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ABSOLUTE RIESZ SUMMABILITY
OF A FOURIER RELATED SERIES, II

G.D. DiksHIT

This paper is an endeavour to improve upon the work begun in an

earlier paper with the same title. We prove a general theorem on
+

the summability |R, exp[(log w)B l), Y| of the series

Y {sn(x)-s}/n , where {sn(x)} is the sequence of partial sums

at a point & of the Fourier series of a Lebesgue integrable
2m-periodic function and 8 1is a suitable constant. While the
theorem improves upon the main result contained in the previous
paper, corollaries to it include recent results due to Chandra

and Yadava.

1. Definitions and notation
_ B+1 . . .
Let e(w) = exp{(log w)° ~) , B =0 . A series E:un is said to be

summable |[R, e(w), Y| , Y > 0 , and we write ) u, € |R, ew), v| , if

re'(w)e_Y_l(w) Y {e(w)-e(n) Le(n)u |dw <=
Ja n<w n

where A 1is some constant.
Let f € L(-m, m) and be 2m-periodic and let
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f(&) ~ ka ) + gj (an cos nt +b  sin nt) = %:An(t)

Let the numbers x and s be fixed. We write

o(t) = ${f(zx+t)+f(z-t)} - 5 ,
1 (" 1
x(t) = (log(k/t))” Jf ¢(u)(2 sin ) "du ,
t
m b+l d
G(n, t) = J (Log(k/u))°™ (Log 1og(k/u))™° = sin(n+)udu ,
t

Qn, a, a, ¢) = le(w)-e(n) Y Le(n)n® (1og )% (log 1og 1) , n <w ,

m will denote the integer determined by m <w = (m+l) . Unless otherwise
o
specified we use ')' to denote ' Y ' and also write ' Y ' to
n=3 n<w
m
denote ' z: ', K, K, K denote absolute constants possibly

9
n=3 1 2
different at different occurrences, and k denotes a suitable constant

greater than or equal to T exp(ez).

2. Theorem and remarks
2.1. We establish the following theorem.
THEOREM. Let B, v, 8, n, p and o0 be real numbers such that
B>0, y>0, n=21+8§ and o221 +p . If

(10g(k/t)) " (108 10g(k/t))x(t) € BV(0, m)

and
n-1 o,~1
(10g(k/t)) " (1og 1log(k/t)) "t x(t) € L(o, m) ,
then
8 (x)-s
L (1og n)d(log 10g n)° € |R, e(w), Y| .
2.2. REMARK |, We note that the hypotheses on the function ¢ are
independent of B and Y . Therefore in view of the consistency theorems
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for Riesz means (for the 'first theorem of consistency' refer to [2] and
for a 'second theorem of consistency' refer to [4]), to obtain the best
results we may choose Y > 0 as small as we please and similarly B8 may

be taken any positive number however large.

REMARK 2. The case p =0 and O =1 of the theorem (Corollary 1)
gives an improvement on a previous result (see [3, Theorem 11). Corollary
1 also extends a recent result due to Chandra and Yadava [, Theorem 1]. A
second corollary (Corollary 2) gives another result of Chandra and Yadava
[1, Theorem 2].

3. Lemmas

We shall need the following lemmas for a proof of our theorem. These
results are given in [3]. Lemmas 2, 3, 4 and 5 are given there for ¢ =0
and O = 0 . The modification in the proofs for other values of these

parameters is rather routine.

LEMMA 1. Let b and n be real numbers such that b +n >0 and
let F be a function defined over (0, W) . Then the following conditions

(1) F(t)(10g(k/t))" € BV(0, m) ,

) n-1,-1

(i1) F(t) (log(k/t) t eL(o, m,

are equivalent to the conditions

(iii) 1lim F(t)(log(k/t))‘b =0, and
t>0+

m

(iv) f (1og(k/t)]b+”|d{p(t)(1og(k/t))'b}| <w

0
LEMMA 2, [et o and b be real numbers and b 2 0 . Then for
0<t<T,as n+w,
b -0 b+l -G
G(n, t) = 0((log n)°(1og 1og n)~ ") + O(nt(rog(k/t))” ~(1og log(k/t)) ") .
LEMMA 3. Let B>0, 0<y<l, a>0 aud a and ¢ be real

numbers. Then, as w + ® ,

Y Qn, a, a, c) = O(eY(w)wa(log w)a_B(log log w)c) + Q(m, a, a, e) .
n<w
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LEMMA 4. Let Y and B be positive and 8 and ¢ be any real

nwnbers. Then the alternating series
n -1 8 e
Y (-1)"n " (10g n) (log log n)° € |R, e(w), Y| .

LEMMA 5, et B>0, 0<Y<1l, a=20, & and ¢ be real
numbers, O <t =mw, w= (2k/t) and © a constant independent of n .

Then, as w + ©

Y Qn, a, §, c)sin(nt+8)
n<w

= O(t_Ywa_Y(log w)6+B(Y_l)(log log w)ceY(w)) + @(m, o, §, e) .

4. Proof of the theorem

In view of the 'first theorem of consistency' for Riesz means, it is

sufficient to consider the case 0 <Y <1 . Let b =0 and be such that

b+ 6+1 >0 and let us write x*¢) = X(t)(log(k/t))_b(log log(k/t))o

Then using the Dirichlet integral and Lemma 1 we get

m

LU R - sin(n+¥)u
5 {sn(x)—s} = ) osiniy o(u)du
T _o(u) o
= |-sin(n+k)t L mdu + Jo x(t) (Log(k/t)) (sin(n+k)t) 'de
8]
- 'n
= [-x*(2)G(n, £)] g + J G(n, t)dx*(t)
0
T
= J G(n, t)dx*(t)
0
Therefore
s_(x)-s
1 (Log n)6(10g log n)P ¢ IR, e(w), Y|
if

; i
r e'(w)e T (w) Y @(n, 0,8, p) f G(n, t)dx*(t)|dw < o .
2

n<w 0
e
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Since, by Lemma 1,

" b+n
! (Rog(k/t))" Max*(t)]| <=,
0

it is sufficient to show that, for O < ¢ =7 ,

(1) I(t)

1]
[ e w)| T an, o, s, p)en, ) |aw
Je2 n<w

0((rog(k/£))P*™)

Let T = 2(k/t)(1og(k/t))B and let

k/t
(2) I(t) = ( + I

2
e

T
+ (” =T + I2 + I_ , say.

kit v 1 3

Write L(t) for (log(k/t)b+l)(log log(k/t))_o . Using Lemma 2 and Lemma
3 we obtain that

k/t +b

(3) I, =K J (1og 0)%*? (10g 10g.0)P % Ldw

2
e

k/t 1
+ K2 J e’(w)e-Y_ (w)@(m, 0, 8+b, p-0)dw
2

k/t 5
+ K_tL(t) f (10g w) (1log log w) P
2

K/t N
+ KEL(2) J e'(w)e YL w)g(m, 1, 6, p)dv

2
e

= 0((108(k/))® (108 10g(k/8))PL())

k/t —y-1
+ K I e'(w)e (w)Q(m, 0, 8+b, p-0)dw

2
e

K/t 1
+ Kth(t) f e'(w)e—Y- (w)Q(m, 1, 8§, p)dw , for O <t < m.

e

Note that for 0 <y <1l and for a, a, ¢ and p and q real numbers

such that ¢ >p 2 3 ,
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q
() f e (w)e YL (w)a(m, a, a, o)d
p

A

[q] m+1
% f e'(w)e—Y-l(w){e(w)-e(m)}Y_le(m)ma-l(log m)*(1og log m)Cdw
m=(p] ‘m

(q]
Ky ma_l(log m)*(1og log m){1 - e(m)/e(m+1)}Y
(p]

1A

[q]
X §: Y l(log m)a+BY(log log m)c > by the mean value theorem.
(p]

Therefore from (3) and (4) we get that, for .0 < ¢t =W ,

IA

0((log(k/t))b+6+l(log log(k/t))p_c)

)b+6+1+BY[

(5) 1,

+ 0t (1og(k/t) log 10g(k/¢))?7%) +

3

0((rog(k/£))P*™M)

For I2 , we first note that by the second mean value theorem

(6) |Gen, t)| IL(t){sin(n+%)tl—sin(n+%)t}{,

for some tl : 0 < ¢t < tl < T,
< 2L(t), for O <t =7 .
Therefore, using (6) and Lemma 3 we get

T

(1) Iz(t) = KlL(t) f (1og w)G(log log w)pw'ldw

k/t
T 1
skzt) [ et wian, 0, 6, p)ds
Ikt
T
< Kl(log(k/t)]b+6+l(log log(k/t))P™° f w L

T/t

(1]
+ K2L(t) > m_Y_l(log m)6+BY(log log m)® by (L)
[k/t]

0((1og(k/8))2™M) , for 0 <t <1 .

1l

Next we note that
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™
(8) G(n, t) = [L(u)sin(n-l-&;)u]: - 4[ sin(n+%)udL(u)
t
" T
= L(m)(-1) - L(t)sin(n+:)t - J sin{n+%)udL(u)
t
and that for » =0 and b =20,
i1
(9) I wd(u) = o(77L(¢))

t

Therefore, after (8), (9) and (6), in view of Lemma 4, Lemma 5 and the

result at (4) we obtain that

(10) I, =K r e’ w)| L aln, 0, 8, p)(-1)" |
2 n<w
- T . ] -y-1 5+8
+ 1Kyt YL(t)+K3|f w YdL(u) } fw 0 (108 )"V (10g 1og w) P
L t T

+ KhL(t) Iw e'(w)e—Y_l(w)Q(m, 0, §, pldw
T
< K+ Kyt YL(5) T V(108 1)V (10g 10g 1)°
+ K3L(t) [z] m—Y_l(log m)6+BY(log log m)P
T

K, + 0( (108(k/))P** (10g log(k/t))P™°)

+ K2T—Y(log(k/t))b+l+6+BY(log log(k/t))p_o

0((log(k/t))b+n), for 0<t=T,

and this completes the proof of the theorem.

5. Corollaries

We obtain the following results as special cases of our theorem.

COROLLARY 1. Let B, Y and & be real numbers such that B > O
ad Y >0 . If

(log(k/t)]6+l(log log(k/t))x(t) € BV(0, m)
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and

(1og(k/t))6(1og 10g(k/t)) ™ x(¢) € L(0, m)
then

s (z)-s
L (1og n)6 ¢ |R, e(w), v| .

This corollary provides an improvement on a previous result [3,
Theorem 1] and it also includes a theorem due to Chandra and Yadava [,

Theorem 1] - their result corresponds to the case &§ =1 .
The case 6 = 0 of Corollary 1 contains the following:

COROLLARY 2. Let B>0 and y >0 . If

T
x(0+) = 0 and ! (Log(k/t)) (1og log(k/t))|dx(t)| < =
0
then

s (x)-s
€ |R, e(w), Y| .

Proof. Note that as ¥x(0+) =0 ,

v
[ | (1og(k/t)10g log(k/t)]'x(t)|dt

0
v t
= f (log(k/t)1og 10g(k/t))" J dx(u) |dt
0 0
m
= f | (1og(k/t)1og log(k/t))'|dt|dx(u)|
Jo Ju

1A

i
K f log(k/u)log log(k/u)|dX(u)| ’
0

and therefore
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m
(11) I |d{10g(k/t )10g 1oglk /t )x(t)}]
0
T T
< J | (1og(k /¢ )10g Log(k/t)) 'x(t)|de + J log(k /t )1og log(k/t)|dx(t)]
0 0

v
<k f Log(k /¢ )Log Log(k/t)|dx(¢)| »
0

and then

m
(12) J £ log 108(k/t) |x(¢)|dt
0

v
< J t—l(log log(k/t)+1) |x(t)|dt
0

A

™ T
f |d{1og(k/t)1log log(k/t)x(¢)}] + [ log(k/t)1log log(k/t)|dx(t)]
0 0

11
< x J log(k/t)10g Log(k/t)|dx(t)| -
0

Thus from {11) and (12) we see that the hypotheses of Corollary 2 imply
those of Corollary 1 in the case § = O . Hence Corollary 2 follows from

Corollary 1.

Corollary 2 is due to Chandra and Yadava ([7], Theorem 2).
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