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Turbulence in an accretion disk launches Alfvén waves (AWs) that propagate
away from the disk along magnetic-field lines. Because the Alfvén speed varies
with distance from the disk, the AWs undergo partial non-WKB reflection, and
counter-propagating AWs subsequently interact, causing AW energy to cascade to
small scales and dissipate. To investigate this process, we introduce an Elsasser-like
formulation of general relativistic magnetohydrodynamics (GRMHD) and develop
the theory of general relativistic reduced MHD in an inhomogeneous medium. We
then derive a set of equations for the mean-square AW amplitude M+ and turbulent
heating rate Q under the assumption that, in the plasma rest frame, AWs propagating
away from the disk are much more energetic than AWs propagating toward the disk.
For the case in which the background flow is axisymmetric and time independent,
we solve these equations analytically to determine M+ and Q as functions of position.
We find that, for an idealized thin disk threaded by a large-scale poloidal magnetic
field, the AW energy flux is ∼(ρb/ρd)

1/2β
−1/2
net,d times the disk’s radiative flux, where ρb

and ρd are the mass densities at the coronal base and disk midplane, respectively, and
βnet,d is the ratio (evaluated at the disk midplane) of plasma-plus-radiation pressure
to the pressure of the average vertical magnetic field. This energy flux could have a
significant impact on disk coronae and outflows. To lay the groundwork for future
global simulations of turbulent disk coronae and jets, we derive a set of averaged
GRMHD equations that account for reflection-driven AW turbulence using a sub-grid
model.
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1. Introduction
Several types of evidence, including the observed velocities of stars (Ghez et al.

2005) and gas (Miyoshi et al. 1995) near galactic centres and gravitational-wave
signals indicative of black-hole (BH) mergers (Abbott et al. 2016), reveal BHs
scattered throughout the visible universe with masses ranging from several to billions
of solar masses. As a BH pulls in plasma from its surroundings, the plasma’s angular
momentum causes the inflowing plasma to form a disk. If this accretion disk is
geometrically thin but optically thick (‘a thin disk’), then turbulent viscosity converts
a significant fraction of the plasma’s gravitational potential energy into thermal energy
that is radiated away before the material reaches the central BH. In part because of
this, thin disks are promising candidates for explaining much of the continuum
emission from high-luminosity active galactic nuclei (AGN) and stellar-mass BHs
in binary systems in their brighter states (Novikov & Thorne 1973; Shakura &
Sunyaev 1973). Disks that are geometrically thick but optically thin (‘thick disks’)
are generally much less luminous than thin disks, because plasma in the disk can
fall into the BH before it radiates much of its thermal energy (Narayan & Yi 1994),
become marginally unstable to convection, which suppresses mass inflow to the
central BH (Quataert & Gruzinov 2000), or become gravitationally unbound and flow
outward (Blandford & Begelman 1999). Thick disks are thought to be present around
low-luminosity BHs, such as Sagittarius A∗ at the centre of our galaxy (Narayan &
Yi 1994; Quataert & Gruzinov 2000).

BH/accretion-disk systems launch two types of outflows: non-collimated winds,
which can be mildly relativistic or non-relativistic, and collimated, relativistic jets.
The jets emanating from BH systems at the centres of galaxies are particularly striking,
because they can span hundreds of kiloparsecs (Fanaroff & Riley 1974). Theoretical
studies (e.g. Blandford & Znajek 1977) and numerical simulations (De Villiers,
Hawley & Krolik 2003a; McKinney & Gammie 2004; Tchekhovskoy, Narayan &
McKinney 2011) have identified a promising mechanism for producing jets via a
large-scale, ordered magnetic field that threads an accretion disk or the event horizon
of a rotating BH. The rotation of the disk or BH coils up the magnetic-field lines,
which then act as a spring, pushing material away from the disk along the spin axis.

Although this mechanism offers an explanation for jet formation and acceleration,
it is not yet clear how the mass outflow rates and mechanical luminosities of jets and
winds are determined. Nor is it clear what accelerates the particles that cause a jet,
or the plasma at a jet’s base, to radiate. For example, it is unclear how to account
for X-ray timing observations that indicate that many luminous AGN contain compact
coronae – i.e. high-temperature, optically thin plasma – within a few gravitational radii
of the central BH (Reis & Miller 2013).

Clues to these puzzles may be offered by a system much closer to home. In one
explanation for the heating and acceleration of the solar wind, convection-driven
photospheric motions shake the footpoints of ‘open’ magnetic-field lines (i.e. field
lines that connect directly to the interplanetary medium). This shaking launches
Alfvén waves (AWs) that propagate along the magnetic-field lines, through coronal
holes (open-field regions of the corona), and into the solar wind (Cranmer & van
Ballegooijen 2005). Because the Alfvén speed varies with distance from the Sun, these
outward-propagating AWs undergo partial non-WKB (Wentzel–Kramers–Brillouin)
reflection (Heinemann & Olbert 1980; Velli 1993). Counter-propagating AWs
subsequently interact, which causes the AWs to become turbulent, which in turn
causes AW energy to cascade from large wavelengths to small wavelengths and
dissipate, heating the ambient plasma. This heating increases the plasma pressure,
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which, along with the wave pressure, accelerates the solar wind to supersonic speeds.
This explanation for the solar wind’s origin is supported by numerous observational,
theoretical and numerical studies (e.g. Cranmer & van Ballegooijen 2005; Cranmer,
van Ballegooijen & Edgar 2007; De Pontieu et al. 2007; Verdini & Velli 2007;
Hollweg, Cranmer & Chandran 2010; Verdini et al. 2010; Chandran et al. 2011;
Perez & Chandran 2013; van der Holst et al. 2014; Usmanov, Goldstein & Matthaeus
2014; van Ballegooijen & Asgari-Targhi 2016, 2017). Turbulence plays a key role
in this model, because the large-wavelength AWs launched by the Sun are damped
so weakly that, without turbulence, they would reach the distant interplanetary
medium without appreciably damping or heating the plasma (Barnes 1966). Wave
reflection is a critical component of the model because the Sun launches only
outward-propagating waves, and AWs interact to produce turbulence only when there
is a mix of counter-propagating AWs in the plasma rest frame (Iroshnikov 1963;
Kraichnan 1965).

In this paper, we explore the possibility that similar physical processes contribute
to the generation of accretion-disk coronae and jets. In particular, we consider
the fate of AWs that are launched by a turbulent accretion disk into the disk’s
corona and an overlying outflow. To allow for space–time curvature, relativistic fluid
velocities, relativistic Alfvén speeds and relativistic thermal velocities, we work within
the framework of general relativistic magnetohydrodynamics (GRMHD). Previous
studies have investigated the heating of accretion-disk coronae by the reconnection of
magnetic loop structures (e.g. Galeev, Rosner & Vaiana 1979; Uzdensky & Goodman
2008). Our work focuses on AW turbulence rather than magnetic reconnection, and
open-field regions rather than closed magnetic loops.

The remainder of this paper is organized as follows. In § 2 we derive a set
of equations that describes AW propagation, reflection and nonlinear interactions
in an inhomogeneous background flow. In § 3 we specialize to the case of a
time-independent and axisymmetric background and solve analytically for the
mean-square AW amplitude and turbulent heating rate as functions of position.
In § 4 we apply our results to the corona and outflow overlying a thin accretion disk
in the α-disk model (Novikov & Thorne 1973; Shakura & Sunyaev 1973). In § 5 we
derive a set of averaged GRMHD equations in which AW turbulence is treated using
a sub-grid model. These equations complement the results of § 2 by describing how
AW turbulence influences the background flow via turbulent heating and momentum
deposition.

2. Reflection-driven Alfvén-wave turbulence in general relativity
GRMHD describes a highly conducting magnetized fluid under the assumption

that the Lorentz force vanishes for a charged particle at rest in the local plasma
frame. This assumption simplifies the source-free subset of Maxwell’s equations and
the electromagnetic contribution to the stress–energy tensor (see, e.g. Anile 1989;
Gammie, McKinney & Tóth 2003). A GRMHD fluid is described by the equation of
mass conservation,

(ρuν);ν = 0, (2.1)

the stress–energy equation,
Tµν;ν = 0, (2.2)

and the relativistic induction equation,

(bµuν − bνuµ);ν = 0, (2.3)
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where ρ is the mass density, uµ is the 4-velocity,

Tµν = Euµuν +
(

p+
b2

2

)
gµν − bµbν (2.4)

is the GRMHD stress–energy tensor,

bµ =
1
2
εµνκλuνFλκ (2.5)

is the magnetic-field 4-vector, b2
= bµbµ, Fλκ is the Faraday tensor divided by

√
4π,

εµνκλ is the Levi-Civita tensor,

E = ρ + u+ p+ b2, (2.6)

u (without indices) is the internal energy, p is the pressure, gµν is the metric tensor
and the units have been chosen so that the speed of light is 1 (Komissarov 1999;
Gammie et al. 2003). The semicolon subscripts indicate covariant differentiation,
repeated indices are summed and Greek indices range from 0 to 3. The 4-velocity
satisfies

uµuµ =−1, (2.7)

and it follows from (2.5) that
uµbµ = 0. (2.8)

The magnetic-field 3-vector is given by

Bi
= biut

− btui, (2.9)

where Latin indices range from 1 to 3, and t indices indicate the time component.
Equation (2.9) can be inverted using (2.7) and (2.8) to give (Gammie et al. 2003)

bt
= Biuµgiµ bi

=
Bi
+ btui

ut
. (2.10)

Equation (2.3) can then be rewritten as the two equations

1
√
−g
∂i
(√
−gBi

)
= 0 (2.11)

and
∂t
(√
−gBi

)
= ∂j

[√
−g(B jvi

− Biv j)
]
, (2.12)

where ∂µ indicates differentiation with respect to coordinate µ, g is the determinant
of the metric tensor and vi

= ui/ut is the fluid 3-velocity (Gammie et al. 2003). As
described in § 5, bµ is the magnetic field in the fluid frame (in the sense that is
explained prior to (5.4)), while Bi is the ‘laboratory-frame’ magnetic field when gtt

=

−1.
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2.1. An Elsasser-like formulation of GRMHD
Elsasser (1950) reformulated non-relativistic MHD, obtaining a set of equations that is
useful for studying AWs and AW turbulence. We obtain an Elasser-like formulation
of GRMHD by multiplying (2.3) by ±E1/2, adding the resulting expression to (2.2)
and then dividing by E . This yields

(
zµ
±

zν
∓
+Πgµν

)
;ν
+

(
3
4

zµ
±

zν
∓
+

1
4

zµ
∓

zν
±
+Πgµν

)
∂νE
E
= 0, (2.13)

where

zµ
±
= uµ ∓

bµ

E1/2
Π =

2p+ b2

2E
. (2.14)

2.2. Background quantities, fluctuations and the average fluid rest frame
We assume that each property of the fluid is the sum of a smoothly varying
background value plus a fluctuation,

uµ = uµ + δuµ bµ = bµ + δbµ etc. (2.15)

We construct an ‘average fluid rest frame’ (AFRF) at each point by first transforming
to locally Galilean coordinates and then carrying out a Lorentz transformation that
causes ui to vanish while leaving the metric in Minkowski form at that point. We
define λ to be the perpendicular correlation length (i.e. the correlation length measured
perpendicular to Bi) of the velocity and magnetic-field fluctuations in the AFRF, and L
to be the characteristic length scale of the background quantities and gµν in the AFRF.
We assume that

λ/L∼O(ε), (2.16)

where ε (without indices) is a small parameter. We use the notation 〈. . .〉 to denote
a volume average within a sphere of radius d in the AFRF, with λ� d� L. For any
vector f µ, we assume that the following assertions lead to negligible error: 〈 f µ〉 is a
vector, 〈〈 f µ〉〉 = 〈 f µ〉 = f µ and 〈 f µ

;ν〉 = 〈 f
µ
〉
;ν , with analogous statements for scalars

and tensors. We note that uµ is not a unit vector in the sense of (2.7) and is therefore
not a 4-velocity. It is merely the local spatial average, in the AFRF, of uµ. The
4-velocity of the AFRF is given in (5.1) below.

2.3. General relativistic reduced MHD in an inhomogeneous background
To motivate the next step in our analysis, we return for a moment to the solar
analogy. Spacecraft measurements indicate that Bi and vi fluctuations in the solar
wind are mostly transverse (orthogonal to Bi) and non-compressive (Klein, Roberts
& Goldstein 1991; Horbury et al. 1995; Tu & Marsch 1995). One reason for
this is that the dominant dissipation mechanism for slow magnetosonic modes
and entropy modes, turbulent mixing, causes the energy of these compressive
modes to decay on the time scale λ/δurms, where δurms is the root-mean-square
(r.m.s.) amplitude of the velocity fluctuations (Schekochihin et al. 2016). This
time scale is shorter than the energy-decay time scale for outward-propagating,
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non-compressive, AW fluctuations, which is ∼λ/δuinward (Iroshnikov 1963; Kraichnan
1965), where δuinward is the r.m.s. velocity fluctuation of the inward-propagating AWs.
The inequality λ/δurms � λ/δuinward follows from in situ measurements (Bavassano,
Pietropaolo & Bruno 2000) and numerical models (Cranmer & van Ballegooijen 2005;
Verdini & Velli 2007; Perez & Chandran 2013; van Ballegooijen & Asgari-Targhi
2016) that show that outward-propagating AWs have much larger amplitudes than
inward-propagating AWs in the near-Sun solar wind. The other compressive MHD
mode, the fast magnetosonic mode, has an even smaller amplitude in the solar wind
than the slow magnetosonic mode (Yao et al. 2011; Howes et al. 2012; Klein et al.
2012), in part because fast magnetosonic waves launched by the Sun are reflected
back towards the Sun by the rapid increase in vA between the chromosphere and
corona (Hollweg 1978).

We conjecture that turbulence in jets and disk coronae is mostly transverse and
non-compressive (AW-like) for similar reasons. We thus consider just the AW-like
component of the turbulence by adopting the orderings of reduced MHD (RMHD),

(δu2)1/2 ≡ (δuµδuµ)1/2 ∼
(
δbµδbµ

E

)1/2

∼O(εvA) (2.17)

and
δρ/ρ ∼ δu/u∼ δp/p∼O(ε2), (2.18)

where
v
µ
A ≡ bµ/E1/2

vA = (v
µ
AvAµ)

1/2, (2.19)

and by adopting the RMHD assumption that in the AFRF δz±iBi = 0 and ∂iδui
=

0. Equations (2.7) and (2.8) and their averages imply that, in the AFRF, E−1/2bt ∼

E−1/2δbt ∼ δut ∼O(ε2v2
A), from which it follows that

zµ±δz±µ ∼ zµ∓δz±µ ∼O(ε2v2
A) δzν

±;ν ∼O(εvA/L). (2.20)

As in non-relativistic RMHD (see, e.g. Schekochihin et al. 2009), we take the parallel
correlation length (i.e. the correlation length measured parallel to Bi) of δzµ± in the
AFRF to be ∼O(λ/ε)∼O(L), and thus

zν
∓
∂νδzµ± ∼ δz

ν
∓
∂νδzµ± ∼O(vAδzµ±/L). (2.21)

Subtracting the average of (2.13) from (2.13) and dropping terms � δzµ±vA/L, we
obtain(

δzµ
±

zν
∓
+ zµ±δzν∓

)
;ν
+

(
3
4
δzµ
±

zν
∓
+

3
4

zµ±δzν∓ +
1
4
δzµ
∓

zν
±
+

1
4

zµ∓δzν±

)
∂νE
E
=−Nµ

±
, (2.22)

where
Nµ
±
= (δzµ

±
δzν
∓
+ δΠgµν);ν . (2.23)

The nonlinear (δzµ±δzν∓);ν term in Nµ
± is non-zero only in the presence of both δzµ+

and δzν
−

fluctuations, implying that nonlinear interactions arise only between counter-
propagating AW packets, as in the non-relativistic limit (Iroshnikov 1963; Kraichnan
1965). We assume that, as in non-relativistic RMHD, the role of the δΠ term in Nµ

±

is merely to cancel out the compressive component of the nonlinear term in the AFRF
(Maron & Goldreich 2001).
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2.4. Reflection-driven GRMHD turbulence
We take the fluctuations to be statistically gyrotropic in the AFRF, which, given (2.20),
implies that

〈δzµ
±
δzν
±
〉 =

1
2

M±

(
gµν + uµ uν −

bµ bν

b2

)
(2.24)

and

〈δzµ
+
δzν
−
〉 =

1
2

R
(

gµν + uµ uν −
bµ bν

b2

)
, (2.25)

where M± and R are scalars. The quantity δzµ± corresponds to AWs that propagate in
the AFRF either parallel or anti-parallel to the background magnetic field. Because
an accretion disk launches only outward-propagating fluctuations, we assume in what
follows that outward-propagating AWs (δzµ+, for concreteness) have much larger
amplitudes than inward-propagating AWs (δzµ−),

M+�M− M+� R, (2.26)

as in the near-Sun solar wind and coronal holes (Bavassano et al. 2000; Cranmer &
van Ballegooijen 2005). We then drop terms that are � δzµ+vA/L in (2.22) to obtain

(
δzµ
+

zν
−

)
;ν
+

(
3
4
δzµ
+

zν
−
+

1
4

zµ−δzν+

)
∂νE
E
=−Nµ

+
. (2.27)

For future reference, when M+ � M−, to a good approximation δuµ = −δbµ/E1/2
,

δzµ+ = 2δuµ, and

〈δu2
〉 =

M+
4
. (2.28)

Motivated by models of solar-wind turbulence that were reasonably successful at
explaining observations (Chandran & Hollweg 2009; Chandran et al. 2011), we
approximate Nµ

± as a nonlinear damping term (Dmitruk et al. 2002), setting

Nµ
±
= γ±δzµ± γ± =

c1
√

M∓
λ

, (2.29)

where c1 is some constant of order unity. In taking γ± to be ∝
√

M∓, we have made
use of the fact that δzµ± fluctuations are sheared only by δzµ∓ fluctuations. Contracting
(2.27) with 2δz+µ and averaging, we obtain

zν
−
∂νM+ +M+

(
2zν
−;ν
+

3zν
−
∂νE

2E

)
=−2γ+M+. (2.30)

Again dropping terms � δzµ+vA/L in (2.22), but this time choosing the lower sign,
we obtain (

zµ−δzν+
)
;ν
+

(
3
4

zµ−δzν+ +
1
4
δzµ
+

zν
−

)
∂νE
E
=−γ−δzµ−. (2.31)

Equation (2.31) states that δzµ− is determined locally by balancing the rate at which
δzµ− is produced by the reflection of δzµ+ fluctuations against the rate at which δzµ−
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fluctuations are cascaded to small scales. Contracting (2.31) with δz±µ and averaging,
we obtain

γ−R=
M+zν

−
∂νvA

2vA
γ−M− =

R zν
−
∂νvA

2vA
. (2.32)

Since γ 2
−

M− = γ 2
+

M+, equation (2.32) yields

γ+ =

∣∣∣∣zν−∂νvA

2vA

∣∣∣∣ , (2.33)

which does not depend on the unknown constant c1 introduced in (2.29).
As δzµ+ fluctuations propagate away from the disk, the value of vA at their

instantaneous location keeps changing. Equations (2.30) and (2.33) imply that each
time vA changes by a factor of ∼2, a modest fraction of the fluctuation energy
cascades and dissipates. A substantial fraction of the AW energy launched by a
disk thus dissipates within several vA scale heights of the disk, offering a natural
explanation for the compact coronae detected in high-luminosity AGN (Reis & Miller
2013). We show in § 5 that the turbulent heating rate is

Q=
1
2
γ+EM+. (2.34)

If uµ, vµA, and E are known, equations (2.30), (2.33) and (2.34) can be solved to
determine M+ and Q.

3. Reflection-driven Alfvén-wave turbulence in a stationary, axisymmetric
background
We now work in the frame of the central compact object (e.g. Boyer–Lindquist

(1967) coordinates) and take averaged quantities in this frame to be independent
of time and cylindrical angle φ. We decompose the spatial components of uµ into
poloidal and toroidal 3-vectors,

ui = ui
p + ui

T, (3.1)

and likewise for bi, vi
A and Bi, where the poloidal vectors have vanishing φ

components and the toroidal vectors are proportional to the φ basis vector. It then
follows from (2.12) that (Mestel 1961)

ui
p = κBi

p, (3.2)

where κ depends upon position. Equations (2.1), (2.11), and (3.2) imply that

Bi
p∂i (ρκ)= 0. (3.3)

With the use of (2.10), (2.19) and (3.2), we obtain

bi
p = ηBi

p vi
Ap = yui

p, (3.4)

where

η=
1+ κbt

ut
y=

η

κE1/2 . (3.5)
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In the Appendix, we show, given (3.1) through (3.5), that (2.30) can be rewritten as

(ui
p + v

i
Ap)∂i (χM+)=−2γ+χM+, (3.6)

where

χ =
E3/2

(up + vAp)
2

ρ2u2
p

. (3.7)

Close to the disk, vA increases with distance from the disk, zν
−
∂ν lnvA>0, and (2.33)

and (3.6) imply that χM+vA is constant along a field line. Equivalently,

M+ =M+b

(
χb

χ

)(
vAb

vA

)
, (3.8)

where the subscript b indicates that the subscripted quantity is evaluated at the base of
the disk’s corona on the magnetic-field line that passes through the observation point,
at which the unsubscripted M+, χ , and vA terms in (3.8) are evaluated. If vA increases
monotonically with increasing distance from the disk, then (3.8) remains valid to all
distances. On the other hand, if the value of vA along the magnetic-field line that
passes through the observation point reaches a maximum value vAm at a distance r=
rm from the central BH, then at r> rm (2.33) and (3.6) imply that χM+/vA is constant
along the magnetic field. Combining this result with (3.8), we find that

M+ =M+b

(
χb

χ

)(
vAbvA

v2
Am

)
(3.9)

at r > rm. If vA progresses through an alternating series of maxima and minima,
then M+ can be found by taking χM+vA to be constant along a field line between
each vA minimum and the next maximum farther out, and taking χM+/vA to be
constant between each maximum and the next minimum. Once M+ is determined,
the turbulent heating rate follows from (2.33) and (2.34). Equations (3.8) and (3.9)
generalize previous results on solar-wind turbulence (Dmitruk et al. 2002; Chandran &
Hollweg 2009) by allowing for curved space–time, relativistic velocities, and non-zero
toroidal components and non-radial poloidal components of Bi and ui.

4. Application to coronae and outflows above thin accretion disks
As an example, we now apply our results to the corona and outflow above a steady-

state, thin accretion disk threaded by a large-scale poloidal magnetic field. We define
the coronal base to be the surface on which βtotal = 1, where

βtotal ≡
2(p+ prad)

B2
, (4.1)

and prad is the radiation pressure. Below the coronal base (i.e. in the disk),
βtotal > 1; above the coronal base, βtotal < 1. The results of §§ 2.4 and 3 are based
on the assumptions that M+ � M− and that reflection is the primary source of
inward-propagating AWs (δzµ−). These assumptions are reasonable above the βtotal = 1
surface, because when βtotal < 1 the magnetorotational instability (MRI) is stable
at wavelengths comparable to or smaller than the disk thickness, and because the
disk launches only outward-propagating waves. These assumptions, however, are not
satisfied below the βtotal = 1 surface, where the MRI generates a mix of fluctuations
propagating towards and away from the disk midplane.
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4.1. The mean-square AW amplitude at the coronal base M+b

In the α-disk model (Novikov & Thorne 1973; Shakura & Sunyaev 1973), angular
momentum transport can be viewed as arising from a turbulent viscosity

νt ∼ vTl∼ αcs,dH, (4.2)

where vT is the r.m.s. amplitude of the turbulent velocity fluctuations in the disk, l is
the correlation length of these velocity fluctuations, α is a dimensionless constant,

H ∼
cs,d

Ω
(4.3)

is the disk thickness, Ω is the angular velocity of the disk,

cs =

√
p+ prad

ρ
(4.4)

is the sound speed and the d subscript in (4.2) and (4.3) indicates that cs is evaluated
at the disk midplane. Nauman & Blackman (2015) carried out local shearing-box
simulations and found that, for Keplerian shear, the correlation time of MRI-generated
disk turbulence is '0.1(2π/Ω) ∼ Ω−1. This correlation time is also comparable to
the eddy turnover time in the disk, l/vT, and thus we set

l
vT
∼Ω−1. (4.5)

Dividing the second relation in (4.2) by (4.5) and using (4.3) to eliminate H, one
obtains (Blackman & Tan 2004)

v2
T ∼ αc2

s,d. (4.6)

Since the mean-square velocity fluctuation is continuous across the disk/corona
boundary, equations (2.28) and (4.6) imply that

M+b ∼ αc2
s,d. (4.7)

Equation (4.7), in conjunction with (2.33), (2.34), (3.8) and (3.9), can be used to
determine the approximate mean-square AW amplitude and heating rate at all positions
in the corona and outflow, provided the dependence of vνA, uν , ρ and E on position
is known.

4.2. The AW luminosity of a thin accretion disk
To estimate the AW energy flux from the disk, we consider the disk’s low atmosphere,
in which the thermal, Alfvén, and poloidal outflow velocities are non-relativistic,
E ' ρ, up� vAp, and the rotational velocity is at most trans-relativistic. For simplicity,
we neglect corrections from space–time curvature. The AW contribution to the
poloidal energy flux averaged over an annulus of radius r and width 1r� r centred
on the disk’s spin axis at height h above the coronal base is

FAW ' ρ〈δu2
〉vAp f ' ρ1/2

〈δu2
〉Bp,net, (4.8)
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where f is the fraction of the annulus that is threaded by open magnetic-field lines
(that connect directly to the distant outflow/jet), and

Bp,net = f Bp (4.9)

is the azimuthally averaged poloidal magnetic flux per unit area (i.e. the averaged
vertical magnetic field) at radius r and height h.1 The factor of f in (4.8) arises
because we ignore the AW energy flux on magnetic arches or ‘closed loops’, which
are rooted at both ends in the disk. Because each magnetic loop extends only a finite
distance into the corona, f is an increasing function of h. Since open magnetic-field
lines fan out to fill the volume above closed loops, Bp is a decreasing function of h.
The product f Bp = Bp,net, however, is approximately independent of h, because the
same amount of magnetic flux passes through each plane parallel to the disk.

In the low atmosphere, the value of η in (3.5) is ∼1, and (3.3), (3.4), (3.5) and (3.7)
imply that, along a magnetic field line, vAp/up ∝ ρ

1/2, and

χ ∝ ρ1/2. (4.10)

Although AW energy dissipates in the low corona, we count such dissipated energy
as part of the AW energy flux from the disk. To estimate FAW, we thus neglect
dissipative losses when determining 〈δu2

〉 in (4.8). Equation (3.6), with γ+ → 0,
implies that 〈δu2

〉 ∝ 1/χ along a field line. Combining this scaling with (4.10), we
find that ρ1/2

〈δu2
〉 is constant along magnetic-field lines, and hence approximately

independent of h in the low corona. Since ρ1/2
〈δu2
〉 and Bp,net are both independent

of h, our estimate of FAW is insensitive to the exact height at which we evaluate
(4.8).2 At the coronal base, equation (4.8) can be written, with the aid of (2.28) and
(4.7), as

FAW ∼ ρ
1/2
b αc2

s,dBp,net, (4.11)

where ρb is the density at the coronal base. In the α-disk model, the radiative flux
from the disk is

q∼ αρdc3
s,d, (4.12)

where ρd is the midplane density. Upon dividing (4.11) by (4.12), we obtain

FAW

q
∼

(
ρb

ρd

)1/2

β
−1/2
net,d , (4.13)

where
βnet =

2(p+ prad)

B2
p,net

, (4.14)

and βnet,d is the value of βnet at the disk midplane. All quantities in (4.13) are
functions of distance r from the central compact object. Since q peaks at small r, the
ratio of the disk’s AW luminosity to its radiative luminosity is approximately equal
to the right-hand side of (4.13) evaluated near the disk’s inner edge.3

1The magnetic flux through an individual annulus that arises from closed magnetic loops need not vanish,
because loops can connect one annulus to another. Nevertheless, we ignore the magnetic flux associated with
closed loops because they contribute zero net flux through the disk as a whole.

2AWs do lose energy as the wave-pressure force does work on the outflowing plasma, but the foregoing
arguments show that this energy-loss mechanism is negligible in the low atmosphere.

3Here, we have assumed that the right-hand side of (4.13) increases as r decreases or depends more
weakly on r than does q.
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Although (4.13) in principle determines FAW, the factors on the right-hand side
of (4.13) have large uncertainties. In numerical simulations of disks, ρb/ρd ranges
from '10−2 to '0.5, depending on a number of factors, including whether radiation
pressure dominates over plasma pressure and whether the simulation is local or global
(e.g. Jiang, Stone & Davis 2014; Jiang, Davis & Stone 2016; Zhu & Stone 2017).
The value of βnet,d depends on the efficiency with which a disk accretes poloidal
magnetic flux. A number of studies have argued that if the magnetic field is passively
transported by turbulence in the disk and the turbulent diffusion coefficient is uniform,
then the time scale for poloidal flux to diffuse outward is shorter than the accretion
time scale of the matter (e.g. van Ballegooijen 1989; Livio, Ogilvie & Pringle 1999;
Guan & Gammie 2009; Guilet & Ogilvie 2013). In this case, little poloidal flux
accumulates near the central object, and βnet,d is extremely large. On the other hand,
poloidal flux may be dragged inwards much more efficiently if the turbulent diffusion
coefficient becomes small near the boundary between the disk and its atmosphere,
if the vertical magnetic field in the disk is concentrated into bundles with a small
volume filling factor, or if the vertical field exerts significant torque on the disk
material (Livio et al. 1999; Spruit & Uzdensky 2005; Guilet & Ogilvie 2013). In
numerical simulations, if the initial magnetic field is very weak or has toroidally
shaped flux surfaces with comparatively small major radii ri, then little poloidal
magnetic flux builds up near the central object (see, e.g. De Villiers, Hawley & Krolik
2003b; Beckwith, Hawley & Krolik 2008; McKinney, Tchekhovskoy & Blandford
2012). In contrast, if the initial field is sufficiently strong and ri sufficiently large,
or if substantial poloidal magnetic flux is continuously injected into the simulation
domain, then poloidal magnetic flux is dragged inwards so efficiently that the outward
magnetic pressure force on disk material becomes comparable to the gravitational
force, leading to a magnetically arrested disk (Igumenshchev, Narayan & Abramowicz
2003; Tchekhovskoy et al. 2011).

We note that the ability of turbulent heating to produce a hot corona starting at
the βtotal = 1 surface depends not only on FAW, but also on the optical depth at this
surface, τb. If τb� 1, and if radiative transfer dominates the vertical energy flux above
the βtotal = 1 surface, then the temperature must be a decreasing function of distance
from the disk midplane in order to drive an outward radiative energy flux (see, e.g.
simulation B of Jiang et al. 2014).

4.3. Self-consistency of the RMHD and α-disk approximations
One of the assumptions underlying the reduced MHD analysis of §§ 2.3–2.4 is the
inequality

〈δu2
〉

v2
A
� 1. (4.15)

Close to the coronal base, vA increases with distance from the disk, and we can use
(2.28) and (3.8) to rewrite (4.15) as(

M+b

v2
Ab

)(
χb

χ

)(
vAb

vA

)3

� 1. (4.16)

Given (2.28) and (4.7),

M+b

v2
Ab
∼
αc2

s,d

B2
b/ρb
∼ αβtotal,d

(
ρb

ρd

)
, (4.17)
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where Bb is the magnetic-field strength at the coronal base, and βtotal,d is the value
of βtotal at the disk midplane. In writing the second order-of-magnitude relationship
in (4.17), we have taken the magnetic-field strength to be fairly uniform across the
vertical profile of a disk (see, e.g. figure 6 of Beckwith et al. (2008) or figure 2
of Jiang et al. (2014)). The factor of αβtotal,d in (4.17) is typically one over a few
(Blackman, Penna & Varnière 2008; Sorathia et al. 2012; Hawley et al. 2013). Since
ρb/ρd is also less than 1 (or � 1), M+b/v

2
Ab is smaller than 1, and (4.16) is at least

marginally satisfied at the coronal base. In the low corona, where the flows are at
most trans-relativistic and E ∼ ρ, equation (4.10) implies that(

χb

χ

)(
vAb

vA

)3

∼
ρ

ρb

(
Bb

B

)3

. (4.18)

Because the density decreases rapidly with increasing distance h from the coronal
base in the low disk atmosphere, we expect the right-hand side of (4.18) to decrease
with increasing h. Thus, not only is (4.16) at least marginally satisfied at the coronal
base, but it becomes a better approximation in the low corona. It is possible that the
RMHD approximation breaks down at sufficiently large distances from the disk, but
whether this happens depends upon the spatial profiles of the background flow and
magnetic field. These profiles, in turn, depend upon how much poloidal magnetic flux
is accreted towards the central compact object, which, as discussed above, is uncertain.

The results of this section are also based upon the α-disk model, in which disk
turbulence is the only mechanism for transporting angular momentum away from the
central object, and radiation is the only means by which energy escapes from the disk
surface. If poloidal magnetic flux is accreted efficiently towards the central compact
object and the disk drives a powerful outflow, then the angular momentum flux and
energy flux associated with this outflow could modify the disk structure. Our use of
the α-disk model thus becomes problematic in the most interesting parameter regime
for AW heating, in which βnet,d is not much greater than 1. If astrophysical disks reach
this regime, further work will be needed to model the disks, winds and AW turbulence
self-consistently.

5. A sub-grid model for incorporating reflection-driven Alfvén-wave turbulence
into numerical simulations of the averaged GRMHD equations
The correlation length of the turbulent fluctuations in a thin accretion disk is

smaller than the disk’s thickness. As a consequence, the AWs launched into the
corona of a thin disk have a correlation length perpendicular to the magnetic field,
as measured in the AFRF in the low atmosphere of the disk, that is smaller than
the disk thickness. These AWs cascade to much smaller scales before dissipating
and heating the plasma. In order to carry out a direct numerical simulation of the
AW turbulence launched from a thin disk into its corona and outflow, it would be
necessary to resolve, within the disk’s corona and outflow, length scales much smaller
than the disk’s thickness, which is unfeasible even on today’s fastest supercomputers.
An alternative approach is to average the GRMHD equations in the manner described
in § 2.2, solve these averaged GRMHD equations numerically, and incorporate the
mean-square AW amplitude as an additional variable that evolves according to (2.30)
and (2.33). In this section, we derive a set of averaged GRMHD equations that can
be used in this way.4 Throughout this section, we make use of the RMHD orderings
of § 2.3 and neglect fluctuations in ρ, u (the internal energy) and p.

4An analogous approach has been used in non-relativistic simulations of the solar wind (Chandran et al.
2011; van der Holst et al. 2014; Usmanov et al. 2014).
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To begin, we average (2.7) to obtain uµuµ =−(1+ 〈δu2
〉). Since uµuµ 6= −1, uµ is

not a 4-velocity. On the other hand,

uµ0 =
uµ√

1+ 〈δu2〉
(5.1)

is the 4-velocity of the AFRF, since its spatial components (like those of uµ) vanish
in the AFRF, and since

uµ0 u0µ =−1. (5.2)

The mass density of the fluid, as measured by an observer with 4-velocity sµ, is
Γ µsµ, where Γ µ

=ρuµ is the mass-flux 4-vector. The averaged mass density measured
by an observer at rest in the AFRF is thus ρ0 = 〈Γ

µu0µ〉, or, equivalently,

ρ0 = ρ
√

1+ 〈δu2〉. (5.3)

This mass density is larger than the rest-frame density ρ because the fluid moves with
respect to the AFRF, and Lorentz contraction causes the apparent density of a moving
fluid to be larger than the rest-frame density.

The magnetic field in the frame of an observer O with 4-velocity sµ is Bµ(s) =
−(F∗µν)sν , where (F∗µν) = (1/2)εµνκτFκτ = bµuν − bνuµ is the dual of Fµν . More
precisely, Bµ(s) is that 4-vector which, in the frame of observer O, has a vanishing time
component and spatial components equal to the magnetic field that would be measured
by O. For example, the magnetic field in the fluid frame is −(F∗µν)uν = bµ. In the
case that gtt

=−1, the 4-velocity sµ of an observer moving normal to a t= constant
‘slice’ satisfies st=−1 and si= 0, and the magnetic field in the frame of this ‘normal
observer’ is −(F∗µν)sν = (F∗µt) = bµut

− uµbt
≡ Bµ (Duez et al. 2005).5 The spatial

components of Bµ were given in (2.9), and Bt vanishes since F∗µν is antisymmetric.
The averaged magnetic field in the AFRF is bµ0 = 〈−(F∗µν)u0ν〉, or, equivalently,

bµ0 = bµ
√

1+ 〈δu2〉 − uµ0 〈δu
αδbα〉. (5.4)

Averaging (2.8) yields
uµ0 b0µ = 0. (5.5)

The continuity and induction equations for the averaged fluid can be obtained by
averaging (2.1) and (2.3) and making use of (5.1), (5.3) and (5.4). This yields

(ρ0uν0);ν = 0 (5.6)

and (
uµ0 bν0 − uν0bµ0

)
;ν
= 0. (5.7)

As in § 2.4, we restrict our analysis to the case in which AWs travelling away
from the disk have much larger amplitudes than AWs traveling toward the disk in the
AFRF. However, in contrast to § 2.4, we here allow either M+ or M− to correspond to

5If gtt
6=−1, then the 4-velocity sµ of an observer moving normal to a t= constant hypersurface satisfies st=

−1/
√
−gtt and si= 0. The magnetic field in the frame of this normal observer is then (bµut

− uµbt)/
√
−gtt =

Bµ/
√
−gtt .
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outward-propagating AWs, since in general Bi points toward the disk in some regions
and away from the disk in others. We then set

δuµ =∓
δbµ

E1/2 , (5.8)

where, here and throughout the remainder of this section, the upper sign corresponds
to M+ � M− and the lower sign corresponds to M− � M+. Equation (2.28) then
becomes

〈δu2
〉 =

M±
4
. (5.9)

Upon averaging Tµν , making use of the RMHD orderings described in § 2.3 and
dropping terms � ε2v2

AE , we obtain

〈Tµν〉 = Tµν0 + Tµν2 , (5.10)

where

Tµν0 = E0uµ0 uν0 +
(

p+
b2

0

2

)
gµν − bµ0 bν0, (5.11)

Tµν2 = E0〈δu2
〉

[(
2− v2

A0 −
ρ0

2E0

)
uµ0 uν0 +

(
1− v2

A0

2

)
gµν + vµA0v

ν
A0 ± uµ0 v

ν
A0 ± uν0v

µ
A0

]
,

(5.12)

and
E0 ≡ ρ0 + u+ p+ b2

0 v
µ
A0 = bµ0 /E

1/2
0 . (5.13)

The average of (2.2), combined with (5.10), yields

Tµν0 ;ν =−Tµν2 ;ν . (5.14)

Equations (2.30), (2.33), (5.5), (5.6), (5.7) and (5.14), along with an equation of
state p= p(u, ρ), can be solved for ρ0, uµ0 , bµ0 , u, p and M± (with the proviso that if
M−�M+, then the plus and minus subscripts need to be interchanged in (2.30) and
(2.33)). In this closed system of equations, the AW fluctuations are treated like a fluid
that co-evolves with the plasma, and all quantities, including M±, vary on the length
scale L of the background flow, which greatly exceeds the perpendicular correlation
length λ of the fluctuations. The effects of turbulent heating and momentum deposition
are captured by the source term −Tµν2 ;ν on the right-hand side of (5.14). Since this
source term contains time derivatives, some care is needed when adding it to a
GRMHD code. The development of an appropriate numerical algorithm, however, lies
beyond the scope of this paper.

If we ignore, for the moment, dissipation of AW turbulence and consider the ideal
GRMHD equations, contracting (2.2) with uµ yields (uνu);ν + puν

;ν = 0, which implies
that the specific entropy of each fluid element is an invariant (Anile 1989). For
example, if p were simply (γ − 1)u for some constant γ , then uν∂ν ln(p/ργ )= 0 (Del
Zanna et al. 2007). However, the dissipation of AW turbulence, which is modelled by
the −2γ+M+ term on the right-hand side of (2.30), should lead to entropy production,
i.e. heating. To see how such heating results from (5.14), we contract (5.14) with uµ,
add (2.30) times E0/4, and drop terms that are � ε2Ev3

A/L, obtaining

(uνu);ν + puν ;ν =
γ±EM±

2
, (5.15)
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where it is uν rather than uν0 that appears in (5.15). (The E on the right-hand side
is interchangeable with E0 to the order of accuracy of the equation.) We identify the
right-hand side of (5.15) as the turbulent heating rate, which was previously stated in
(2.34) for the case M+�M−.

6. Summary and conclusion
We investigate the propagation, reflection and nonlinear evolution of AWs launched

from a turbulent accretion disk. We focus on open-field regions, in which the
magnetic-field lines extend from the disk’s surface, through the corona and into
an overlying outflow. Working within the framework of GRMHD, we derive a set of
equations that can be solved for the mean-square AW amplitude and turbulent heating
rate as functions of position, and we solve these equations analytically for the case
of a time-independent and axisymmetric background flow. Applying these results to
the corona and outflow above a thin α-disk, we show that the AW energy flux from
the disk is approximately (ρb/ρd)

1/2β
−1/2
net,d times the disk’s radiative flux, where ρb

and ρd are the densities at the coronal base and disk midplane, respectively, and
βnet,d is the ratio (evaluated at the disk midplane) of plasma-plus-radiation pressure to
the pressure of the average vertical magnetic field. We also derive a set of averaged
GRMHD equations that describe the evolution of the background flow in the presence
of reflection-driven AW turbulence.

A general feature of reflection-driven AW turbulence is that, as AWs propagate
away from the disk into regions with varying values of vA, a significant fraction of
the AW energy cascades and dissipates each time vA changes by a factor of ∼2.
As a consequence, much of the AW energy launched by an accretion disk cascades
and dissipates within a few Alfvén-speed scale heights of the disk. This makes AW
turbulence a promising mechanism for explaining the compact X-ray emitting coronae
that are observed around a number of luminous AGN.

In addition to generating compact AGN coronae, AW heating could have a number
of consequences for astrophysical disks, coronae and jets. AW heating increases
the density scale height in a disk’s atmosphere, which enhances the mass outflow
rate from the disk and reduces the near-BH mass supply. By loading more mass
onto the magnetic-field lines above an accretion disk, AW heating could increase
the mechanical luminosity of outflows driven by large-scale magnetic forces. If AW
heating deposits substantial energy into the outflowing material far from the disk, this
heating could lead to faster outflows (cf. Leer & Holzer 1980). If AWs in the corona
(where βtotal � 1) mostly heat electrons (Quataert 1998; Quataert & Gruzinov 1999;
Howes 2010; Ressler et al. 2015, 2017), then AW dissipation could lead to substantial
coronal emission. Particle-in-cell simulations show that turbulence in relativistic pair
plasmas can lead to a power-law tail in the particle energy distribution (Zhdankin
et al. 2017), which raises the possibility that AW turbulence in disk coronae and
outflows could be an important source of energetic particles. Thermal conduction
from the corona into a thin disk may in some cases lead to the evaporation of
the disk (Meyer & Meyer-Hofmeister 1994) and the long-sought ‘soft-to-hard’ state
transition, in which a thin disk inflates, becoming a thick disk. Conversely, if the
density of a thick disk of thickness H ∼ cs,d/Ω increases sufficiently that radiative
cooling causes the disk to collapse parallel to the spin axis to form a thin disk, then
βnet,d ∝ ρdc2

s,d/B
2
p,net ∝ H/B2

p,net decreases during the collapse (since neither Bp,net nor
ρdH changes during the collapse), and there may be a transient period (terminated,
e.g. by outward diffusion of poloidal magnetic flux) in which the AW luminosity is
strongly enhanced.
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Finally, we note that in current numerical simulations of thin disks, AW turbulence
on length scales <H is under-resolved and significantly modified by numerical
dissipation. Moreover, since disk coronae are nearly collisionless, the AW energy that
is dissipated in a disk’s corona is partitioned between electrons and protons in a way
that cannot be determined within the framework of MHD. Further studies aimed at
capturing the AW heating process and its differential effects on protons and electrons,
either analytically or through the use of sub-grid models in numerical simulations,
will be needed in order to determine the impact of AW heating on disk winds and
jets.
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Appendix A. The statistically steady, axisymmetric case
In this appendix, we derive (3.6) and (3.7) starting from (2.30) under the

assumption that the background flow is time independent and axisymmetric. Given
this assumption, the average of (2.1) leads to

uν ;ν =−uν∂ν ln ρ =−ui
p∂i ln ρ, (A 1)

where we have neglected density fluctuations because of the reduced-MHD orderings
in (2.18). With the use of (2.11), (3.2), (3.3) and (3.4), we obtain

vνA;ν =
1
√
−g

∂i

(√
−g ηBi

p

E1/2

)
= Bi

p∂i

(
η

E1/2

)
= yui

p

(
∂i ln η−

1
2
∂i ln E

)
. (A 2)

Equations (3.4), (A 1) and (A 2) allow us to rewrite (2.30) in the form

(1+ y)ui
p∂i ln M+ + ui

p

[
−2∂i ln ρ +

(
3
2
+

y
2

)
∂i ln E + 2y∂i ln η

]
=−2γ+. (A 3)

To solve (A 3), we search for an integrating factor χ that satisfies the equation

(1+ y)ui
p∂i ln χ = ui

p

[
−2∂i ln ρ +

(
3
2
+

y
2

)
∂i ln E + 2y∂i ln η

]
. (A 4)

If we can find such an integrating factor, then we can combine (A 3) and (A 4) and,
making use of (3.4), obtain

(ui
p + v

i
Ap)∂i ln(χM+)=−2γ+, (A 5)

which is equivalent to (3.6).

https://doi.org/10.1017/S0022377818000387 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000387


18 B. D. G. Chandran, F. Foucart and A. Tchekhovskoy

To solve (A 4), we first simplify notation, defining

A= ui
p∂i ln ρ, (A 6)

C= ui
p∂i ln E, (A 7)

and
D= ui

p∂i ln η, (A 8)

so that (A 4) becomes

(1+ y)ui
p∂i ln χ =−2A+

(
3
2
+

y
2

)
C+ 2yD. (A 9)

We note that
ui

p∂i ln y= A−
C
2
+D (A 10)

and

−2A+
(

3
2
+

y
2

)
C+ 2yD=

(
A−

C
2
+D

)
(y− 1)+ (−A+C+D) (y+ 1). (A 11)

Substituting (A 10) and (A 11) into (A 9) and dividing by y+ 1, we obtain

ui
p∂i ln χ =

(
y− 1
y+ 1

)
ui

p∂i ln y− A+C+D, (A 12)

or, equivalently,

ui
p∂i ln χ = ui

p∂i ln
[
(y+ 1)2

y

]
− ui

p∂i ln ρ + ui
p∂i ln E + ui

p∂i ln η. (A 13)

Equation (A 13) can be immediately integrated to yield

χ =ψ ×
(y+ 1)2Eη

yρ
, (A 14)

where ψ is any quantity that is constant along the lines of flow and force:

ui
p∂iψ =

Bi
p∂iψ

κ
= 0. (A 15)

We set ψ = 1/κρ, which satisfies (A 15) given (3.3). Equations (3.4) and (3.5) then
enable us to set ψEη/(yρ)= E3/2

/ρ2 and (1+ y)2 = (up + vAp)
2/u2

p in (A 14), which
yields (3.7).
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