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ON NON-LOCAL PROBLEMS FOR PARABOLIC EQUATIONS
J. CHABROWSKI

The main purposes of this paper are to investigate the existence and
the uniqueness of a non-local problem for a linear parabolic equation

QO  Lu= > ayx b 0¥
iy=1 iy

z du du

S bz ) t T~ ] ¢ - = = ’ ¢
0x,0%; + ;;1 (= )axi + el du ot fx 1)
in a cylinder D = 2 x (0, T]. Given functions 8; i =1, ---,N) on 2 and
numbers 7;€(,T] i =1, .--,N), the problem in question is to find a
solution u of (1) satisfying the following conditions

©2) u(x, t) = ¢(x,t) on I,
® u(x, 0) + 3} UDulx, T) = ¥(@) on @,

where f, ¢ and ¥ are given functions and I' denotes the lateral surface
of D, ie, I' =00 x [0, T].

In Section 1 we establish the maximum principle associated with the
problem described by (1), (2) and (3). Theorem 1 leads immediately to
the uniqueness of solution of the problem (1), (2) and (3) as well as to an
estimate of the solution in terms of f, 4 and ¥. We also briefly discuss
certain properties of the solutions related to the behaviour of the coe-
flicients B, i =1, ---,N). In Theorem 5 of Section 2 we establish the
existence of the solution in a bounded cylinder. The results are then
applied to derive the existence and the uniqueness of solution of the non-
local problem in an unbounded cylinder (Section 3). In Section 4 we
establish an integral representation of solutions and give a construction
of the solution of a non-local problem in R, X (0, T'] with ¥ ¢ L*R,). In
the last section we modify the condition (3) by replacing a finite sum by
an infinite series and briefly discuss the uniqueness and the existence of
solution of the resulting problem. Theorems of Sections 1 and 2 of this
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paper extend and improve earlier results obtained by Kerefov [3] and
Vabishchevich [6], where historical references can be found. They only
considered the case N = 1.

1. Let D=0 X (0, T], where 2 is a bounded domain in R,. By I"
we denoted the lateral surface of D, ie., I' =02 X [0, T].

Throughout this section we make the following assumption

(A) The coefficients a;;, b, and ¢ are continuous on D and moreover

ay(x, &L >0

ij=1
for all vectors & = 0 and (x, ) e D.

By C*'(D) we denote the set of functions u continuous on D with
their derivatives ou/ox,, d*ufox0x, (i,j = 1, ---, n) and du/ot (at ¢ = T the
derivative ou/ot is understood as the left-hand derivative).

LEmMMA 1. Let ue C*(D) N C(D). Suppose that c(x, t) <0 on D and
—1<>Y Bx)<0o0on 2 and B(x) <0 on £ (=1,---,N). If Lu<0
in D, u(x,t) > 0o0n I and u(x,0) + >.¥, B(x)u(x, T) > 0 on 2, then u(x,t)
>0 on D.

Proof. Assume that u < 0 at some point of D, then there exists a
point (x,, t,) € D such that u(x,, t,) = min; u(x, f) < 0. By the strong max-
imum principle (x,, %) = (%, 0) with x,€ 2 (see Friedman [2] Chap. 2 or
Protter and Weinberger [5] Chap. 3). Thus, we find that

0.< u(x, 0) + 3 Blwul®, T) < ulx, O1 + 35 8.x)]
Hence u(x,, 0) > 0 provided 1 + >;¥, B,(x,) > 0 and we get a contradiction.
In the case > 7, B(x,) = —1 we put u(x,, T,) = min,_, ... y u(x,, T;), then
(i 0) — uliy, T0) = ul(zy, 0) + ulx, T2) 3 fix)
> u(x, 0) + 3} pulz, T) > 0.

Hence u takes on a negative minimum at (x,, T) € D. This contradiction
completes the proof.

CoOROLLARY. Suppose that the assumptions of Lemma 1 hold. If L >
0in D, u(x,t) <0 an I' and u(x,0) + > %, p(x)ulx, T) <0 on 2, then
u(x, t) < 0 on D.
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Now we can state the main result of this section.

THEOREM 1. Let ue C*(D) N C(D) be a solution of the problem (1),
(2) and (3) with f, ¢ and ¥ continuous on D, I and Q respectively. Suppose
that c(x,t) < —c, in D, where ¢, is a positive constant. Assume further
that —1 <> 7, p(x)<0and B(x) <0 (@E=1,---,N)on 2. Then

2
Co

+ (1 — e~ @M™)"  sup [¥(x)|
Q2

4 |ux, )] < — e sup|f(x, ] + e sup [¢(x, 1)|

for all (x,¢) € D, where T, = min,_, ...y T..

Proof. We first suppose that —1 < —B, < 2%, B(x) < 0 on 2, where
B, is a positive constant. Let M = sup,|f(x, t)|, M, = sup, |é(x, t)|, M, =
sup, |¥(x)| and put

MM M,

U(x$ t) = u(x’ t) - —_—
Cy 11— Bo
Then
c cM,
Lv=f— = M—cM, — =2 > c,M, + M, >0
co 1— B )

in D, u(x,t) <0 on I' and

s, 0 + 3 filels, T) = ) — 20—, — Mo
M y M
- (e m — L) na@< (T4 m)E -
1

+M(1—-— + P )<0

1-— .80 1-— /30
on Q. It follows from Lemma 1 that v <0 on D. Similarly we can
establish the inequality u(x, t) > —(M/c)) — M, — M,)(1 — 3,) for (x,t)e D
considering the auxiliary function

w(x, t) = ulx, t) + - --—+M+ M,
C l—ﬂb

In the general case we put u(x,t) = e “/?'z(x,t). Then z satisfies the

equation
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2 0z o 0z ¢ 0z
5 i ] t bz b3 t -~ ( 9 —0> _
©) 22, ) e T RME D+ e D+ )z = 5

z,
= e f(x, 1)

in D with c(x, £) + ¢/2 < —(c/2) in D,

2(x, t) = e'¢(x, ) on I’

and
2(x, 0) + g: Bux)e=PTiz(x, T)) = ¥(x) on 2.

It is clear that —e «“/®Tx < 3" B (x)e~©/»7t < 0 on £ and the estimate
easily follows.

Theorem 1 and a classical maximum principle for solutions of para-
bolic equations allow us to compare a solution of the problem (1), (2) and
(8) with a solution of an initial boundary value problem.

THEOREM 2. Suppose that the assumptions of Theorem 1 hold. Let
ue C*(D) N C(D) be a solution of the problem (1), (2) and (3), and ve
C>(D) N C(D) a solution of (1) satisfying the initial boundary value con-
ditions v(x, t) = ¢(x,t) on ' and v(x,0) = ¥(x) on 2. Then

e, ) — o, D] < sup 33 8. [ 2 e sup| £, 9]

+ e™T gup |¢(x’ t)l + @1~ e (co/DTH)-1 slgp[w'(x) ]]
r
for all (x,¢) e D.

In particular if g, = Bix) i =1, ---, N) where fi— 0 uniformly as
v — oo for all i, then the corresponding sequence u, of solutions of the
problem (1), (2) and (3) converges uniformly to v in D.

TaeorEM 3. Let c(x, 1) < 0in D and assume that —1 <3 %, Bi(x) <0
(G =1,2) and that fi(x) < f(x) <0 (@E=1,---,N) on 2. Suppose further
that f<0, >0 and ¥ >0 on D, I" and 2 respectively. If u, and u, are
solutions belonging to C>(D) N C(D) of the problem (1), (2) and (3) with
Bi=px) G=1,---,N) and B, =pix) @=1,.--,N) respectively, then
u(x, t) > u,(x, t) on D.

Proof. We put w(x, t) = u,(x, ) — us(x, t), then Lw =0 in D, w(x, t)
=0on ' and
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w5 0) + 33 B, T) = 3 (B® — fi@ux T) on 2.

Since uy(x,t) > 0 on D, it follows from Lemma 1, that w(x, ) > 0 for all
(x,t)e D.

Lemma 1 yields the uniqueness of solutions of the problem (1), (2)
and (3) under the assumptions that B(x) <0 (@ =1, ---,N) and —1<
>V Bx) <0 on 2. Vabishchevich [6] pointed out, without giving any
proof, that in the case IN = 1 the uniqueness can be proved under the
assumption [f(x)] < 1 on £. For the sake of completeness we include the
proof of uniqueness under the assumption > ¥,|8,(x)] <1 on L.

THEOREM 4. Suppose that c(x, t) < 0 on D and )L, |p(x)] < 1 on L.
Then the problem (1), (2) and (3) has at most one solution in C*>(D) N C(D).

Proof. Let u be a solution of the homogeneous problem

Lu=0 in D
uwx,t)=0 on I'
and

u(x, 0) + 3 Bz, T) = 0 on Q.

Suppose that © %= 0. We also many assume that there exists a point in
(x5, t) € D such that u(x, t) = miny u(x, £) < 0. It is clear that (x, ) =
(x,,0) with x,€ 2. We can assume that |u(x,, T))| = max,_,... v |u(x, T)|
> 0, since otherwise there is nothing to prove. Obviously,

s, O] < [ T)I 23 18ix)] < [l T,

If u(x,, T)) < 0 then u(x,, T}) < u(x,, 0). Hence u attains its negative min-
imum at (x,, 7)) and we get a contradiction, therefore u(x,, 77) > 0. Thus
there exists a point (x,, ,) € D such that u(x, t,) = max, u(x, £) > 0. Again
(x, t) = (x,, 0) with x, € 2. Put |u(x,, T,)| = max,_,,... y|u(x, T;). We may
assume that |u(x,, T,)] > 0, since otherwise there is nothing to prove.
Now we must distinguish two cases

|u(x0’ O)I < u(xl’ 0) or u(xl’ O) S lu(xo, 0)] .

In the first case we have

[z 0)) < u(x,, 0) < [u(x, T)] 35 1800 < [, T,
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consequently if u(x,, T,) < 0 then u(x,, 0) > u(x, T,). Hence u takes on a
positive minimum at (x,, 7,) € D and we get a contradiction. On the other
hand if u(x,, T) > 0 we have u(x,, 0) < u(x,, T,). Hence u attains a posi-
tive maximum at (x,, T,) and we arrive at a contradiction. Similarly in
the second case we obtain

U, 0) < (e, 0)] < ulx, T) 3184w < ulx, T)

and u takes on a positive maximum at (x,, 7)) € D. This contradiction
completes the proof.

2. For the existence theorem we shall need the following assump-
tions

(A) There exist positive constants A, and A, such that, for any vector
§eR,

AlEF < iil aij(x’ t)EiEj < 4|&F

for all (x,¢)e D.

(A,) The coefficients a,;, b, (i,j =1, ---,n), c and f are Holder con-
tinuous in D (exponent «).

(A;) The functions ¢, ¥ and 8, ¢ =1, - - -, N) are continuous respec-
tively on I', 2 and @ and, in addition,

V@) = (5,0 + 3 B@HE, T)

for all xe99.
Moreover we assume that 02 ¢ C**+e.

THEOREM 5. Let c(x,t) < —c,, where ¢, is a positive constant and
assume that —1 < >V, 8(x) <0 and B(x) <0(@=1,---,N) on Q. Then
there exists a unique solution in C>'(D) N C(D) of the problem (1), (2) and
(3).

Proof. We first assume that ¢ =0 on I', then by the condition (A,)
U(x) =0 on 2. We try to find a solution in the form

©  ub) = [ G 6y, 0u, 0dy — [ [ G 153, 910, Ddyds,

where u(y, 0) is to be determined and G denotes the Green function for
the operator L. The condition (3) leads to the Fredholm integral equa-
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tion of the second kind

u(x, ) + 31 B3 [ G, T3, Ou(y, 0)dy
¥ wE

=¥ + 380 [ G T, 90, Ddyde.

Applying Theorem 4 it is easy to show that the corresponding homo-
geneous equation only has a trivial solution in L*2). Hence there exists
a unique solution u(-,0) in L*£) of the equation (7). Since ¥(x) = 0 on
99, it follows from the properties of the Green function that u(-, 0) e C(2)
and u(x,0) = 0 on 92. Consequently the formula (6) gives a solution in
this case.

Suppose next ¢ = 0, but assume that there exists a function @ € C**<(D)
such that @ = ¢ on [I'. Introducing v=u — @ we then immediately
obtain, by the previous result, the existence of a solution v to Lv = f — L@
which vanishes on I and satisfies the condition

o, 0) + 3] Bu(s, T) = ¥(x) — 0(x, 0) — 3] B)0(, T)

for all xe 2. Then assertions for u then follow.

We finally consider the general case, where ¢ is only assumed to be
continuous. By Theorem 2 in Friedman [2] (p.60) and the Weierstrass
approximation theorem there exists a sequenece of polynomials @,, on D
which approximates ¢ uniformly on I'. Now we define a function ¥, on

02 by the following formula
N
Vn(x) = O(x, 0) + 2, B()On(x, T)

for x¢o02. Since lim,_. ¥, = ¥ uniformly on 02, one can construct a
sequence of functions {¥,} in C(2) such that lim, .. ¥, = ¥ uniformly on
Qand ¥, =¥, on a2 for all m. By what we have already proved there
exist solutions to the problem

Lu,=f in D,
Un(x, 1) = Op(x,8) on I,

and

(%, 0) + 3] B0)un(x, T) = To) om 0.
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By Theorem 1 (the inequality (4)) the sequence u,(x,?) is uniformly con-
vergent on D to a function u. It is clear that u satisfies the conditions
(2) and (3). Using Friedman-Schauder interior estimates (Friedman [2],
Theorem 5 p. 64) one can easily prove that u satisfies the equation (1).

Remark. In the above proof we followed the argument used in the
proof of Theorem 9 in Friedman [2] (p. 70-71). For the definition of the
space C**%(D) see Friedman [2] (p. 61-62).

THEOREM 6. Suppose that > 7. |f(x)|< 1 on 2, c(x,t) <0 on D and
¢ =0 on I'. Then the problem (1), (2) and (3) has a unique solution in
Cc*(D) N C(D).

Proof. A solution to this problem is given by the formula

u(x, ) = | G t;5, 0u(y, 0dy — [ [ G, 53, (3, Ddyde,

where u(x, 0) is a solution of the Fredholm integral equation of the second
kind

u(e, 0 + 3 5.x) [ G, T3, Oucy, 0)dy

=v@ + 56 [ [ G T3, 9f(r, )y

3. In this section we investigate the existence of a solution of the
problem (1), (2) and (3) in an unbounded cylinder. Let D = 2 X (0, T,
where 2 is an unbounded domain in R,.

In the next theorem we give a general method of constructing a
solution. We shall need the following assumptions

(B) The coefficients a;;, b, (i,j =1, ---,n) and ¢ are continuous on
D and moreover
i a;(x, )5, >0

1 1

for every (x,t)e D and any vector § # 0, a; =a;, (G, j=1,---,n).

(B) There exists a family of positive function H(x,d) (0 < d < dy)
defined on 2 with properties:

(i) HeC¥2) N C@) for 0 < < J, and LH < —c,H for all (x,8)e D
and 0 < § < d,, where ¢, is a positive constant,

(i) lim Zg 33 =0 for 0< 8, < & < &,
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(iii) there exists a positive constant x# such that
H(x, d,) < kH(x, 3,)

for all xe 2 and 0 < 5, < 3, < 4,
For a sequence {R,} of positive numbers we define

Q,=020n{x:|x|<R,), I',=02,x[0,T] and D, =2, x (0, T].

(B;) There exists a sequence of positive numbers R, converging to
oo as p — oo such that the problem (1), (2) and (3) is solvable on every
D,, i.e. for every bounded and Holder continuous function f on D, and
all continuous functions ¢ and ¥ on I', and 2, respectively, and satisfying
the condition

U(x) = g(x, 0) + 3 B T on 92,

the problem

Lu=f in D,,
u(x, t) = ¢(x,t) on I,

and
u(x, 0) + il B(x)u(x, T) = ¥(x) on 2,

has a unique solution in C*(D,) N C(D,).

We shall say that a function w defined on D belongs to E (D) if there
exist positive constants M and § < §, such that |u(x, t)| < MH(x, §) for all
(x,t)e D.

We shall say that a function v defined on £ belongs to E,(f) if there
exist positive constants M and § < g, such that |v(x)| < MH(x, §) for all
xef.

We are now in a position to construct a solution of the problem (1),
(2) and (8). The construction given in the proof of Theorem 7 below is
a modification of the method used by Krzyzanski [4] to solve the Cauchy
problem for parabolic equations.

THEOREM 7. Suppose that the assumptions (B,)), (B, and (B,) hold.
Let -1 <Y, B(x)<0and B(x) <0 (@=1,---,N) on . Assume that
fe Ey(D) is an Hoélder continuous function, that ¢ € Ey(D) and ¥ e E (Q)
are continuous functions on D and Q respectively and moreover that
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.
V@) = 65 0) + 3 )65, T) on 29,

p=12 -.-.. Then the problem (1), (2) and (3) has a unique solution in

C»(D) N C(D) N Ex(D),

Proof. It is clear that there exist positive constants M and ¢ < g,
such that

[f(x, )] < MH(x,9),  |f(x, )] < MH(x,8) on D,
[¥(x)| < MH(x,8) on 9.
By the assumption (B,) for every p there exists a unique solution u,
in C*(D) N C(D) of the problem
Lu,=f on D,,
Uy(x,t) = ¢(x,8) on I',,

and

]
%

up(x3 0) + Zli’: ,Bi(x)u,,(x, Ti) = w'(x) on
Put
u,(x, t) = v,(x, )H(x,0) p=1,2,---

for (x,t)e D,. Then for every p |v,(x,9)|< M on I,

v,(x, 0) + Z]f] B:{(x)v,(x, T,.)‘ < ¥ (x)] <M on 2,

H(x, 3)
and
n Fu, | & 2 ¢ oH \ v
, )20 b, ) + oo 3% ay(n, 920 ) e
o 2, aulw 05 2 + 3 (b ) + Ha gy s 05 )5
+LHU _ 0y, _ f(x,?)
H ° & H(x, 6)

in D,. It follows from the assumption (B, i) and Theorem 1 that

lv,(x, O] < [E (/AT | gleodT 4 (1 — e—(coﬂ)Tk)—l]M = M,

Co

for all (x,9)eD,, p=1,2,---, where T, = min, T,, Let ¢ <4, <d, and
put

up(x’ t) = l_)p(x9 t)H(xy 51) b= 1; 2, et
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and
upq(x9 t) = up(x, t) — uq(x’ t) = H(x; 51)[Up(xa t) - vq(x, t)] = H(x) 51)51,(1(35, t)

for p < q. The function U,, satisfies the homogeneous equation of the
form (7) with H(x, §) replaced by H(x, 5,) and

.
D005, 0) + 3 B(00,(x, T) = 0
on £,. Moreover

Uy(x, ) =0 on (02, N d2) X (0, T]

and

o, t) = S U0 o onp

UPQ(x ) H(x’ 51) H(xy 6‘) on ? m ’
consequently

- H(x, s

[Tpq(x, D) < (M + M) sup ff((i 51)) onI',.
Let

— H(x, 9)
& = (M + M) Sw, Hex o)

Thus by Theorem 1 we have
wpq(x, t)l < epe(L‘O/?)T

on D,. By the assumption (B, ii) lim,..¢, = 0, hence T, converges uni-
formly on every D, to a function 5. Put w(x, t) = t(x, )H(x, 8,) for (x, ¢) € D.
Clearly uec E (D) is continuous on D and satisfies (2) and (3). To show
that u satisfies (1), fix an arbitrary index p and consider the problem

Lz=f in D,,
2(x,t) = u(x,t) on I',,

N
2(x, 0) + ; Bi(x)z(x, T) = ¥(x) on £2,.
Since u satisfies the condition (3), it is clear that
u(x, 0) + 3 B@u(x, T) = ¥(x) on a2, .
i=1

By the assumption (B;) this problem has a unique solution z. Since u,—u
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as ¢ — oo uniformly on D,, given ¢ >0 we can find g, such that [u,(x, ?)
— u(x, t)| < e for all (x,9)el’, and q > q,. Put

uq(x’ t) - z(x, t) = wq(x: t)H(x, 5)

for (x,£)e D,, ¢ > q,. Then w, satisfies the homogeneous equation (8) in
D, and the following conditions

|w,(x, 8)| < e sup H(x, &) on I,
I'p
and
N
w,(x, 0) + };l Bxw(x,T) =0 on £2,.
By Theorem 1
[wy(x, B)] < ee®/" sup H(x, )~
I'p

for all (x,t)e D,. Letting ¢e— 0 we obtain u =z on D, and the result
follows. To establish uniqueness, let ue C*(D) N C(D) N E(D) be a
solution of the problem (1), () and (3) with f=0, =0 and ¥ = 0.

There exist positive constants M and § < §, such that |u(x, )| < MH(x, )
in D. Choose § < §, < J, and put

u(x, t) = v(x, )H(x,5,) on D.

By (ii) (the assumption (B,)) given ¢ > 0 we can find a positive number
R such that

[v(x, t)] < e for (x,8)e 2N (x| > R) X (0, T].
By Theorem 1
lu(x, )| < eetcodT

for all (x,£)e 2 N (x| < R) X [0, T] and the uniqueness easily follows.
To apply Theorem 7 we introduce the following assumptions
(C) The coefficients a,;, b, (i,j =1, ---,n) and ¢ are bounded on
R, X [0, T] and Hoélder continuous (with exponent @) on every compact
subset in R, X [0, T'] and moreover

clx,t) < —¢, for all (x,5)e R, X [0, T1],

where ¢, is a positive constant.
(C,) There exists positive constants 4, and A, such that for any vector
§eR,
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20'512 < aij(x7 t)&-&j < 21|$|2

n
ij=1

for all (x,t)e R, X (0, T, a;; =a;;, (G,j=1,---,n).
As an application of Theorem 7 we shall prove the existence of a
solution u of the equation (1) in R, X (0, T'] satisfying the condition

® u(x, 0) + 33 f(x)u(x, T) = U(x) on R,.

It is clear that the function H(x, 5) = []%., cosh éx, has properties (i),
(i) and (iii) of the assumption (B,) (with 2 = R,) provided 0 < d < 4,
where g, is sufficiently small.

In this situation

E (R, X (0, T)]) = {u; u defined on R, X (0, T] and [u(x,?)| < Me'*
for all (x,t)e R, X (0, T} and certain M >0 and 0 < d < §,},

similarly

E,(R,) = {v; v defined on R, and |u(x)] < Me’'=!
for all xe R, and certain M >0 and 0 < 4§ < §,}.

THEOREM 8. Suppose that the assumptions (C,) and (C,) holds. Let
B:ieCR), Bx) <0(E=1,---,N)and -1 <3V, p{x)<0o0n R, Iffe
E (R, X (0, T)) is a Holder continuous function on every compact subset of
R, X [0,T] and ¥ e E,(R,) N C(R,), then the problem (1), (9) has a unique
solution in E (R, X (0,T) N C*'(R, X (0, T] N C(R, x [0, T).

Proof. Let ¢ be a continuous function belonging to E,(R, X (0, T'])
such that ¢(x,0) = ¥(x) on R, and ¢(x,8) =0 on R, X [T, T], where
T, = min,_, ...y T;. By Theorem 5 the problem (1), (2) and (3) has a unique
solution on every D,. Applying Theorem 7 the result easily follows.

In the sequel we shall need the following result.

LemmA 2. Suppose that the assumptions (C)) and (C,) hold in R, X
(0,T]. Let p,eCR,)(@=1,---,N), -1 <3, B:(x) <0and (x) <O (=
1,---,N) on R,. Then for any bounded function f on R, X [0, T] and
Héolder continuous on every compact subset of R, X [0, T] and for any
continuous and bounded function ¥ on R, there exists a unique solution
u of the problem (1), (9) in E,(R, X (0, TD N C*>' (R, X (0, TH N C(R, X [0, T
such that
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lu(x, )] < 2 e@PT sup | f(x, ] + (1 — e~ sup | ¥(x)|
C, Rax[0,T] Rn

0

for all (x,t)e R, X [0, T}, where T, = min, T,.

Proof. We start with the following observation, the proof of which

is routine,
ifueC(R, x 0, TD N CR, X[0,TH N Ey(R, X (0, T

and
Lu<0 in R, X (0,71,

u(x, 0) + 3 B(x)u(x, T) >0 on R,

then v >0 on R, X [0, T].

We first suppose that —1 < —B, < 3%, Bx) < 0 on R,, where B, is
a positive constant. Put

_ M_ M
u(x, t) = u(x,t) — o — i IR
where
M= Rnsg[gﬂlf(x, )| and M, = sgylw(x)!-
Then
_ c cM, cM,
Lv—f—c—OM— i g > 1—f >0

in R, X (0, T] and

(w0 + 2 pute T = ¥ — oL — M~ (B I ) e
M _ 1 By
<G @-Dem(i- 2o o) <o

on R,. By the preceding remark

ugy——l— M, on R, X [0, T].
Co — Po
Similarly using
wix, §) = u(x, ) + L 4 M
Co 1—-5
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as a comparison function we deduce the inequality

us M _ M,

on R, x [0, T].
Co 1— 8

In the general case we use the transformation u(x, t) = v(x, t)e~ /¢,

4. In this section we derive an integral representation of the pro-
blem (1), (2) and (3) in an infinite strip and in a bounded cylinder.

THEOREM 9. Suppose that the assumptions (C,)) and (C,) hold in R, X
0,T]. LetB,(i=1,---,N)and ¥ be a continuous and bounded functions
on R,. Assume further that

—1< M <0 and B <O0G=1---,N) on R,.
i=1
Then the unique solution in C*'(R, X (0, T]) N C(R,[0, T]) N E,(R, X (0, T1)
of the problem (1), (9) with f =0 is given by

(10) u(x, ) = | P t, )¥()dy,

for (x,t) e R, X (0, T, where P(x, t,y) as a function of (x, t) satisfies the equa-
tion LP =0 in R, X (0, T] for almost all ye R,. Moreover P satisfies the
equation

a) Pty = —[ TG 1202 8(PE T, 9)dz + I 3,0

Rn =1
for all (x,t)e R, X (0, T1 and almost all ye R,, where I'(x,t,y,0) is the
fundamental solution of Lu = 0.

Proof. Let ¥ be a continuous and bounded function in L*R,). By
Lemma 2 the unique solution of the problem (1), (9) in C>'(R, X (0, T'])
NCR, X [0, THDNEL (R, X (0, T]) is bounded on R, X [0, T]. We first
prove that for each § > 0 there exists a positive constant C(6) such that

(12 uw o) < co|[roray]”

on R, X [6, T]. To prove (12) we first assume that —1 < g, < > %, (%)
< 0 on R,, where §, is a positive constant. Consider the Cauchy problem
for the homogeneous equation (1) with the initial condition

2(x,0) = — 3} pulx, T) + V()
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on R,. The unique solution z in E (R, X (0, T]) is given by
N
20,0 = —[ T 50380, Tody + [ It 0F()dy

for all (x,t)e R, X (0, T] (Friedman (2], p. 26). Since u is a solution of
the same problem we obtain

N
(13)  ulx, 1) = —JR I(x, t;y,0) 2, B(y)u(y, Tydy + L I'(x, t; y, 0¥ (y)dy
for all (x,f)e R, X (0, T]. Now it is well known that
(14) | Pty 0d <1
Ry

for all (x,#)e R, x (0, T] and
(15) 0< I'(x, t;y,0) < Cit-he-*Uz-vins

for all (x,t)e R, X (0, T] and ye R,, where C, and s are positive con-
stants (Friedman [2], p. 24). Applying the Hoélder inequality we derive
from (13), (14) and (15) that

1/2 1/2
(16) max sup|u(x, Ti)lg_c‘—T,;W*)U e'”'”"dx] U W(x)zdx] ,
i=1,-+,N Rp 1—5 R Rn

where T, = min,_, ...y T;. Using again the representation (13) and the
estimates (14), (15) and (16) we obtain

B ) W b
§0) uw, )] < [ -2 5 GG+ G [, #@raz|
for all (x,¢) e R, X (0, T], where

C = T,;("/“’[J. e‘“"“‘”‘dx]”2 and C, = [J. e‘”'”"dx]m,
Ra

R
and the estimate (12) easily follows. In the general case we use the
transformation u(x, ) = v(x, y)e=«“®t, By (12) the mapping ¥ — u(x, t)
defines a linear functional on C,(R,) N L*R,) continuous in L*norm.
Here C,(R,) denotes the space of continuous and bounded functions on
R,. Consequently the representation (10) follows from the Riesz represen-
tation theorem of a linear continuous functional on L*(R,). To derive
(11) observe that by (10) and (13) we have for every continuous bounded
function ¥

https://doi.org/10.1017/50027763000020754 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020754

PARABOLIC EQUATIONS 125

[, Pl ooy = —[ I ti5,0 3 50)|[, PO, T, 2W@dz]dy
+ Leﬂ I'(x, 25y, 0¥ (y)dy

for (x,t)e R, X (0, T]. Consequently if we fix (x, {) e R, X (0, T'], applying
Fubini’s theorem, we obtain the identity (11) for almost all ye R,. Now
choose y e R, such that

[ It 752,03 80P T, 1)dz

is finite. Then by Theorem 1 in Watson [6] the integral

L I'(x, 8, 2, 0) i B,(2)P(z, T}, y)dz

is finite for all (x,t)e R, X (0, T'] and represents a solution of the equa-
tion Lv =0 in R, X (0, '] and the last assertion of the theorem easily
follows.

Similarly in the case of a bounded cylinder one can prove

THEOREM 10. Suppose the assumptions of Theorem 5 hold. Let u be
a solution of the problem (1), (2) and (3) with ¢ =0 and f=0. Then

u(x, t) = L p(x, t, T (y)dy

for all (x,t) e D, where p(x,t,y) as a function of (x,t) satisfies the equation
Lp = 0 for almost all ye 2. Moreover

(18) p(x, t,y) = —L G(x, t; z,0) il B2)p(z, T, y)dz + G(x, t; v, 0)

for all(x,t)e D and almost all ye Q, where G(x, t;y,0) is the Green func-
tion for the operator L.

In the following theorem we shall show that p and P tend to infinity
at the same rate as ¢~ ™/,

THEOREM 11. Let the assumptions of Theorem 9 hold and let D =
X (0, T] be a bounded cylinder with 32 e C***. Then there exists a positive
constant C such that

(19) P t,3) < €| Glx, t52,0dz + Glx, 3,0
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for all (x,t)e D and almost all y e 2, and moreover
(20) P(x, t,y) < CJ I'(x,t;2,0)dz + I'(x, t;5,0)
Rn

for all (x,t)e R, X (0, T] and almost all ye R,, where C depends on C,
and n.

Proof. We first assume that —1 < g, < >¥,8(x) <0 on 2, where
B, is a positive constant.
Let ¥ be a continuous and non-negative function on R, with compact

support in Q. It follows from Theorem 9, 10 and the maximum principle
that

[, pe b WOy < [ PG 6,5 )y

for all (x,¢)e D. Since ¥ is an arbitrary non-negative function we deduce
from the last inequality

p(x, t,y) < P(x,t,y)
for all (x,£)e D and almost all ye 2. Fix y in 2 such that the last

inequality holds. Since P(x, T, y) is continuous as a function of x we get

p(x7Ti,y)£Su§)P(z,Ti:y)<oo (i-———‘].,,N)
z€

Using the identity (18), the estimate (15) and the obvious inequality
G(x, t;y,0) < I'(x, t; v, 0) for all (x,f)e R, X (0, T] and y € R, we derive the
estimate

C.T-m .
max sup p(x, T, y) < 22—k | where T, = min T,.
N

i=1,++,N ZERQ 1-— ﬁo i=1,e00,
Now applying again the identity (18) we obtain

p(x, t,5) < -Gk [ 6 ti2,0dz + 6, 3,0

for all (x,f)e D and almost all ye 2. In the general case we use the
transformation u(x, t) = v(x, f)e- ",

To prove (20) put D, (x| < m) X (0, T] and denote by G.(x, t;y, 0) the
Green function for the operator L. By the preceding result we have for
every m
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Palx, t;y) < Cf G(x, t; 2,0)dz + G,(x, t;,0)
|zl <m

for all (x,t)e D, and almost all y e {x| < m}, where p,, denotes “p-func-
tion” for the problem (1), (2) and (3) in D,. By a standard argument
one can prove that {G,} and {p,} are increasing sequences converging
to G and p respectively and the result easily follows.

It follows from the proof of Theorem 9 (the inequality (12)) that the
problem (1), (9) can be solved for ¥ € L*(R,), but this requires a new for-
mulation of the condition (9).

We shall say that a function u(x, ¢) defined on R, X (0, T] has a para-
bolic limit at x, if there exists a number b such that for all ¥ > 0, we have
lim  w(x,t)=05.

(,8) = (0,0)
|z—zol <y« ¢t

We express this briefly by writing p — limg, ;.0 ¥(x, §) = b (see Cha-
borowski [1] p. 257).
Let ¥ e L*(R,). We shall say that a function u belonging to C*'(R,
X (0, T]) is a solution of the problem (1), (9) if it satisfies the equation
(1) in R, X (0, T] and
¥

p— lim u(x &)= —3 BNy, T) + ¥(y)

(z,0)~(y,0) i=1
for almost all ye R,.

THEOREM 12. Suppose that the assumptions (C,) and (C,) hold in
R, X (0,T]. Let peCR) (i=1---,N) =1 < %, 5() <0 and £(x)
<0(@=1,---,N)on R, Assume that ¥ ¢ L*(R,) and that f is a bounded
function on R, X [0, T] and Holder continuous on every compact subset of
R, X [0, T]. Then there exists a solution of the problem (1), (9).

Proof. Let {¥,} be a sequence of functions in C(R,) with compact
supports which converges to ¥ in L*R,). By Theorem 9 there exists a
unique bounded solution u, in C*Y(R, X (0, T] N C(R, x [0, T]) to the
problem

Lu,=f in R, X (0, T

and

u(x10) + 3. p@u,(x, T) = T,(x) on R,.
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It follows from (12) that
e, ) = e 0] < COf| .0 — ¥ @Pdxf "

for all (x,?) e R, X [5, T]. Hence u,(x, t) converges uniformly on R, X [, T']
for every >0 to a continuous function w(x,f) on R, X (0, T]. As in
the proof of Theorem 9 it is easy to establish the representation

u(e,) = = Ix 53,03 8.0)uly, Tady
+ | Ity orody — [ | I tiy9f(r, 9dyde

for all (x,f)e R, X (0, T]. Letting r — co we obtain
.
ule, ) = —| I 19,0 3 By)u(y, Tdy
12
+ [ TGty 08y — [ [ I i3, 9f(, dyde
Bp 0JRn

for (x,t)e R, X (0, T]. Since u(x, T;) are bounded on R, it is easy to see
that u(x, t) satisfies the equation (1) in R, X (0, T']. It follows from The-
orem 3.1in Chabrowski [1] that

N
p— lim ux, )= -3 B(yuly, T) + ¥(»)
(,t)—(y,0) i=1
for almost all ye R,.
5. In this section we briefly discuss the extensions of the previous
results to the problem (1), (2) and (3*), where

(3") u(, 0) + 3, pleu(x, T) = ¥(x) on 2,

with T,¢(0,T] i =1,2, ---.
Throughout this section it is assumed that inf; T; > 0.
We being with the maximum principle.

Lemma 3. Suppose that the assumption (A) holds in a bounded cylinder
D. Let c(x,t) <0 in D. Assume that —1 < > 7, B(x) <0 and B(x) <0
(i=1,2---)on 2. Let u be a function in C*(D) N C(D) satisfying the
following conditions

Lu<0 in D,
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ux,) >0 on I’
and
u(x, 0) + Z” B(x)u(x, T) >0 on 3,
then u >0 on D.

Proof. Assume that u < 0 at some point of D. Then there exists a
point x, € £ such that u(x, 0) = ming u(x, £) < 0. Consequently

u(x, (1 + 3] 8x)) = 0.

Hence u(x,, 0) > 0 provided > 3, B(x,) + 1 > 0 and we get a contradiction.
It remains to consider the case >.;,B(x) = —1. Let T, =inf, T..
There exists Se[T,, T] such that u(x,, S) = min,,.,.r u(x, t). Hence

u(, 0) > — 3 fleulm, T = —ulx, 8) 3 Blx) = u(x, S)
and we get a contradiction.

THEOREM 13. Suppose that the assumption (A) holds in a bounded
cylinder. Let c¢(x,t) <0 on D and > 5..|B(x)] < 1on 2. Then the problem
1), (2) and (3*) has at most one solution in C*'(D) N C(D).

Proof. Let u be a solution of the homogeneous problem

Lu=0 in D,
ux,t)=0 on I

and
u(x, 0) + 3 p@)ux, T) = 0 on 2.

Suppose that u %= 0. As in the proof of Theorem 4 we may assume that
there exists a point x,¢ £ such that

u(xy, 0) = min u(x, t) < 0. Let [u(xy, £)| = max |u(x, T)|,
D To<t<T

where T, = inf, T, and ¢ ¢ [T, T]. Then

o, 0] < (o, 0)] 35 1) | < (i, 1)
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We must assume that w(x,, £) > 0. Hence there exists a point x, € 2 such
that u(x;, 0) = max;u(x, t) > 0. Let |u(x, 8)| = maxy .7 |u(x, S). It is
obvious that

u(x,, 0) < |u(x, S)|.

Now considering two cases u(xy, 0) < |u(x,, 0)] and |u(x,, 0)| < u(x,, 0) we
arrive at a contradiction (for details see the proof of Theorem 3).
We shall now state analogues of Theorems 5 and 8.

THEOREM 14. Suppose that the assumptions (A, and (A,) hold in a
bounded cylinder D with 92 e C***. Let c(x,t) < —c, in D, where ¢, is a
positive constant and assume that B, C(Q) (1 =1,2,--), B(x) <0 (i =1,
2,--+) and —1< 272, B84x) <0 on Q and that the series > 3, p«(x) is
uniformly convergent on 2. Assume finally that f is a Hélder continuous
function on D, ¢ and ¥ are continuous function on I' and Q respectively
and moreover

8, 0) + 3. B=)g(x, T) = U(x) on 302

Then there exists a unique solution in C*'(D) N C(D) of the problem (1),
(2) and (3%).

THEOREM 15. Let the assumptions (C,) and (C,) hold. Assume that
B:eCR)(E=1,2--),p)<0(@E=12--)and -1 <37, B(x) <0on
R, and that the series 3,7, B{x) is uniformly convergent on R,. If f is a
bounded on R, X [0, T] and Holder continuous function on every compact
subset of R, x [0, T1 and ¥ is a continuous and bounded function on R,,
then there exists a unique solution in E4z(R, X (0, TN C>'(R, X (0, TDN
C(R, X [0, T of the equation (1) satisfying the condition

@) u(, 0) + 3 B@ulx, T) = ¥(x) on R,.

The proof of Theorem 14 and 15 are similar to those of Theorems 5
and 8.

One can easily prove that under the assumptions of Theorems 15, the
solution in E (R, X (0, T]) of the problem (1), (9*) is bounded on R, X
[0, T1.

Remark. If 0 is an accumulation point of the sequence {7} then the
Lemma 3 remains true provided > 2, 8(x) +1>0 and B(x) <0 (i=1,
2,---) on R,.
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