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1. Introduction. In 1959, Bishop [4] published a seminal paper in which he studied
various types of spectral decompositions or "duality theories" that an arbitrary bounded
linear operator on a reflexive Banach space might have. In the course of his investigations,
he isolated the following analytic property which he called condition (/3).

DEFINITION 1.1. Let T be a bounded linear operator on a complex Banach space X,
and suppose that for any open subset V of C and any sequence /„ : V —*• X of X-valued
analytic functions such that (X.I— T)fn(k) -» 0 uniformly in norm on compact subsets of V,
we also have that fn(\) -»• 0 uniformly in norm on compact subsets of V. In this case we say
that T has condition (0).

We remark that our definition of condition (|3) is slightly different from Bishop's, his
requiring only that (/n(A.)) be uniformly bounded on compact subsets of V when
(A/-T)/n(A)—»0 uniformly in norm on compact subsets of V.

In [11], Foia§ showed that every decomposable operator (and therefore spectral
operators in the sense of Dunford, compact operators, and unitary, normal, and self-
adjoint operators on a Hilbert space) enjoys condition (/3). Indeed, in a sense, any
operator that can be said to have a satisfactory spectral decomposition must have
condition ((3). More precisely, Erdelyi and Lange [9] defined axiomatically what they
considered to be the minimum properties that an operator should possess in order to say it
has a "spectral decomposition". Operators with these properties were said to have the
spectral decomposition property (SDP). Albrecht [1], and independently Lange [17] and
Nagy [19], in a beautiful and surprising result, proved the equivalence between SDP and
decomposability. This is of particular interest to us not merely because it justifies our
remark that any operator with a reasonable spectral decomposition must have condition
((3), but also because the key to Albrecht's proof lies in establishing that any operator with
the SDP enjoys condition (|3).

The importance of condition (|3) now begins to emerge; condition (0) is not merely a
property that a certain large class of operators happens to possess, but rather is a useful
tool which can be applied in proving important theorems. This importance is brought
sharply into focus by the following remarkable characterization due to Lange [16].

THEOREM 1.2 (Lange's Theorem). Let T be a bounded linear operator on a reflexive
Banach space. Then T is decomposable if and only if T and its adjoint T* have condition
O).

t This material constitutes part of the Author's Ph.D. thesis written under the direction of R. G. Bartle at
the University of Illinois.

Glasgow Math. J. 26 (1985) 35-46.

https://doi.org/10.1017/S0017089500005759 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005759


36 JON C. SNADER

There are other applications as well. In [22], the author used condition (0) to study
strongly analytic subspaces (see [18]) and to obtain a characterization of strongly decom-
posable operators [2] on a reflexive Banach space.

2. Bishop's condition ((J). As we remarked previously, examples of operators
enjoying condition (/3) abound. On the other hand, the class of operators satisfying
condition (|3) is not too large.

EXAMPLE 2.1. This is an example of an operator without condition ((3). Define
X = €2(H), and let T be the left shift. Let {c1; e2,...} be the usual orthonormal basis in
<?2(N), and define V = {A:|A|<1} and

1=0

Now each fn is analytic on V and is certainly not identically zero. However, as a routine
calculation shows, (AI- T)/,,(A) = 0 (n = 1, 2, . . . ; A s V). Thus T does not have condition
(0).

A useful criterion guaranteeing that an operator does not have condition (/3) is
provided by the following definition and theorem.

DEFINITION 2.2 [7]. A closed linear operator T:D(<=x)-»X is said to have the
single-valued extension property (SVEP) if for every open set V<=C and every analytic
function / : V->D, the condition (AI-T)/(A) = 0 for A in V implies that /(A) = 0 for A in
V.

The next result was known to Bishop. Its simple proof follows by taking /n(A) = /(A)
(n = 1, 2, . . . ) .

THEOREM 2.3. If a bounded linear operator on a Banach space has condition (/3), then
it also has the SVEP.

The next Theorem is due to Finch [10]; its corollary provides a useful test for
operators that fail to have condition (0).

THEOREM 2.4. Let Tbe a closed linear operator on a Banach space X. If the range of T
is all of X, but T is not one-one, then T does not have the SVEP.

COROLLARY 2.5. Let Tbe a bounded linear operator on a Banach space X. If the range
of T is all of X, but T is not one-one, then T does not have condition (/3).

REMARKS 2.6. The following remarks are all easy consequences of Corollary 2.5. In
all of the remarks, T is a bounded linear operator on a Banach space.

(1) If T is an isometry but is not onto, then T* does not have condition (/3). Indeed,
as is well known, the fact that the range of T is closed implies that the range of T* is also
closed; further, if T is one-one, then the range of T* is X*. But now T* is not one-one
since the range of T is not X.

(2) If T has a right inverse but no left inverse, then T does not have condition (/3).
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The hypothesis here is just another way of saying T is onto but not one-one. Notice that
this remark provides another proof of the fact that the operator in Example 2.1 does not
have condition (/3).

(3) If T has condition (j3), then A e p{T), the resolvent set of T, if and only if the
range of (A/- T) is all of X. As we shall see (Theorem 2.11), the operator (A/- T) enjoys
condition (|3) if T does. Now if (AI-T) is onto, it must also be one-one since it has
condition (j3). Therefore (AJ- T)"1 exists, and A ep(T). The reverse implication is trivial.

Now that we have established that the class of bounded operators enjoying condition
(/3) is a proper subset of the bounded operators, and have determined some necessary
conditions for membership in that class, let us consider to what extent an operator having
condition (/3) implies that a related operator also has condition (/3).

Perhaps the most natural related operator in the context of spectral theory is the
restriction operator. The next theorem is immediate.

THEOREM 2.7. Let Tbe a bounded linear operator on a Banach space X, and let Y<= X
be a T-invariant subspace. If T has condition (/3), then so does the restriction operator
(T\Y):Y-*Y.

If Y is a T-invariant subspace, an operator closely related to both T and T | Y is the
quotient operator TY on X/Y. Here the expected result does not hold. Before we can
present the appropriate example, however, we need the following result which is interest-
ing in its own right.

THEOREM 2.8. If T is a bounded linear operator on a Banach space X, and if B is a
linear isomorphism between the Banach spaces X and Y, then T has condition (/3) if and
only if BTB'1 does.

Proof. Suppose that T has condition (|3), that /„ : V—» Y, (n = 1, 2, . . . ) , are Y-valued
analytic functions, and that (kl—BTB~*)fn(\) —»0 uniformly on compact subsets of V.
Then for any compact K c V . w e have that B(\I- TW^M -*• 0 uniformly for A in K;
hence by the boundedness of B"1, we see that (AI- T)B~1/n(^) —* 0 uniformly for A in K.
Since T has condition (j3), we conclude that B~lfn(K)—>0 uniformly for A in K. Finally,
by the boundedness of B, we deduce that /n(A) —» 0 uniformly for A in K. Since K was an
arbitrary compact subset of V, it follows that BTB'1 has condition (/3). The reverse
implication follows by symmetry.

We are now ready to address the question of whether TY has condition ((3).

EXAMPLE 2.9. Here we give an example of an operator T and a T-invariant subspace
V such that T has condition (|3), but TY does not. Let X = €2(Z), let T be the left
bilateral shift, and let Y = sp{e_1, e_2, e_3,. . .}, where {e0, e±1, e±2, • • •} is the usual or-
thonormal basis for ^2(Z). Now T is unitary and so certainly has condition (|3), but T v is
isomorphic to the left shift on ^2(N), and hence does not have condition (/3) by Example
2.1 and Theorem 2.8.

A characterization of those subspaces Y for which TY has condition (j3) when T
does, as well as some applications, can be found in [22].
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The proof of the next theorem uses an idea due to Lange [18].

THEOREM 2.10. Let T be a bounded linear operator on a Banach space X. If T has
condition ((3), and T"1 exists, then T"1 also has condition (f3).

Proof. Let fn:V—*X (n = 1, 2,. . .) be X-valued analytic functions, let T have
condition (/3), and suppose that (\I-T~l)fn(\)-*Q uniformly on compact subsets of V.
Let K c V b e compact. Now 0 is not in the spectrum crCT"1) of T"1 and so there exists an
r > 0 such that {AeC:|A|<r} is disjoint from o-(T~l). Define the compact sets K, and K2

Y X { A e

K2 = {AeC:|A|s*r}n.K

and notice that K = KX\JK2. Since K1cp(T~1), it is clear that /n(A)-»0 uniformly
for A. in K\. For A e W = {A eC:|A|>r/2}H V, we have (XI-T"1)/n(X) =
-(A~lI-T)(T/Ar7n(A.) so that (A~lI- T){Tlk)~lfn(A) -»0 uniformly on compact subsets
of W. Define

so that gn(l/A) is analytic on W. Thus for A in compact subsets of W, (A"1/- T)gn(l/A) -»
0 uniformly, and since T has condition (/3), we see that gn(l/A)—»0 uniformly for A in
K2^W. Now for A in K2, the operator T/A is bounded, so we have that /n(A) =
(T/A)gn(l/A)-»0 uniformly. Thus /n(A)-*0 uniformly for A in K = K,UK2 proving the
theorem.

Along the same lines we have the following result.

THEOREM 2.11. If a bounded linear operator Ton a Banach space X has condition (/3),
then

(i) the operator aT has condition (/3) for any scalar a in C,
(ii) the operator {al-T) has condition (0) for any scalar a in C,
(iii) the resolvent operator R(A; T) = (AZ-T)"1 has condition ((3) for every A€p(T).

Proof. The proofs of (i) and (ii) are similar; we prove only (ii).
Let /n(A): V—»X (n = 1, 2,. . .) be X-valued analytic functions, let a be in C, and

suppose that {AI-(aI-T)}/n(A)-»0 uniformly on compact subsets of V. If we define

then the gn are analytic for A + a in V, and {(A — a)I — T}gn(A - a ) —» 0 uniformly for A in
a compact subset of V. Since T has condition (/3), we see that for any compact K <= V,
gn(A-a)—»0 uniformly for A in K, and so fn(K) = gn(A-a)—»0 uniformly for A in K.

Part (iii) is a corollary of (ii) above and Theorem 2.10.

As one would expect, condition (|3) is preserved under the direct sum of operators.

THEOREM 2.12. A bounded linear operator Tt © T2 on the Banach space X, © X2 has
condition (|3) if and only if T| has condition (|3) on Xf (i = 1, 2).
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Proof. Suppose that Tt © T2 has condition (0), that fn :V->XU (n = 1, 2,.. .) are
X,-valued analytic functions, and that (kl- T^f^k) -> 0 uniformly on compact subsets of
V. Let Jj be the identity operator on Xf (i = 1, 2) and define gn : V -*• X2 for n = 1,2,. . . ,
by gn = 0I2. Then we have that (A(/1©I2)-(T1©T2))(/n(A)ffign(A))^-0 uniformly on
compact subsets of V. Since T, © T2 has condition (0), then fn(k) © gn(k) -*• 0 uniformly
on compact subsets of V. By the definition of convergence in Xa © X2, we conclude that
fnW~*0 uniformly on compact subsets of V, and hence that Tj has condition (0). The
same argument, mutatis mutandis, shows that T2 has condition (0).

On the other hand, if T) on Xf (i = 1, 2), have condition (0), if f\ © f\: V -» Xj © X2

(n = 1, 2,. . .) are Xt ©X2-valued analytic functions with f'n : V—» Xf vector valued analy-
tic functions, and if

(A(I, © I2) - (T, © T2))(/i(A) © /*(A)) -> 0

uniformly on compact subsets of V, then (A/; - T;)/'n(A) -» 0 uniformly on compact subsets
of V for i = 1, 2. Since the T| have condition (0), we see that f'n(k) —> 0 uniformly on
compact subsets of V for i = 1, 2, and therefore that /i(A)©/^(A)->0 uniformly on
compact subsets of V, completing the proof.

We have already seen, in Theorem 2.7, that if Y<=X is a T-invariant subspace, then
T | Y has condition (0) if T does. The converse, of course, is false.

EXAMPLE 2.13. This is an example of a T-invariant subspace Y, such that T\ Y has
condition (0), but T does not.

Let X = 4(N) © €2(N), let R : €2(N) - • <?2(N) be the right shift, let L: €2(N) -+ €2(N)
be the left shift, and let T : X ^ X be L(BR. Then T does not have condition (0) by
Example 2.1 and the last theorem. On the other hand, if we define Y = (0) © €2(N), then
Y is T invariant, and T | Y is isomorphic to R. Since the right shift on ^2(N) is a
restriction of the unitary bilateral shift on €2(Z), it enjoys condition (0) by Theorem 2.7.
Thus by Theorem 2.8, the operator T | Y has condition (0).

In some cases we can conclude that T has condition (0) if we know that T | Y does
for certain T-invariant subspaces Y.

DEFINITION 2.14 [8, VII.3.17]. A subset of <r(T) that is both open and closed in a(T)
is called a spectral set.

DEFINITION 2.15. Let <r be a spectral set of cr(T), and let / be a scalar-valued
function, analytic on a neighborhood U of ar(T), such that / is identically 1 o n e and
vanishes on a{T)\a. Define

E(o-) = ̂ - f f(k)(kI-T)-ldk,

where F is a finite union of rectifiable Jordan curves such that cr(T) lies "inside" F, and
such that F c [ / .

By [8, VII.3.20-1], each E(a) is a projection such that E(a)X reduces T and such
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that the map a —» E(a) is an isomorphism of the Boolean algebra of spectral sets onto the
Boolean algebra of all projections of the form E(a) with a a spectral set.

THEOREM 2.16. Let Tbe a bounded linear operator on a Banach space X. Suppose that
n

a(T) is disconnected with spectral sets ax,..., <rn such that a(T) = U cr,. Define
I

Then T has condition ( 0 ) if and only if each restriction T | Y, (j = 1 , • • • , " ) does.
n n

Proof. From the discussion above, we have X = 0 Y,-, and T= 0 (T | Y}). By
i=i /=i

Theorem 2.12 it follows that T has condition (/3) if and only if each (T | Y,), j = l,... ,n,
does.

For operators whose spectra exhibit an extreme behavior of this sort, we have a
stronger result.

THEOREM 2.17. Let T be a bounded linear operator on a Banach space X. If the
spectrum of T is totally disconnected, then T is decomposable. In particular, T has condition

Proof. By [1] and [20], it suffices to show that if Gx and G2 are open sets in C and if
cr(T) c d U G2, then there exist T-invariant subspaces Yj and Y2 such that

(i) X=Y1+Y2 and
(ii) a(T|Y,)c:G,. 0" = 1. 2).
Let us assume, therefore, that Gj and G2 are open sets that cover <r(T). Each point of

o-(T) has a clopen neighborhood in either Gt or G2. Because <x(T) is compact, a finite
number of these clopen neighborhoods cover cr(T). Let Nu ... ,Nk be those clopen
neighborhoods that are contained in Gx. For each point A of <x(T) such that A is in

[ U

(; = 1 , . . . , k). Now {Ni,..., Nk}U |DX : A e cr(T) n ( G 2 \ ( U N/)) } is an open cover of

cr(T), so there exists a finite subcover. Let crx be all members of the subcover from the set
{N 1 ; . . . , Nk}, and let cr2 be the remaining neighborhoods in the subcover.

Now <j1 and a2 are clopen and disjoint, so there exist scalar-valued analytic functions
/j and f2 such that / t is identically 1 on o-x and vanishes on a2 and such that f2 is
identically 1 on <x2 and vanishes on ov Define E(a,) 0 = 1, 2), as in Definition 2.15. Now
Y, =E(OJ) 0 = 1» 2), are T-invariant subspaces such that X = Yj + Y2) and it follows from
[8, VII.3.20] that a(T | Y,) c o-. c G, 0 = 1> 2). Thus T is decomposable, and in particular,
T has condition (|3).

In [10, Cor. 6], Finch showed that if a bounded linear operator T on a Banach space
has the SVEP, then <T(T*) = cra(T*), where cra(T*) is the approximate point spectrum of
T* [6, 1.15]. Similarly, if T* has the SVEP, then a(T) = cra(T). In view of Theorem 2.3,
these results hold if T or T* have condition (|3).

G2\[ U Ni) w e m a v cnoose a clopen neighborhood DK^G2 such that DxnN, =
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On the other hand, by the Duality Theorem for decomposable operators, [12], [13],
T is decomposable if and only if T* is. Thus for a decomposable operator, we have that
cr(T) = <xa(T). These considerations allow us to verify the distinction between the class of
operators with condition (/3), and the class of decomposable operators.

EXAMPLE 2.18. This is an example of an operator that enjoys condition (/3), but is not
decomposable.

Let X = €2(N) and let T be the right shift. Now T is the restriction of a unitary
operator, and so it has condition (j3). As is well known, cr(T) = {\ e C: |\| =£ 1}, while
cra(T) = -UeC:|X.| = l}. Thus a(T)i=a-a(T), and from the preceding remarks, it follows
that T is not decomposable.

We remark also that the fact that cr(T) ̂  <xa(T) shows that T* cannot have condition
(/3). This is hardly surprising since T* is our old friend the left shift on ^2(N). Because this
shows that condition (/3) is not preserved under the adjoint operation, we record it as
follows.

EXAMPLE 2.19. The right shift on €2(N) is an example of a bounded linear operator
that has condition {($), but whose adjoint does not.

The next few examples show that condition (0) fails to be preserved under a variety
of common operations. It seems entirely reasonable that if two operators have condition
(0), then so does their sum. The next example shows that this is not the case.

EXAMPLE 2.20. In this example we have two operators that have condition (|3), but
whose sum does not.

Let T be any operator on a Hilbert space that does not have condition (/3). Then
T = i(T+T*) + i(T-T*), and since the operators $(T+T*) and l(T-T*) are normal,
they have condition (|3).

Unlike the compact operators, for instance, the operators that have condition (/3) do
not form an ideal in the algebra of operators on a Banach space.

EXAMPLE 2.21. This example shows that the product of an operator with condition
(|3) and a bounded linear operator may not have condition (j3), even if the two operators
commute.

Let X be a Banach space such that not all its bounded linear operators have
condition (/3), and let T be a bounded linear operator that does not. Now it is trivial that
the identity operator I on X has condition (j3), and I certainly commutes with T, but
IT=TI=T does not have condition (/3).

Another natural question is whether or not condition (/3) is preserved under compact
perturbations. The next example answers this in the negative. This example was used by
Lange, [18], in another context.

EXAMPLE 2.22. This is an example of an operator that has condition (/3), and a
compact perturbation of it that does not.

In [15], Herrero gave an example of a compact operator K of ^2(Z) such that U+K,
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where U is the right bilateral shift on €2(L), has the following properties:
(i) a ( l / + K) = {AeC:|\| = l};
(ii) if Y^(0) is an (C/+K)-invariant subspace of €2(Z), then either a(U+K\ Y) =

{AeC:|\| = l} or a(U+K \ Y) = {A eC:|A|s£l}.
Note that by Schauder's theorem, U* + K* is also a compact perturbation of a unitary

operator. Since U and U* are unitary, they both have condition (/3). On the other hand, if
both U+K and U* + K* have condition (|3), then U + K would be decomposable by
Lange's Theorem. In order to show that this is not possible, let Gj = {A € C: Re A <|} and
G2 = {AeC:ReA>-|} . Now {G1; G2} is an open cover for <r(U+K); hence if U+K is
decomposable, there exist (L7 + X)-invariant subspaces Y, and Y2 such that ^2(Z) =
Yx + Y2, and a{U+K\Y^Gi 0 = 1,2). Now if one of the Y,, say Yu is the zero
subspace, then Y2 = <f2(Z) and so a(U+K\ Y2) = o-(L/ + K:) = {AeC:|X.| = 1}<£G2. On the
other hand, if neither Y, nor Y2 is (0), then <r(U+K\ YJ^d, and this contradicts
condition (ii) above. Thus at least one of U + K and U* + K* does not have condition (/3).

Example 2.22 also provides us with another important verification.
EXAMPLE 2.23. Here we exhibit an operator that has the SVEP, but does not have

condition (|3).
Let U+K be as in the last example. Then a(U+K) = cr(U* + K*) = {keC:\\\ = l}.

But this implies that U+K and U* + K* both have the SVEP, for if not there exists an
open set V c C , and a non-zero, ^2(Z)-valued analytic function f:V—>^2(Z) such that
(KI-(U+K))f(K) = 0 for A e V. That is, for A in V, we have {U+K)f(k) = A/(A), so that
Vco-p([/+K), the point spectrum of U + K. Thus if U+K or U* + K* fails to have the
SVEP, its spectrum {A eC: |A| = 1} would contain an open set, which is impossible. On the
other hand, Example 2.22 shows that at least one of U+K or U* + K* fails to have
condition (/3).

With this last example, we have shown that condition (|3) is a genuine property in its
own right, and that it fits strictly between the SVEP and decomposability in the sense that
decomposability => condition (|3) ^ SVEP.

Under stronger hypotheses we can conclude that condition ((3) is preserved under
certain types of perturbations. In [3] and [21] it is shown that if T is decomposable and S
is an operator that commutes with T such that S has totally disconnected spectrum, then
T+S is decomposable. From this, the next theorem is immediate.

THEOREM 2.24. Let Tbe a decomposable operator on a Banach space X, and let S be a
bounded linear operator on X that commutes with T. If

(1) S is a quasinilpotent operator, or
(2) S is a compact operator, or
(3) S has discrete spectrum,

then T+S is decomposable. In particular T+S has condition (0).

The next theorem is almost immediate, but it is included for the sake of complete-
ness.

THEOREM 2.25. Let T be an arbitrary bounded linear operator on a Banach space X, let
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Q be a quasinilpotent operator on X that commutes with T, and let K be a compact operator
on X. Then QT, KT, and TK all have condition (/3).

Suppose that Tn (n = 1, 2,.. .) are bounded linear operators on a Banach space, that
each Tn enjoys condition (|3), and that the Tn converge to an operator T in some topology.
A natural question is whether or not T also has condition (/3). This gains in interest when
we notice that, in view of Lange's Theorem, it would imply that a convergent sequence of
decomposable operators on a reflexive Banach space would converge to a decomposable
operator. Unfortunately, this question has proved to be particularly intractable. Vasilescu
[23] has shown that the uniform limit of commuting operators with the SVEP also has the
SVEP, but we have been unable to extend the result to condition (/3) even under
hypotheses as strong as Vasilescu's. We can show, however, that convergence in the strong
operator topology is not enough.

EXAMPLE 2.26. In this example we construct a sequence of operators with condition
(/3) that converges in the strong operator topology to an operator without condition (0).

Define Tn : €2(N) -H> €2(N) (n = 1, 2,. . .) by

Tnek =0 for fc = 1

= efc_1 for 2s=fc«=n

= ek for k>n,

where {e,, e2,...} is the usual orthonormal basis, and extend Tn linearly and continuously
to all of ^2(N). Clearly the Tn are (uniformly) bounded linear operators. If we denote the
identity operator on ^2(N) by I and define fn to be the left shift on Cn, we may define the
operator

Tn®I:Cn® €2(N) -* Cn

Now o-(fn©J) = <r(fjUcr(J) = {0,1}, and so f n © I has condition (/3) by Theorem 2.17.
Since Tn is (topologically) isomorphic to Tn@I, we see, by Theorem 2.8, that each Tn has
condition (|3).

Let T be the left shift on ^2(N). Since for any x = (xk) in ^2(N) we have

k=n+l

we see that the Tn converge to T in the strong operator topology. By Example 2.1, T does
not have condition (0). This completes the example.

In many of the theorems and examples we have studied so far, the structure of the
spectrum of the operator played a key role in determining whether or not the operator
had condition (/3). This leads to speculation as to whether or not those operators enjoying
condition (/3) can be characterized by their spectra. The next example shows that is is not
the case—at least not in terms of the spectrum and its "fine structure".

EXAMPLE 2.27. We construct two operators whose spectra and fine structure are
identical, but such that only one of them has condition (0).
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Define the sets Do = {A e C: |A| < 1} and D = {A e C: |A|*£1}. Let ea be the function on
Do such that

ea(a) = l, and

e«(|3) = 0 for p±a.

Then {ea : a € Do} is the usual orthonormal basis for €2(D0). Let M be the multiplication
operator on €2{D^) defined by Mea =aea, extended linearly and continuously to €2(D0).
Let L be the left shift on €2(N), and 0 the zero operator on ^2(N) or €2(D0) depending on
context. Let X be the Banach space defined by X=€2(N)(B€2(D0), and define the two
operators S and T o n X b y S = 0 © M and T = L © 0. By Theorem 2.12, T does not have
condition (|3) since L does not. On the other hand, M is normal and so has condition (/3).
Likewise, 0 has condition 0 ) , and thus by Theorem 2.12 again, we infer that S does have
condition (/3).

A routine but tedious calculation shows that a(S) = aa(S) = D, crp(S) = D0, crc(S) =
D\D0, and ar(S)= 0 . Here <ra(S), crp(S), <rc(S), and <rr(S) are the approximate point,
the point, the continuous, and the residual spectrum of S respectively. It is well known,
[14, Prob. 6], that L, and therefore T, has the same spectrum and fine structure as S.

We turn now to the consideration of when a function of an operator has condition (0)
if the operator itself does.

Let / be an analytic scalar-valued function defined on some neighborhood of the
spectrum of an operator T. Then by /(T) we mean

1m Jp
f(k)(\I-T)-1d\,

where T is the union of a finite number of rectifiable Jordan curves that do not intersect
(T(T). This, of course, is the celebrated Riesz-Dunford operational calculus; details can be
found in [8, VII.3].

It is well known (see [5]) that if T is a bounded linear operator that has the SVEP
(resp., is decomposable), and if / is an analytic scalar-valued function on some neighbor-
hood of a(T), then f(T) also has the SVEP (resp., is decomposable). Since condition (|3)
lies between the SVEP and decomposability in a certain sense (see the remarks following
Example 2.23), it is natural to conjecture that an analogous result holds for condition (/3).
Indeed, the following is immediate.

THEOREM 2.28. Let Tbe a bounded linear operator on a reflexive Banach space X. Let
f be a scalar-valued analytic function defined on a neighborhood of<r(T). Then if T and T*
have condition (0), so do f(T) and f{T*).

Proof. Since T and T* have condition ((3), they are decomposable by Lange's
Theorem. Thus f(T) and f(T*) are decomposable and therefore have condition (|3).

Although the question of whether f(T) has condition (|3) when T does remains open
in the general case, we do have the following somewhat more specialized result.
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THEOREM 2.29. Let Tbe a bounded linear operator on a Banach space X. Suppose that
the spectrum of T is contained in the half-plane 0o<arg A <6o + v. Then if T has condition
(/3), so does T2.

Proof. Let \T- be the branch of the square root function having its branch cut at
0 = 00- Suppose that /„ : V—» X (n = 1, 2, . . . ) , are X-valued analytic functions. We may
suppose that V lies in the same open half-plane as cr(T).

Now if (\I-T2)fn(\) -> 0 uniformly on compact subsets of V, then we have (VXl- T)
(VXl+T)/n(A)->0 uniformly on compact subsets of V also. Define gn(A):=(AI+T)
/,,(A2) so that g,,(VX) is analytic on V. Thus (VXl-T)gn(VX)-*0 uniformly on compact
subsets of V, and since T has condition (0) by hypothesis, we infer that gn(\/X)—»0
uniformly on compact subsets of V. Therefore (—>/AI—T)/n(A) = —gn(>/A)—>0 uniformly
on compact subsets of V. Now since —VA is in the resolvent set of T, we see that
(-VX/-T)-1 is bounded so that /n(A) = (-7A/-T)-1(-v/A/-T)/r l(A)^-0 uniformly on
compact subsets of V, proving that T2 has condition (0).

COROLLARY 2.30. Let T be a bounded linear operator on a Banach space X, and
suppose that for some positive integer m, the spectrum of T2™ does not surround the origin.
Then if T has condition (j3), so does T2".
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