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ON NON-LOCAL PROBLEMS FOR PARABOLIC EQUATIONS

J. CHABROWSKI

The main purposes of this paper are to investigate the existence and
the uniqueness of a non-local problem for a linear parabolic equation

(1) Lu = ± α,,(*, O - 9 ^ - + Σ &<(*, t)^L + C(x, t)u-*± = /(*, t)
**i dXdX *=i dXi dt

in a cylinder D = Ω X (0, ϊ7]. Given functions βt (i = 1, , AT) on Ω and
numbers 7̂  € (0, T] (i = 1, , iV), the problem in question is to find a
solution u of (1) satisfying the following conditions

(2) u(x, t) = φ(x, t) on Γ,

(3) u(x,0) + Σβi(x)u(x,Tι) = Ψ(x) on Ω,

where /, φ and Ψ are given functions and Γ denotes the lateral surface
of D, i.e., Γ = 3fi x [0, T].

In Section 1 we establish the maximum principle associated with the
problem described by (1), (2) and (3). Theorem 1 leads immediately to
the uniqueness of solution of the problem (1), (2) and (3) as well as to an
estimate of the solution in terms of /, φ and Ψ. We also briefly discuss
certain properties of the solutions related to the behaviour of the coe-
fficients βi (i = 1, , N). In Theorem 5 of Section 2 we establish the
existence of the solution in a bounded cylinder. The results are then
applied to derive the existence and the uniqueness of solution of the non-
local problem in an unbounded cylinder (Section 3). In Section 4 we
establish an integral representation of solutions and give a construction
of the solution of a non-local problem in Rn X (0, T] with Ψ e L\Rn). In
the last section we modify the condition (3) by replacing a finite sum by
an infinite series and briefly discuss the uniqueness and the existence of
solution of the resulting problem. Theorems of Sections 1 and 2 of this
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paper extend and improve earlier results obtained by Kerefov [3] and

Vabishchevich [6], where historical references can be found. They only

considered the case N = 1.

1. Let D = Ω X (0, Γ], where Ω is a bounded domain in Rn. By Γ

we denoted the lateral surface of D, i.e., Γ == dΩ X [0, T].

Throughout this section we make the following assumption

(A) The coefficients aυ, bt and c are continuous on D and moreover

± ai3(x, *)?*£, > 0

for all vectors ξ Φ 0 and (x, ί) e D.

By C21(D) we denote the set of functions w continuous on D with

their derivatives dujdxi9 3Puldxtdxt (i, j = 1, , n) and 9w/3ί (at t = Γ the

derivative dujdt is understood as the left-hand derivative).

LEMMA 1. Let u e C21(D) Π C(£>). Suppose that c(x, t)<0 on D and

- 1 < Σti βi(*) <0 on Ω and β^x) < 0 on Ω (i = 1, , N). If Lu<0

in D, u(x, t)>0 on Γ and u(x, 0) + 2f=1 βlx)u(xy T%) > 0 on Ω, then u(x, t)

> 0 on D.

Proof Assume that u < 0 at some point of D, then there exists a

point (x0, t0) € D such that u(x0, t0) — min5 u(x, t) < 0. By the strong max-
imum principle (x0, t0) = (x0, 0) with xoe Ω (see Friedman [2] Chap. 2 or

Protter and Weinberger [5] Chap. 3). Thus, we find that

0 < u(x0, 0) + Σ βi(xo)u(xo, T%) < u(x0, 0)Γl + Σ βi(*Λ
ί=i L ί=ι A

Hence u(x0, 0) > 0 provided 1 + Σf=i βi(χo) > 0 and we get a contradiction.

In the case Σ?=i βί(χo) = — 1 we put u(x0, Tk) = min ί=1,...^ u(x0, TJ, then

u(x0, 0) - φ09 Tk) = u(x0, 0) + u(x{), Tk)

Hence u takes on a negative minimum at (x0, Tfc) e D. This contradiction

completes the proof.

COROLLARY. Suppose that the assumptions of Lemma 1 hold. If L>

0 in D, u(x, t) < 0 arc Γ and u(x, 0) + Σf=i jS^x)^, T%) <0 on Ω, then

u(x, t) < 0 on D.
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Now we can state the main result of this section.

THEOREM 1. Let ue C2\D) Π C(D) be a solution of the problem (1),

(2) and (3) with f, φ and ¥ continuous on D, Γ and Ω respectively. Suppose

that c(x,t)< — c0 in D, where c0 is a positive constant. Assume further

that - 1 < Σ i i βi(x) < 0 and βt{x) < 0 (ί = 1, , N) on Ω. Then

(4) |u(x, t)\<— e ( C o / 2 ) Γ s u p | f(x, t)| + e<e«*>τ s u p |φ(x, t)\
Co D Γ

for all (x, t) e D, where Tk = minz=l5...5,γ Tt.

Proof. We first suppose that — 1 < — β0 < Σtiβi(χ) < 0 on β, where

β0 is a positive constant. Let M = suipD\f(x, i)\, Mλ = supΓ |^(x, t)\, M2 =

β | Ψ(x) ] and put

M Ά, M2v(x, t) = u(x, t) - — - Mx -
Co 1 - βo

Then

= f- °~M - cMx - ^ C ¥ A _ > cM + —c°-~~
Co 1 — iS0 1 - β0

in D, v(x, t) < 0 on Γ and

v(x, 0) + Σ βt(x)υ(x, Tt) =
C

o

(K + M)(βΰ - 1)

+ MJI - 1— + ^ ) < o
2V i-β0 i - βj

on ί3. It follows from Lemma 1 that v < 0 on D. Similarly we can

establish the inequality u(x, i) > —(M/c0) — Mx — M2/(l — β0) for (x, t) e D

considering the auxiliary function

w(x, t) - u(x, t) + M. + M M

o 1 - ft

In the general case we put u(x, t) — e~{Co/2)tz(x, t). Then z satisfies the

equation
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(5) Σ atj(x, t)-/§- + Σ &<(*, t)ψ- + Ux, t) + £ ) * _
i j i dxβX i i dX \ 2/

= β ( C 0 / 2 ) ί/(x, ί)

in D with φr, ί) + co/2 < — (co/2) in D,

*(*, ί) = e(co/2)ί0(x, ί) on Γ

and

*(*, 0) + Σ βiWe'^T'zix, Td = y(x) on β .

It is clear that -e- ( c o / 2 ) Γ* < Σf=i&0Φ~ ( C o / 2 ) Γ i < 0 on β and the estimate
easily follows.

Theorem 1 and a classical maximum principle for solutions of para-

bolic equations allow us to compare a solution of the problem (1), (2) and

(3) with a solution of an initial boundary value problem.

THEOREM 2. Suppose that the assumptions of Theorem 1 hold. Let

u e C2)1(D) Π C(D) be a solution of the problem (1), (2) and (3), and v e

C2ί(D) Π C(D) a solution of (1) satisfying the initial boundary value con-

ditions v(x, t) = φ{x, t) on Γ and v{x, 0) = Ψ(x) on Ω. Then

\φ, t) - v(x, t)\ < supΣ |^(x)|f^β<c^Γsup|/(x, 01

+ e(C0/2)Γ sup \φ(x, t)\ + (1 - β"^2 1*)"1 sup \Ψ(x)λ
Γ Ω J

for all (x, t) e D.

In particular if βt = βi(x) (i = 1, , iV) where βl -> 0 uniformly as

y —• oo for all /, then the corresponding sequence uv of solutions of the

problem (1), (2) and (3) converges uniformly to v in D.

THEOREM 3. Let c(x, t) < 0 in D and assume that — 1 < Σί=i $ ( χ ) < 0

(y = 1, 2) αnc? ίΛαί 3̂J(x) < β](x) < 0 (/ = 1, , N) on Ω. Suppose further

that f < 0, φ > 0 and Ψ > 0 on D, Γ and Ω respectively. If ux and u2 are

solutions belonging to C2a(D) Π C(D) of the problem (1), (2) and (3) with

βi = ^J(Λ ) (i = 1, , N) and βt — β%x) (i = 1, , N) respectively, then

ux(x, t) > u2(x, t) on D.

Proof. We put w(x, t) = u^x, t) — u2(x, f), then Lw = 0 in £), M;(X, ί)

= 0 on Γ and
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w(x,0) + Σ β\(x)w(,x, Td = Σ ($(*) - #(*))«>(*, Tt) on Ω.

Since u2(x, t) > 0 on D, it follows from Lemma 1, that w(x, t) > 0 for all

(*, 0 e D.

Lemma 1 yields the uniqueness of solutions of the problem (1), (2)

and (3) under the assumptions that βt(x) < 0 (ί = 1, , N) and — 1 <

ΣίLi βi(x) < 0 on fl. Vabishchevich [6] pointed out, without giving any-

proof, that in the case N = 1 the uniqueness can be proved under the

assumption \β(x)\ < 1 on Ω. For the sake of completeness we include the

proof of uniqueness under the assumption Σ?=o\βί(χ)\ < 1 on β.

THEOREM 4. Suppose that c(x, t) < 0 on D and Σf=i\βi(χ)\ <1 on Ω.

Then the problem (1), (2) and (3) has at most one solution in C21(D) Π C(D).

Proof. Let u be a solution of the homogeneous problem

Lu = 0 in D

u(x, 0 = 0 on Γ
and

u(x, 0) + Σ &(*)!*(*, ϊ7,) = 0 on Ω .

Suppose that w ^ 0. We also many assume that there exists a point in

(x0, t0) e D such that u(x0, t0) = min5 w(x, t) < 0. It is clear that (x0, t0) =

(xQ, 0) with x o € ^ We can assume that |w(xo> Γj)] = maxi=1,...5:V|̂ 0x:o> Tz)\

> 0, since otherwise there is nothing to prove. Obviously,

I u(x0, 0)| < | u(x0, Td\Σ\ AW I < I u(x0, Tλ) |.
ί = l

If u(x0, Γj) < 0 then u(x0, T^ < w(x0? 0). Hence w attains its negative min-

imum at (xQ, Tr) and we get a contradiction, therefore u(x09 Tt) > 0. Thus

there exists a point (xu t^ e D such that w(x1? ^) = max s u(x, t) > 0. Again

(xl9 tt) = (xl9 0) with xι e Ω. .Put \u(xu Ts)\ = max<=1,...fJV[φ;1, Γ,)|. We may

assume that \u(xu Ts)\ > 0, since otherwise there is nothing to prove.

Now we must distinguish two cases

| u(x0, 0)) < u(xu 0) or u(xu 0) < | u(x09 0) | .

In the first case we have

| u(x0, 0) | < u(xu 0) < | u{xu Ts

N

ϊ = l
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consequently if u(xu Ts) < 0 then u(x0, 0) > u(x, Ts). Hence u takes on a

positive minimum at (xl9 Ts) e D and we get a contradiction. On the other

hand if u(xu Ts) > 0 we have u(xu 0) < u(xu Ts). Hence u attains a posi-

tive maximum at (xί9 Ts) and we arrive at a contradiction. Similarly in

the second case we obtain

i*x» 0) < \u(xOi 0)| < u(x0, 2\) Σ I&WI < Φo, Ά)
i = l

and u takes on a positive maximum at (x0, Tt) e D. This contradiction

completes the proof.

2. For the existence theorem we shall need the following assump-

tions

(Aj) There exist positive constants Λo and λt such that, for any vector

ξeRn

Σ

for all (xy t) e D.

(A2) The coefficients atj, bt (i, j = 1, , ή), c and / are Holder con-

tinuous in D (exponent a).

(A3) The functions φ, Ψ and βέ (i — 1, ,iV) are continuous respec-

tively on Γ, Ώ and Ώ and, in addition,

( φ( Σ

for all x e dΩ.

Moreover we assume that dΩ e C2+α.

THEOREM 5. Let c(x, t) < — c0, where c0 is a positive constant and

assume that - 1 < Σf=i i 8 ^) < ° α 7 i c ί i 3 ^) < 0 (i = 1, , iV) oτι β. T/ien

there exists a unique solution in C2ί(D) Π C(D) of the problem (1), (2) and

(3).

Proof. We first assume that φ = 0 on Γ, then by the condition (A3)

Ψ(x) = 0 on dΩ. We try to find a solution in the form

(6) u(x, t) = f G(x, t; y, 0)u(y, 0)dy - Γ f G(x, t; y, t)f(y, τ)dydτ,
J Ω JO J Ω

where u(y, 0) is to be determined and G denotes the Green function for

the operator L. The condition (3) leads to the Fredholm integral equa-
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tion of the second kind

u(x, 0) + t βt(x) f G(x, Tί; y, 0)u(y, O)dy

= Ψ(x) + Σ βi(x) P G(x, Tt;y, τ)f(y, τ)dydτ .
ΐ = l J O

Applying Theorem 4 it is easy to show that the corresponding homo-

geneous equation only has a trivial solution in L2(Ω). Hence there exists

a unique solution u( , 0) in L\Ω) of the equation (7). Since Ψ(x) = 0 on

dΩ, it follows from the properties of the Green function that u(-,0) e C(Ω)

and u(x, 0) = 0 on dΩ. Consequently the formula (6) gives a solution in

this case.

Suppose next φ^O, but assume that there exists a function Φ e C2+a(D)

such that Φ = φ on Γ. Introducing v = u — Φ we then immediately

obtain, by the previous result, the existence of a solution v to Lυ = f — LΦ

which vanishes on Γ and satisfies the condition

v(x, 0) + Σ βlx)v{x, T%) = Ψ(x) - Φ(x, 0) - Σ βt(x)Φ(x, T%)

for all xe Ω. Then assertions for u then follow.

We finally consider the general case, where φ is only assumed to be

continuous. By Theorem 2 in Friedman [2] (p. 60) and the Weierstrass

approximation theorem there exists a sequenece of polynomials Φm on D

which approximates φ uniformly on Γ. Now we define a function ¥m on

dΩ by the following formula

Wm(x) = Φm(x, 0) + Σ βMΦΛx, Tt)
i = l

for x e dΩ. Since lim™.̂  Ψm = Ψ uniformly on dΩ, one can construct a

sequence of functions {Ψm} in C{Ω) such that lim™^ Ψm = ¥ uniformly on

Ω and Ψm = Ψm on dΩ for all m. By what we have already proved there

exist solutions to the problem

Lum = f in D,

um(x, t) = Φm(x, ί) on Γ,

and

am(*, 0) + Σ βi(x)un(x, Tt) = fm(x) on Ω.
i l
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By Theorem 1 (the inequality (4)) the sequence um(x91) is uniformly con-

vergent on ΰ to a function u. It is clear that u satisfies the conditions

(2) and (3). Using Friedman-Schauder interior estimates (Friedman [2],

Theorem 5 p. 64) one can easily prove that u satisfies the equation (1).

Remark. In the above proof we followed the argument used in the

proof of Theorem 9 in Friedman [2] (p. 70-71). For the definition of the

space C2+a(D) see Friedman [2] (p. 61-62).

THEOREM 6. Suppose that Σι?=i\βi(χ)\ <l on Ω, c(x, t) < 0 on D and

φ = 0 on Γ. Then the problem (1), (2) and (3) has a unique solution in

C21(D) Π C(D).

Proof. A solution to this problem is given by the formula

u(x, t) = ί G(x, t; y, 0)u(y, O)dy - P ί G(x, t; y9 τ)f{y, τ)dydτ,
J Ω JOJΩ

where u(x, 0) is a solution of the Fredholm integral equation of the second

kind

Φ, 0) + Σ βi(x) f G(x, Tt;yf 0)u(y, Q)dy
i = l J Ω

= Ψ(x) + Σ &(*) Π ί G(x, Z; y, τ)f(y, τ)dydτ.
i = l Jo JΩ

3. In this section we investigate the existence of a solution of the

problem (1), (2) and (3) in an unbounded cylinder. Let D = Ω X (0, T],

where Ω is an unbounded domain in Rn.

In the next theorem we give a general method of constructing a

solution. We shall need the following assumptions

(B2) The coefficients aφ bt (i9 j = 1, , ή) and c are continuous on

D and moreover

± aίό(x, ήζtξj > 0

for every (x, t)e D and any vector ξ Φ 0, atj = ajt (i, j = 1, , ή).

(B2) There exists a family of positive function H(x, δ) (0 < δ < δ0)

defined on Ω with properties:

( i ) He C\Ω) Π C(Ώ) ΐorO<δ<δ0 and LH < -c0H for all (x, i) e D

and 0 < δ < ^0, where c0 is a positive constant,

(ii) lim ^ 4 v = 0 for 0 < ^ < ^2 < ^ 0,
l*H«o H(X, δ2)
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(iii) there exists a positive constant K such that

H(x, δ,) < κH(x, δ2)

for all x e Ω and 0 < δ1 < δ2 < δ0.
For a sequence {Rp} of positive numbers we define

Ωp = Ω Π {x: \x\ < Rp}, Γp = dΩp x [0, T] and Dp = Ωp x (0, ϊ 7 ] .

(B3) There exists a sequence of positive numbers Rp converging to
oo asp-^oo such that the problem (1), (2) and (3) is solvable on every
Dp, i.e. for every bounded and Holder continuous function / on Dp and
all continuous functions φ and Ψ on Γp and Ωp respectively, and satisfying
the condition

TO - φ(x, 0) + g βt(x)φ(x, Tτ) on dΩp ,

the problem

Lu = f in Dp,

u(x, t) = φ(x, t) on Γp

and

"(Λ:, 0) + Σ βi(*)Φ, Tτ) = ?Γ(χ) on β p

has a unique solution in C2i\Dp) Π C(DP).
We shall say that a function w defined on D belongs to EH{D) if there

exist positive constants M and δ < £0 such that | w(x, t) \ < MH(x, δ) for all
(x, ί) e Zλ

We shall say that a function u defined on Ω belongs to EH(Ω) if there
exist positive constants M and δ < δ0 such that | υ(x) \ < MH(x, δ) for all
xeίλ

We are now in a position to construct a solution of the problem (1),
(2) and (3). The construction given in the proof of Theorem 7 below is
a modification of the method used by Krzyzaήski [4] to solve the Cauchy
problem for parabolic equations.

THEOREM 7. Suppose that the assumptions (BJ, (B2) and (B3) hold.

Let - 1 < Σiti βt(x) < 0 and βt(x) <Q(i = l, ',N)onΩ. Assume that

feEH(D) is an Holder continuous function, that φeEH(D) and ΨeEH(Ω)

are continuous functions on D and Ω respectively and moreover that
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¥(x) = φ(x, 0) on ΘΩP

p = 1, 2, . Then the problem (1), (2) and (3) has a unique solution in

C2>XD) Π Cφ) Π EH(D),

Proof. It is clear that there exist positive constants M and δ < δ0

such that

| φ(x, t) | < MH(x, δ), | f(x, t) | < MH(x, δ) on D,

\Ψ(x)\ < MH(x, δ) on Ω.

By the assumption (B3) for every p there exists a unique solution u?

in C ^ φ ) Π C φ ) of the problem

Lup = f on Dp ,

up(x, t) = φ(x, t) on Γ p ,

i(ΦP(*> Ά) = W(x) on Ωp .

and

Put

up(x, t) = υp(x, t)H(x, δ) p = 1, 2, .

for (x, t) e D p . Then for every p \vp(x, t)\< M on Γp,

vp(x, 0)

and

(8)

Λ,jUp\Λ') J. ι)

± Ux, t)

H(x, δ)

H(x,δ)

onfl.

. i f f _ ĝ P _ /(*, o
H P dt H(x,δ)

in £)p. It follows from the assumption (B2 i) and Theorem 1 that

|I>P(«, 01 < Γ— eiC

lc0

iCoμ)T

for all (x, t) e Dp, p = 1, 2, , where Tfc = min, Tt. Let δ < δ1 < δ0 and

put

up(x, t) = ϋp(x, ί)fl"(x, «i) p = 1, 2, . . .
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and

upq(x, t) = up(x, t) - uq(x, t) = Ή{x, δί)[Όp(x9 t) - vq(x, t)} = H(x, δdv^x, t)

for p < q. The function Όpq satisfies the homogeneous equation of the

form (7) with H(x, δ) replaced by H(x, δt) and

vpq(x, 0) + Σ βi(x)Όpq(x, Tτ) = 0

on Ωp. Moreover

υpq(x, ί) = 0 on (dΩp Π dΩ) X (0, T]

and

vpq(x, t) = ™^ ' — -ψjy-^—γ on Γ p Π ΰ ,

consequently

\vpq(x, t)\<(M+ AQ sup ζ^A: on Γp .
8OP-8Q H(X, δx)

Let

εp = (M + Λίi) sup ^x? ^ .

Thus by Theorem 1 we have

on Dp. By the assumption (B2 ii) lim^oo εp = 0, hence vp converges uni-

formly on every JDS to a function Ό. Put u(x, i) = v(x, t)H(x, δ^) for (x, t) e D.

Clearly u e EH(D) is continuous on D and satisfies (2) and (3). To show

that u satisfies (1), fix an arbitrary index p and consider the problem

Lz = / in D p ,

z(x, t) = u(x, t) on Γp ,

z(x, 0) + Σ β&Wx, T%) = ?P*(x) on Ωp.
ι = l

Since w satisfies the condition (3), it is clear that

u(x, 0) + Σ βt(x)Φ, Tτ) = r(x) on dΩp .
i = l

By the assumption (B3) this problem has a unique solution z. Since uq-+u
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as ^->oo uniformly on Dp, given ε > 0 we can find q0 such that [uq(x, t)

- u(x9 t)\<ε for all (x, t) e Γp and q > q0. Put

uq{x, t) - z(x, t) = wq(x, t)H(x, δ)

for (x, t) e Dp, q > q0. Then wq satisfies the homogeneous equation (8) in

Dp and the following conditions

Γ

and

, t)\<ε sup H(x, δ)'1 on Γp

wq(x, 0) + Σ βι(x)wq(x, Td = 0 o n f l r

By Theorem 1

\wq(x, t)\ < εβ(C0/2)Γ sup H(x, δ)~ι

for all (x, t) e Dp. Letting ε —> 0 we obtain u = z on Dp and the result

follows. To establish uniqueness, let u e C2Λ(D) Π C(D) Π ^ φ ) be a

solution of the problem (1), (2) and (3) with / = 0, ^ Ξ O and Ψ ΞΞ 0.

There exist positive constants M and δ <C δ0 such that | w(x, t) \ < MH(x, δ)

in Zλ Choose ^ < δγ < <50 and put

u(x, t) = φ , 0 ^ , î) on D .

By (ii) (the assumption (B2)) given ε > 0 we can find a positive number

i? such that

\v(x, t)\ < ε for (x, t) e Ω Π flx| > Λ) X (0, Γ ] .

By Theorem 1

|ι>CM)|<εe(C0/2)2?

for all (x,i)eΏ f) (\x\<R) X [0, ϊ7] and the uniqueness easily follows.

To apply Theorem 7 we introduce the following assumptions

(Ci) The coefficients atJ, bt (i, j = 1, , n) and c are bounded on

Rn X [0, T] and Holder continuous (with exponent a) on every compact

subset in Rn X [0, T] and moreover

c(x, t)< - c 0 for all (x, t) e Rn X [0, T ] ,

where c0 is a positive constant.

(C2) There exists positive constants λ0 and λx such that for any vector

ξeRn
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Σ

for all (x, t)eRnX (0, T], aυ = α j4 (i, j = 1, •• ,Λ).

As an application of Theorem 7 we shall prove the existence of a

solution u of the equation (1) in Rn X (0, T] satisfying the condition

(9) u{x, 0) + Σ βt(*Mx, Tt) = W(x) on Rn.Σ

It is clear that the function H(x, δ) = f]?=i cosh δxt has properties (i),

(ii) and (iii) of the assumption (B2) (with Ω = i?n) provided 0 < δ < δ0,

where δ0 is sufficiently small.

In this situation

EH(Rn X (0, T}) = {w; u defined on i?ra X (0, T] and |w(*, *)| < Meδlxl

for all (x, t) e Rn X (0, Γ] and certain M > 0 and 0 < δ < δ0},

similarly

EH(Rn) = {v; i; defined on Rn and |U(JC)| < Meδ|a;I

for all x e Rn and certain M > 0 and 0 < 5 < 30}.

THEOREM 8. Suppose that the assumptions (Cj) and (C2) holds. Let

β,e C(Rn\ βt(x) < 0 (i = 1, ,iV) α/zd - 1 < Σf=iAW < 0 on Rn. If fe

EH(Rn X (0, T]) is a Holder continuous function on every compact subset of

Rn X [0, T] and Ψ e EH(Rn) Π C(Rn\ then the problem (1), (9) has a unique

solution in EH(Rn X (0, T]) ΓΊ C2ί(Rn X (0, T] Π C(Rn X [0, T]).

Proof Let ^ be a continuous function belonging to EH(Rn X (0, T])

such that ^(x, 0) = Ψ(x) on i?n and φ(x, t) = 0 on i?n X [Γo, Γ], where

Γo = min^i,...,^ 7 .̂ By Theorem 5 the problem (1), (2) and (3) has a unique

solution on every Dp. Applying Theorem 7 the result easily follows.

In the sequel we shall need the following result.

LEMMA 2. Suppose that the assumptions (C )̂ and (C2) hold in Rn X

(0, T]. Let βt e C(Rn) (i = 1, . , N), -1 < Σf-i jS^x) < 0 and βt(x) <0(i =

1, , N) on Rn. Then for any bounded function f on Rn X [0, T] and

Holder continuous on every compact subset of Rn X [0, T] and for any

continuous and bounded function Ψ on Rn there exists a unique solution

u of the problem (1), (9) in EH{Rn X (0, T]) Π C2'1 (Rn X (0, T]) Π C(Rn X [0, T])

such that
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\u(x, t)\ < — e^/2)T sup \f(x, t)\ + (1 - e-^/2)Tή~ι aup\Ψ(x)\
CQ i2«X[0,Γ] Rn

for all (JC, t)eRnX [0, T], where Tk = min, TV

Proof. We start with the following observation, the proof of which

is routine,

if ueσ\Rn x (o, n ) n C(Rn x [o, T]) n E^R. X (O, T\)

and

Lw < 0 in Rn X (0, ϊ 7 ] ,

, 0) + Σ j54(x)i*(*, Γ,) > 0 on Rn

then u > 0 on Rn X [0, T].

We first suppose that — 1 < -βo< Σf-iftC*) < 0 on Rn, where β0 is

a positive constant. Put

71 /Γ 71 >f"

«(*, t) = u(x,t) -
Co 1 - βo

where

M = sup |/(*,*)I and M, = sup|?Γ(Λ:)|.

Then

/ > -5»M_ > 0
c0 1 - j90 - 1 - ft

i n Rn x (0, ϊ 7 ] a n d

v(x, 0) + Σ |8(*)Φ Γ) ^W — ft

(ft

on jRn. By the preceding remark

Co 1 p 0

Similarly using

w(x, t) = u(x, t)

^ onRnχ[0,T}.
β

- βo
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as a comparison function we deduce the inequality

u > - — - -**!— on Rn X [0, T].
Co 1 - βo

In the general case we use the transformation u(x, t) = v(x, t)e~(Co/2)t.

4. In this section we derive an integral representation of the pro-

blem (1), (2) and (3) in an infinite strip and in a bounded cylinder.

THEOREM 9. Suppose that the assumptions (d) and (C2) hold in Rn X

(0, T], Let βt (i = 1, , N) and Ψ be a continuous and bounded functions

on Rn. Assume further that

- l < ί j & ( x ) < 0 and βt(x)^0(i = l9...,N) on Rn.

Then the unique solution in C21(Rn X (0, T]) Π C(Rn[0, T]) Γ) EH(Rn X (0, T])

of the problem (1), (9) with f = 0 is given by

(10) u(x,t)= f P(x,t,y)Ψ(y)dy,
J Rn

for (x, t) e Rnχ (0, T], where P(x, t, y) as a function of (x, t) satisfies the equa-

tion LP = 0 in Rn X (0, T] for almost all y e Rn. Moreover P satisfies the

equation

(11) P(x, t, y) = - ί Γ(x, t; z, 0) Σ β^Piz, Tt, y)dz + Γ(x, t; y, 0)
JRn *=1

for all (x, t) e Rn X (0, T] and almost all y e Rn, where Γ(x, t, y, 0) is the

fundamental solution of Lu = 0.

Proof, Let Ψ be a continuous and bounded function in L2(Rn). By

Lemma 2 the unique solution of the problem (1), (9) in C2Λ(Rn X (0, T])

Π C(Rn X [0, T]) Π EH(Rn X (0, T\) is bounded on Rn X [0, T]. We first

prove that for each δ > 0 there exists a positive constant C(δ) such that

(12) \u(x,t)\<

on Rn X [δ, T]. To prove (12) we first assume that - 1 < β0 < Σf=iβi(χ)

< 0 on Rn, where β0 is a positive constant. Consider the Cauchy problem

for the homogeneous equation (1) with the initial condition

z(x, 0) = - Σ βi(x)u(x9 T%) + W(x)
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on Rn. The unique solution z in EH(Rn X (0, T]) is given by

z(x, t) = - f Γ(x, t; y, 0) Σ j8,(yMy, ΓJdy + f Γ(x, t; y, O)Sr(y)dy

for all (x, t)eRnX (0, Γ] (Friedman [2], p. 26). Since u is a solution of

the same problem we obtain

(13) u(x, f) = - f Γ(x, ί; y, 0) Σ ftCyMy, Γ^dy + f Γ(x, t; y, 0)Ψ(y)dy
J Rn ί = l Jin

for all (x, t)eRnX (0, Γ]. Now it is well known that

(14) ί Γ(x,t;y,0)dy<l

for all (x, t)eRnX (0, T] and

(15) 0 < Γ(x, t; y, 0) < C r ^ r ' ^ - ' ^

for all (x, i) e Rn X (0, T] and y e i?π, where Q and J>f axe positive con-

stants (Friedman [2], p. 24). Applying the Holder inequality we derive

from (13), (14) and (15) that

(16) max sup | a(x, Γ,) | < —5L_Γί <*'*>[[ e- 2^' 2dxΓ[f ΨixydxV ,
i=i, .,iV i?« 1 — p 0 LJ Rn A U Rn A

where Tk = minί=l5...>iV Tit Using again the representation (13) and the

estimates (14), (15) and (16) we obtain

(17) ι u(x, t) |

for all (x, t) e Rn X (0, T], where

Γf Ίi/2 Γf
C2 = 7\-<"/4> e-^dx\ and C3 = e-™w\

LJ i?n J U Rn

and the estimate (12) easily follows. In the general case we use the

transformation u(x,t) = v(x,y)e~(co/2)t. By (12) the mapping Ψ-+u(x9 t)

defines a linear functional on Cb(Rn) Π L2(Rn) continuous in L2-norm.

Here Cb(Rn) denotes the space of continuous and bounded functions on

Rn. Consequently the representation (10) follows from the Riesz represen-

tation theorem of a linear continuous functional on L2(Rn). To derive

(11) observe that by (10) and (13) we have for every continuous bounded

function Ψ
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f P(x,t,y)Ψ(y)dy=-\ Γ(x,t;y,0)Σβ^y)\[ P(y, Tt, z)Ψ(z)dz]dy
J Rn J Rn 1 = 1 U Rn J

+ f Γ(x,t;y,O)Ψ(y)dy
J Rn

for (x, t)eRnX (0, T\. Consequently if we fix (x, t) e Rn X (0, T], applying

Fubini's theorem, we obtain the identity (11) for almost all y e Rn. Now

choose y e Rn such that

f Γ(x, T; z, 0) Σ βj(z)P(z, Tj9 y)dz
JRn 3=1

is finite. Then by Theorem 1 in Watson [β] the integral

f Γ(x9t9z9O)Σβ^)P^9Tj9y)dz
JRn i=l

is finite for all (x, t) e Rn X (0, T] and represents a solution of the equa-

tion Lu — 0 in Rn X (0, T] and the last assertion of the theorem easily

follows.

Similarly in the case of a bounded cylinder one can prove

THEOREM 10. Suppose the assumptions of Theorem 5 hold. Let u be

a solution of the problem (1), (2) and (3) with φ = 0 and f = 0. Then

u(x,t)= ί p(x,t,y)Ψ(y)dy
J Ω

for all (x, t) e D, where p(x, t, y) as a function of (x, t) satisfies the equation

Lp = 0 for almost all y e Ω. Moreover

(18) p(x, ί, y) = - f G(x, t; z9 0) £ &(z)p(z, Γ,, y)d^ + G(x, ί; y, 0)

/or αW(x, ί) e D αn<i almost all y e Ω, where G(x, t;y,O) is the Green func-

tion for the operator L.

In the following theorem we shall show that p and P tend to infinity

at the same rate as f(n/2\

THEOREM 11. Let the assumptions of Theorem 9 hold and let D = Ω

X (0, T] be a bounded cylinder with dΩ e C2+a. Then there exists a positive

constant C such that

(19) p(x, t,y)<CΪ G(x, t; z, G)dz + G(x, t; y, 0)
JΩ
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for all (x, t) e D and almost all y e Ω, and moreover

(20) P(x, t,y)<CΪ Γ(x, t; z, O)dz + Γ(x, t; y, 0)
J Rn

for all {x, t)e Rn X (0, T] and almost all y e Rn, where C depends on Cλ

and n.

Proof We first assume that - 1 < β0 < Σ?=iβi(x) < 0 o n f l , where

β0 is a positive constant.

Let f b e a continuous and non-negative function on Rn with compact

support in Ω. It follows from Theorem 9, 10 and the maximum principle

that

f p(x, t, y)Ψ(y)dy < ί P(x, t, y)Ψ{y)dy
J Ω J Rn

for all (x, t) e D. Since Ψ is an arbitrary non-negative function we deduce

from the last inequality

p(x,t,y)<P(x,t,y)

for all (x, t)e D and almost all y e Ω. Fix y in Ω such that the last

inequality holds. Since P(x9 Tif y) is continuous as a function of x we get

P(x, Ti9y) < supP(z, Tuy) < oo (i = 1, . .9N)

Using the identity (18), the estimate (15) and the obvious inequality

G(x, t; y, 0) < Γ(x, t;y,O) for all (x, t)eRnX (0, T] and y e Rn we derive the

estimate

max sup p(x, Tu y) < C'T^nβ) , where Tk = min Tt.
i = l,...,JV xZΩ 1 — β Q i = l,. . ,iV

Now applying again the identity (18) we obtain

P(x, t, y) < -^p^&- ί G(x, t; z, 0)dz + G(x, t; y, 0)

for all (x, t) e D and almost all yeΩ. In the general case we use the

transformation u(x, t) = v(x, ί)e"(Co/2)ί.

To prove (20) put Dm(\x\ < m) X (0, T] and denote by Gm(x, t;y,O) the

Green function for the operator L. By the preceding result we have for

every m
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pjx, t; y) < C ί G(x, t; z, 0)dz + GJx, t;y,O)
J \z\<m

for all (x, t) e Dm and almost all y e {\x\ < m}, where pm denotes "p-func-

tion" for the problem (1), (2) and (3) in Dm. By a standard argument

one can prove that {Gm} and {pm} are increasing sequences converging

to G and p respectively and the result easily follows.

It follows from the proof of Theorem 9 (the inequality (12)) that the

problem (1), (9) can be solved for Ψ e L2(Rn), but this requires a new for-

mulation of the condition (9).

We shall say that a function u(x, t) defined on Rn X (0, T] has a para-

bolic limit at x0 if there exists a number b such that for all ϊ > 0, we have

lim u(x, t) = b .
(x,t) — (xo,O)_
\χ-χo\<rV t

We express this briefly by writing p — lijn(Xyt)^(XOiO) u(x, t) = b (see Cha-

borowski [1] p. 257).

Let Ψ e L2(Rn), We shall say that a function u belonging to C21(Rn

X (0, T]) is a solution of the problem (1), (9) if it satisfies the equation

(1) in Rn X (0, T] and

p - lim u(x, t) = -Σ β&My, Ά) + W(y)

for almost all y e Rn.

THEOREM 12. Suppose that the assumptions (Cj) and (C2) hold in

Rn X (0, T\. Let βt e C{Rn) (i = 1, , N) - 1 < Σ?-iβt(x) < ° a n d βlχ)

< 0 (i = 1, , N) on Rn. Assume that Ψ e L2(Rn) and that f is a bounded

function on Rn X [0, T] and Holder continuous on every compact subset of

Rn X [0, T], Then there exists a solution of the problem (1), (9).

Proof. Let {Ψr} be a sequence of functions in C(Rn) with compact

supports which converges to Ψ in L2(Rn). By Theorem 9 there exists a

unique bounded solution ur in C2\Rn X (0, T] Π C(Rn X [0, T]) to the

problem

Lur =f in Rn X (0, T]

and

r(x, Tz) = r r(x) on Rn.
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It follows from (12) that

\ u r ( x , t ) - u s ( x , t ) \ < ~'(C - V / 2

for all (x, t)eRnX [δ, T]. Hence ur(x, t) converges uniformly on Rn X [δ, T]
for every δ > 0 to a continuous function u{x, t) on Rn X (0, T], As in
the proof of Theorem 9 it is easy to establish the representation

ur(x, t) = - f Γ(x91; y, 0) Σ βt(y)ur(y, T,)dy

+ f Γ(x, t; y, 0)¥r(y)dy - Γ f Γ(x, t; y, τ)f(y, τ)dydτ
J Rn JO J Rn

for all (x, t) e Rn X (0, T], Letting r -> oo we obtain

κ(*, ί) = - f ^fe t; y9 0) Σ jS/y)^, Tz)dy
JRn i=l

+ f Γ(x, t; y, 0)Ψ(y)dy - Γ f Γ(x, t; y, τ)f(y, τ)dydτ
J Rn JO J Rn

for (x, t)eRn X (0, Γ]. Since u(x, Tt) are bounded on Rn it is easy to see
that u(x, t) satisfies the equation (1) in Rn X (0, T]. It follows from The-
orem 3.1 in Chabrowski [1] that

P - lim u(x, ί) = - Σ βi(yMy, n + Ψ{y)

for almost all y e Rn.

5. In this section we briefly discuss the extensions of the previous
results to the problem (1), (2) and (3*), where

(3*) u(x, 0) + ± βi(x)Φ, Tt) = ¥(x) on Ω,

with Γ4e(0, T] i = 1, 2, •••.

Throughout this section it is assumed that inf̂  Tt > 0.

We being with the maximum principle.

LEMMA 3. Suppose that the assumption (A) holds in a bounded cylinder
D. Let c(x, t) < 0 in D. Assume that - 1 < J]Γ-i βlχ) < 0 and βt(x) < 0
(ί = 1, 2, •) on Ω. Let u be a function in C2ίl(D) Π C(D) satisfying the
following conditions

Lu<0 in D,
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u(x, t)>0 on Γ

and

Φ, 0) + Σ βi(x)Φ, Tt)>0 on Ώ,
ί=ι

then u > 0 on D.

Proof. Assume that u < 0 at some point of D. Then there exists a

point x0 e Ω such that u(x0, 0) = min^ u(x, t) < 0. Consequently

Hence u(x0, 0) > 0 provided ΣΓ-i βt(χo) + 1 > 0 and we get a contradiction.

It remains to consider the case ΣΓ«i &(#<>)= ~~1 -^et ΪΌ = in^ Γt.

There exists iSe [To, T] such that w(x0, S) = minΓo^t^Γ ^(x0> ί). Hence

Φo, 0) > - Σ β&dΦo, Td > -u(x0, S) Σ βi(xo) - Φo,
ΐ = l 1 = 1

and we get a contradiction.

THEOREM 13. Suppose that the assumption (A) /loZds in a bounded

cylinder. Let c{x, t) < 0 on D and ΣΓ=i |j8<(̂ )| <1 on Ω. Then the problem

(1), (2) and (3*) has at most one solution in C2)1(D) Π Cφ).

Proof. Let u be a solution of the homogeneous problem

Lu = 0 in D,

w(x, ί) = 0 on Γ

and

φ : , 0) + Σ βi(x)Φ, Ά) = 0 onfi .
4 = 1

Suppose that u ^ 0. As in the proof of Theorem 4 we may assume that

there exists a point xυe Ω such that

u(x0, 0) = min w(x, t) < 0. Let | w(xo> *01 = max | u(x0, T) \,
D To<t<T

where Γo = inf, Tt and * € [To, T]. Then

o, 0)1 < I M(X0, *)| Σ \βi(χ°)\ < I «(«b. *)l
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We must assume that u(x0, /c) > 0. Hence there exists a point xγe Ω such

that u(xu 0) = max5 u(x, t) > 0. Let \u(xί9 S)\ = ma.yLTo<t<τ\u(xu S)\. It is

obvious that

u(Xi,0)<\u(xuS)\.

Now considering two cases u(xu 0) < \u(x0, 0)| and \u(x0, 0)| < u(xl9 0) we

arrive at a contradiction (for details see the proof of Theorem 3).

We shall now state analogues of Theorems 5 and 8.

THEOREM 14. Suppose that the assumptions (Aj) and (A2) hold in a

bounded cylinder D with dΩ e C2+a. Let c(x, t) < —c0 in D, where c0 is a

positive constant and assume that βt e C(Ω) (ί = 1, 2, •)> β^x) < 0 (i = 1,

2, •••) and — 1 < ΣΓ^i^W < 0 on Ω and that the series Σ?=iβi(χ) &

uniformly convergent on Ω. Assume finally that f is a Holder continuous

function on D, φ and Ψ are continuous function on Γ and Ω respectively

and moreover

Φ(x, 0) + Σ β&Mx, Tt) = Ψ(x) on dΩ.
i = l

Then there exists a unique solution in C21(D) Π C(D) of the problem (1),

(2) and (3*).

THEOREM 15. Let the assumptions (Cj) and (C2) hold. Assume that

ft e C(flB) (ί = 1,2, •••),ft(*)<0 (i = 1,2, •..) and - 1 < ΣΓ=iftW < 0 on

Rn and that the series 2Γ=i βi(χ) is uniformly convergent on Rn. If f is a

bounded on Rn X [0, T] and Holder continuous function on every compact

subset of Rn X [0, T] and Ψ is a continuous and bounded function on Rnj

then there exists a unique solution in EH(Rn X (0, T])Γ\C2l(Rn X (0, Γ])Π

C(Rn X [0, T]) of the equation (1) satisfying the condition

(9*) u(x, 0) + Σ βi(Φ(x, Td = Ψ(x) on Rn .

The proof of Theorem 14 and 15 are similar to those of Theorems 5

and 8.

One can easily prove that under the assumptions of Theorems 15, the

solution in EH(Rn X (0, T]) of the problem (1), (9*) is bounded on Rn X

[0, Tl

Remark. If 0 is an accumulation point of the sequence {Tt} then the

Lemma 3 remains true provided 2ϋΓ=i ft(#) + 1 > 0 and ft(x) < 0 (/ = 1,

2, -..) on Rn.
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