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Abstract

We extend the concept of V-pseudo-invexity and V-quasi-invexity of multi-objective pro-
gramming to the case of nonsmooth multi-objective programming problems. The general-
ised subgradient Kuhn-Tucker conditions are shown to be sufficient for a weak minimum
of a multi-objective programming problem under certain assumptions. Duality results are
also obtained.

1. Introduction

In the differentiable case, Jeyakumar and Mond [3] defined a vector invexity that
avoids the major difficulty of verifying that the inequality holds for the same function
r)(-, •) for invex functions. Jeyakumar and Mond [3] established sufficient optimality
criteria under V-pseudo-invexity and V-quasi-invexity and obtained duality results
under these assumptions. This relaxation allows us to treat nonlinear fractional
programming problems also. Egudo and Hanson [2] used the concept of Zhao [4] to
generalise the concept of V-invexity of Jeyakumar and Mond [3] to the nonsmooth
case by replacing the gradients with the gradients of Clarke [1].

In this paper we extend the concept of V-pseudo-invexity and V-quasi-invexity
of Jeyakumar and Mond [3] to the nonsmooth case. Further sufficient optimality
conditions and duality results have been derived for such nonsmooth multi-objective
programming.
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2. Preliminaries

Egudo and Hanson [2] considered the nonlinear multi-objective programming prob-
lem:

Minimise (fix); i = 1, 2 , . . . , p) (P)

subject to gjix) <0,j = 1,2,... , m

where /,: : R" -+ R, i = 1, 2 , . . . , p and g} : R" -»• #, ; = 1, 2 , . . . , m are
locally Lipschitz functions.

The generalised directional derivative of a Lipschitz function / at x in the direction
d denoted by f°(x; d) (see, for example, Clarke [1]) is :

f(x; d) = Jim sup r 1 ifiy + td) - fiy)).
ao

The Clarke generalised subgradient of / at x is denoted by

3 / W = {5 : fix; d) > $Td,Vd £ /?"} .

Egudo and Hanson [2] defined invexity for locally Lipschitz functions as follows. A
locally Lipschitz function f(x) is invex on Xo C R" if for x, u G Xo there exists a
function r)(x, u) : Xo x Xo ^ R such that f(x) - f(u) > ^rr?(jc, w), Vf 6 3/(w).

The following example is from [2].

20 -x if x < -15

5 - 2JC if - 15 < x < 0

5 + 2* if 0 < x < 15

20 + * if x > 15.

The function / (x) is regular in the sense of Clarke [1] in that fix; d) = f'{x; d),
where f'(x; d) is the directional derivative

/ ' (* ; d) = l imr 1 (f(x + rd) - f(x)).

It was shown in [2] that f(x) is invex.
A locally Lipschitz f(x) is pseudo-invex on Xo C R" if for x, u € Xo there exists

a function ^(x, M) : Xo x Xo —> R such that %Tr](x, u) > 0 => f(x) > f(u),
V£ e 3/(«).

A locally Lipschitz / (*) is quasi-invex on Xo c /?" if for x, u e Xo there exists
a function >j(x, u) : Xo x Xo —> /? such that / (*) < / («) => ?r'?(^,«) 5 0,

It is clear from the definitions that every locally Lipschitz invex function is locally
Lipschitz pseudo-invex and locally Lipschitz quasi-invex. Examples can be construc-
ted easily.
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3. Generalised invex vector functions

[3]

In the differentiable case Jeyakumar and Mond [3] defined vector invexity thus: (P)
is said to be V-invex if there exist r) : Xo x Xo -+ R" and a,, ft : Xo x Xo -*• R+\{0]
such that

- Mu)-a,(x,u)VMu)ri(x,u) > 0,
gj(x) ~ &•(«) - Pj(x, u)Vgj(u)r)(x, u) > 0.

Jeyakumar and Mond [3] further extended V-invexity to V-pseudo-invexity and V-
quasi-invexity.

Using the results of Zhao [4], Egudo and Hanson [2] generalised the V -invexity
concept of Jeyakumar and Mond [3] to the nonsmooth case by replacing the gradients
Vfi and S7gj with the generalised gradients of Clarke [1]. Hence (P) is said to be
V-invex if there exist r\ : Xo x XQ -> R" and a,, ft : J f o x X o - > /?+\{0} such that

Mx) - /•(«) - «,(*> u^-nix, u) > 0, Vfe €

gj(x) - gj{u) - pj(x, u)Zjri(x, u) > 0, V^ e dgj(u).

The following example is a V -invex nonsmooth multi-objective programming prob-
lem. Consider the multi-objective problem

V -minimise - x2

+x2

2x2

+X2

subject to JCI — x2 < 0, 1 — xx < 0, 1 — x2 < 0, a,(jc, u) = 1 for / = 1, 2,
0j(x, u) = (JC, -I- x2)/3 for j = 1,2 and

r)i(x,u) = (
+ X2 X\ -f- X2

As we can see the generalised directional derivative of f\ (x) = 2x,-x2 IS

f°(x; d) = limsupf

= limsupf"1 —
"?*• L(yi

td) - x2

d + x2

3tdx2

2yi - x2

y\

no
3dx2

(JC, + JC2)2 "

td){yx+x2)_
1 (if ^1^1 >0)
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If we take jti = 1 and x2 = 2 (that is, for an efficient solution (1,2)) then
/°(x; d) = 2d/3.

If yi -» x2, then f°(x; d) = -d/3. Thus (2rf/3, -d/3) e 9/i(u). It is easy to see
that (—2/9, 1/9) e dfiiu). At these particular points we can easily see that the above
program is V-invex for the nonsmooth case.

We now extend V-invexity as in Egudo and Hanson [2] to V-pseudo-invexity and
V -quasi-invexity.

A vector function/ : Xo —> Rp is said to be V-pseudo-invex if there exist functions
r\ : Xo x Xo —*• Rp and a, : Xo x Xo -*• R+\[0] such that for each x, u e Xo,

& ? ( . ) o =
1=1 ;=i /=i

The vector function / is said to be V-quasi-invex if there exist functions rj :
Xo x Xo -> Ĵ77 and /3, : X o x X o - > /?+\{0} such that for each x, u e Xo,

A-(JC, II)/-(JC) < ^ A(JC, «)/,(«)

It is apparent from the definitions that every V-invex function of Egudo and Hanson
[2] is V-pseudo-invex and V-quasi-invex as defined above.

Recall from Jeyakumar and Mond [3] that u € Xo is said to be a (global) weak
minimum of a vector function / : Xo -> Rp if there exists no x e X° for which
/ ( * ) < f,(u),i = 1 , . . . , p .

4. Sufficiency and duality

In this section we show that the subgradient Kuhn-Tucker conditions are sufficient
for a weak minimum in (P) when generalised V-invexity is present.

THEOREM 4.1. Let (H, r, X) satisfy the Kuhn-Tucker conditions that

p m

0 € J2 T'V'(«) + J2 WgjW, Ijgjiu) = 0- j = \,2,...,m,
;=i ; = i

t, > 0, xTe > 0, y, > 0.

/ / ( t i / i , . . . , tpfp) is V-pseudo-invex and (A.^,,... , kmgm) is V-quasi-invex in
nonsmooth sense, and u is feasible in (P), then u is a global weak minimum of
(P).
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PROOF. Since 0 e Ł ?= ! r,9/Ku) + J™=i M&(")> there exist Ł 6 3/J(M) and 4) e 
dgj(u) such that 

p m 

1 = 1 /=i 

Suppose that « is not a global weak minimum point. Then, following the lines of 
proof of Theorem 3.1 of Jeyakumar and Mond [3], the V-pseudo-invexity conditions 
yield ] T f = 1 r,-Ł,-j}(jco, u) < 0. Thus, we have 5ZJ=i ^jZjVixo, " ) > 0. Then, V-quasi-
invexity yields J2J=i Pjixo, u)kjgj(x0) > YlJ=i Pj(xo, u)kjgj(u). Since x0 is feasible 
for ( P ) , that is, kjgj(x0) < 0, and kjgj(u) = 0, j = 1 , 2 , k j > 0, ft > 0. This 
contradicts the previous inequality. 

For the problem ( P ) , consider a corresponding Mond-Weir dual problem. 

Maximise ( / , (« ) : i = 1, 2 , . . . , p) (D) 
p m 

subject to O e ^ r ,9/ j («) + ^ kjdgj(u), kjgj(u) > 0, j = 1 , . . . , m. 
1 = 1 >=i 

p 

T , > 0 , ^ r , = l , ^ > 0 . 
;=i 

THEOREM 4.2 (Weak Duality). Lef X be feasible in ( P ) and let {u, r , A.) be feasible in 
(D). Ifir^fi,... , rpfp) is V-pseudo-invexand (k{gu ... , kmgm) is V-quasi-invexas 
in Theorem 4 .1 , then (f (x),... , fp(x))J — (fx («),..., fp(u))J £ — int /?+. 

PROOF . From the feasibility conditions, and /3j(x,u) > 0, we have 

^Pj(x, U)kjgj{x) < Y^Pj(x' U)kjgj{u). 
i=\ j=l 

m 

Then, by V-quasi-invexity, we have ^ ^ ( j t , n) < 0, VŁ € dgj(u). Since 

p m 

0 e j^rMW+ Y,hHM), 
i = l ; = 1 

there exist f, e and Ł; e dgj(u) such that ^ r , | , + ^ ^ ^ ( H ) = 0. This 
1 = 1 y=i 

implies that 

https://doi.org/10.1017/S0334270000000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000515


[6] On generalised convex multi-objective nonsmooth programming 145 

Thus , 

The conclusion now follows from the V-pseudo-invexity condition since xe = 1 and 
a(x, u) > 0. 

THEOREM 4.3 (Strong Duality). Letx° be a weak minimum of(P) at which a constraint 
qualification is satisfied. Then there exist r° e Rp, k° e Rm such that (x°, r ° , k°) is 
feasible in (D). If weak duality holds between (P) and (D), then {x°, r°, X°) is a weak 
minimum of(D). 

PROOF. From Kuhn-Tucker necessary conditions (see, for example, Theorem 6.1.3 of 
Clarke [1]), there exist r e R", X e Rm such that 

p m 

0 ej^r.dfix0) + J2xJdSj(x°^ 
i = l ; = 1 

Tj > 0, r ^ 0, kj > 0, kjgj(x°) = 0, j = 1, 2 , . . . , m. Now since r, > 0, T # 0 we 
can scale the r, 's and X , 's as 

Now we have (x°, r ° , k°) that is feasible in (D). 
If (x°, T ° , A . 0 ) is not a weak maximum of (D), then there exists a feasible (u, r, k) 

for (D) such that 

Since x° is feasible in (P) , this contradicts weak duality (Theorem 4.2). 

5. Nonsmooth multi-objective fractional programming 

In this section we apply the results of the previous section to study nonsmooth 
fractional multi-objective problems. 

In the differentiable case, Jeyakumar and Mond [3] considered the fractional pro­
gramming problem, 

. . . . . (P\(x) pr(x)\ 
V-minimize — — , . . . , — — (FI) 

\<7iC*) qr{x) J 
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subject to x € Xo, g(x) < 0, where p , : Xo -> R, q>• : Xo ->• R and g : Xo - • Rm. It

is assumed that p,CO > 0, for each x on the feasible set A — [x e Xo : g(x) < 0},
qt(x) > 0, for each x e A. The problem (FI) is said to be a V-invex fractional
problem if the functions p, q and g satisfy

x, u € A

P.-CO - P/(«) > Yi(x, M)/7,'(M)7J(X, M)

<7,-CO - <&•(«) > K U . u)qj(u)r}(x, u)

gj(*) ~ 8j («) > P; (^, «)gj (M)»?(JC, M)

with jj : Xo x Xo -»• R", y,, ft : Xo x Xo -»• /?+\{0}.
Following Egudo and Hanson [2] we can generalise (FI) to the nonsmooth case

by replacing p\, q\ and g's with the generalised gradients of Clarke. Hence (FI) is
said to be V-invex nonsmooth fractional if there exists r) : Xo x Xo -*• R" and
yh ft : Xo x Xo -> fl+\{0} such that for all x, u e A

Pi CO - Pi(«) > Ki(^. «)?/»?U, «). V ,̂ € dpi(u),

q,(x) - q,(«) < y,(JC, «)ftIJ(JC, M), Vf,- e dqt(«), (FI)'

- gy(«) > )8/(^, u)/J,jr)(x, u), Vfij € 3g7-(«).

We need the following proposition from Clarke [ 1 ] in order to prove the main Theorem
of this section.

PROPOSITION 5.1. (Clarke[l]). Let / , , f2 be Lipschitz near x, and suppose f2(x) ^ 0 .
Then f\/f2 is Lipschitz near x, and

If in addition / i CO >0,f2(x) > 0 and if f\ and —f2 are regular at x, then equality
holds and f\/f2 is regular at x.

In the next theorem, we assume that p\ and p2 are regular.

THEOREM 5.1. Consider the problem (FT). Let u G A. Assume that there exist (r, k)
such that x > 0, r ^ 0, k > 0,

r,3 ^

a«(i kjgj(u) = 0, j = 1,2,... ,m. Then u is a global weak minimum for (FT)'.
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PROOF. The proof follows the lines of the proof of Theorem 4.1 of Jeyakumar and
Mond [3] with appropriate changes in (pi/qi)'. Proposition 5.1 plays a crucial role in
this proof.

For a V-invex nonsmooth multi-objective fractional programming problem (FI)',
the weak and strong duality properties hold with the following dual problem:

T/ • • (>l(") PrM\
V-maximise — — , . . . , — - —

\i(u) qr(u)J\q

subject to
r / \ m

0 e Y^ x>d ( ) («) + J2
X.jgj>0, 1,2 m

A.y > 0, T > 0, xe = 1.

6. Conclusion

The Kuhn-Tucker subgradient conditions are shown to be sufficient for a weak
minimum of a multi-objective programming problem when generalised invexity (V-
pseudo-invexity/V-quasi-invexity) is present. Weak and strong duality theorems have
been established. We use the results of Section 4 to extend Egudo and Hanson [2]
to the fractional case in Section 5. If p = 1, then our result extends the results on
invexity used in Zhao [4] for the case of nonsmooth programming to pseudo-invexity
and quasi-invexity.
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