝐿−1���
� 𝐾𝑞1/2𝑋−𝛾 � 𝑋

1
4+𝜎+𝜂/2−𝛾−𝜆,

using 𝑓 −1/2+𝜀
0 (𝑞0, 𝑓0)2

−𝐿−1 �𝜀 1 whenever 𝐿 ≥ 2. Inserting this bound into (38) and summing m and k,
when 𝜀 is sufficiently small we obtain

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀 𝑋−𝜎+𝛿+3𝜀 · 𝑋
1
4+𝜎+𝜂/2−𝛾−𝜆 + 𝑋1−𝛿

𝑞

=
𝑋1−𝛿

𝑞

(
1 + 𝑋−𝜆+𝜂/2+3𝜀

)
� 𝑋1−𝛿

𝑞
.
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It remains to show that any 𝜆 < 1/1044 is admissible. With the parameter choices made earlier, we
have assumed that

𝜎 =
1
𝐿
+ 2(2𝐿+2 + 𝐿)𝛾

𝐿
<

1
4
+ 𝜆 <

1
4
+ 𝛾,

which forces 𝐿 ≥ 5 and

𝛾 ≤ 𝐿/4 − 1
2𝐿+3 + 𝐿

.

Since the bounds are decreasing in L, we deduce by setting 𝐿 = 5 that

𝜆 < 𝛾 ≤ 1
1044

.

Furthermore, as 𝛾 = 2𝛿 + 𝜆, we may always choose 𝛿 small enough so that any 𝜆 > 1/1044 − 𝜀′ is
obtainable, for any 𝜀′ > 0. We thus deduce that for 𝜂 > 0 sufficiently small (in particular, smaller than
2𝜆) we can find 𝛿 = 𝛿(𝜂, 𝜀) such that if 𝑞 ≤ 𝑋3/4+1/1044−𝜀 is smooth and squarefree, then

Δ𝜇2 (𝑋; 𝑞, 𝑎) �𝜀 𝑋1−𝛿/𝑞,

for any residue class a modulo q.

6.3. Non-squarefree 𝑞 > 𝑋3/4−𝜀

The proof follows similar lines to that of Theorem 1.1 but invoking Proposition 2.4 ii) rather than i). The
choice of parameters can be rigged up similarly as in the previous proof, save that the factors 𝑞0, . . . , 𝑞𝐿
must be chosen to satisfy 𝐾 ≥ max{𝑞1, . . . , 𝑞𝐿} and also

max
⎧⎪⎪⎨⎪⎪⎩
(
𝑞1−𝛿′

0
𝐾

)2−𝐿

,

(
𝑞𝐿− 𝑗+1

𝐾

)2− 𝑗 ⎫⎪⎪⎬⎪⎪⎭ � 𝑋−𝛾 ,

in analogy to (36), which amounts to replacing the condition 𝑞−2−(𝐿+1)

0 � 𝑋−𝛾 by 𝑞−(1−𝛿
′)2−𝐿

0 � 𝑋𝛾 .
We also must choose 𝑞0 to be coprime to 2 and 3 in order to apply the results of Section 4, but by the
𝑋 𝜂-ultrasmooth condition this can be done at a cost of 𝑋2𝜂 in precision in the choice of 𝑞1 (as is done
explicitly in Lemma 6.1 b).

Finally, in order to apply Lemma 5.3 we must assume 𝐾/𝑞 𝑗 ≥ 𝑞 𝛿
′

0 for all 1 ≤ 𝑗 ≤ 𝐿, where
𝛿′ = 𝛿′(𝐿) ∈ (0, 2−2𝐿 ] arises in Proposition 2.4. This can be assured in light of the choice 𝜎 from the
previous subsection: up to 𝑋 𝜂 factors (where 𝜂 can be chosen as small as desired), we have, uniformly
in 1 ≤ 𝑗 ≤ 𝐿,

𝐾/𝑞 𝑗 ≥
1
2
𝑋2 𝑗𝛾+2𝛿 ≥ 1

2
𝑋4𝛾+2𝛿 ,

with 𝛾 = 2𝛿 + 𝜆, whereas

𝑞 𝛿
′

0 ≤ 2𝑋2𝜎𝛿′+𝛿′𝜂𝐿 ≤ 𝑋 𝛿′ (2/𝐿+𝜂𝐿)+(2𝐿+3+2𝐿)𝛾𝛿′/𝐿 ,

so that as 𝛿′ ≤ 2−2𝐿 it suffices, for instance, to have 𝛾 + 𝛿 > 𝛿′(1/𝐿 + 𝜂𝐿). We leave to the interested
reader the determination of an explicit choice of 𝜆 and 𝛿 (both of which necessarily depend on 𝛿′, which
could be reduced if necessary) in which the range 𝑞 ≤ 𝑋3/4+𝜆 is admissible with power savings 𝑋1−𝛿/𝑞.

https://doi.org/10.1017/fms.2021.67 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.67


46 Alexander P. Mangerel

Proof of Corollary 1.3. Put 𝑌 := 𝑋196/261−𝜀 and set 𝑢 := (log𝑌 )/(𝜂 log 𝑋). It suffices to show that

|{𝑞 ≤ 𝑌 : 𝑃+(𝑞) ≤ 𝑋 𝜂 , 𝜇2 (𝑞) = 1}| �𝜂 𝑌 .

Of course, we have∑
𝑞≤𝑌

𝜇2(𝑞)1𝑃+ (𝑞) ≤𝑋 𝜂 =
∑

𝑑≤𝑌 1/2

𝜇(𝑑)1𝑃+ (𝑑) ≤𝑋 𝜂
∑

𝑚≤𝑌 /𝑑2

1𝑃+ (𝑚) ≤𝑋 𝜂 .

Put 𝐷 := (log 𝑋)1/2. Then we trivially bound∑
𝐷<𝑑≤𝑌 1/2

𝜇(𝑑)1𝑃+ (𝑑) ≤𝑋 𝜂
∑

𝑚≤𝑌 /𝑑2

1𝑃+ (𝑚) ≤𝑋 𝜂 � 𝑌
∑
𝑑>𝐷

𝑑−2 � 𝑌 (log 𝑋)−1/2.

On the other hand, standard estimates for smooth numbers (see, e.g., Theorem III.5.8 of [24]) yield∑
𝑑≤𝐷

𝜇(𝑑)1𝑃+ (𝑑) ≤𝑋 𝜂
∑

𝑚≤𝑌 /𝑑2

1𝑃+ (𝑚) ≤𝑋 𝜂

= 𝑌
∑
𝑑≤𝐷

𝜇(𝑑)𝜌(log(𝑌/𝑑2)/𝜂 log 𝑋)
𝑑2 1𝑃+ (𝑑) ≤𝑋 𝜂 +𝑂𝜂 (𝑌𝐷/log 𝑋)

=
6
𝜋2 𝜌(𝑢)𝑌 +𝑂𝜂

(
𝑌
∑
𝑑≤𝐷

|𝜌(𝑢) − 𝜌(𝑢 − 𝑣𝑑) |
𝑑2 + 𝑌 (log 𝑋)−1/2

)
,

where 𝜌 denotes the Dickman function and for each 𝑑 ≤ 𝐷 we set 𝑣𝑑 := 2(log 𝑑)
𝜂 log𝑋 . As

𝑤𝜌′(𝑤) = −𝜌(𝑤 − 1)

for 𝑤 > 1, we observe that for each 𝑑 ≤ 𝐷,

|𝜌(𝑢 − 𝑣𝑑) − 𝜌(𝑢) | =
����∫ 𝑢

𝑢−𝑣𝑑
𝜌′(𝑡)𝑑𝑡

���� ≤ 𝑣𝑑 max
0≤𝑡≤𝑣𝑑

|𝜌′(𝑢 − 𝑡) |

�𝜂
log log 𝑋

log 𝑋

𝜌(𝑢 − 2)
𝑢

�𝜂
log log 𝑋

log 𝑋
,

provided X is large enough in terms of 𝜂. We thus deduce that

|{𝑞 ≤ 𝑌 : 𝑃+(𝑞) ≤ 𝑋 𝜂 , 𝜇2 (𝑞) = 1}| = 6
𝜋2 𝜌(𝑢)𝑌

(
1 +𝑂𝜂 (1/

√
log 𝑋)

)
�𝜂 𝑌,

as 𝑢 �𝜂 1, and the claim follows. �
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