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ABSOLUTE RIESZ SUMMABILITY
OF A FOURIER RELATED SERIES, II

6.D. DlKSHIT

This paper is an endeavour to improve upon the work begun in an

earlier paper with the same title. We prove a general theorem on
Qt-t

the summability \R, exp((log w) ) , Y| of the series

Y, {s (x)-s}/n , where {s (x)} is the sequence of partial sums

at a point x of the Fourier series of a Lebesgue integrable

2ir-periodic function and s is a suitable constant. While the

theorem improves upon the main result contained in the previous

paper, corollaries to it include recent results due to Chandra

and Yadava.

1. Definitions and notation

Let e{w) = exp((log w) ) , 3 - 0 . A series £ u is said to be

summable \R, e{w), y\ , y > 0 , and we write £ u € \R, e{w), y\ , if

I e'(w)e"Y"1(w) T {e{w)-e{n)}y~1e{n)u dw
}A n<w n

where A is some constant.

Let / i L( —TT, IT) and be 2ir-periodic and l e t
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oo oo

fit) ~ kaQ + I [an cos nt +--2?n sin nt) = I

Let the numbers x and s be fixed. We write

= (logtt/t))"1 f Hu)(2 sin V u ) " 1 ^ ,

G(n, t) = | (log(k/W))
b+1(log log(k/M))"

a £• si

, ff, a, a) = {e(u)-e(n)}Y"1e(n)na~1(log n)a(log log n)a , n < w ,

m will denote the integer determined by m < w 5 (m+l) . Unless otherwise
oo

specified we use '£' to denote ' J ' and also write ' £ ' to
n=3

m
denote ' Y, ' • #> %•-, •> %?> ••• denote absolute constants possibly

different at different occurrences, and k denotes a suitable constant

greater than or equal to IT exp [e ) .

2. Theorem and remarks

2.1. We establish the following theorem.

THEOREM. Let (3> Y» "5, n> P and a be real numbers such that

3 > 0 , Y > 0 . » n 2 1 + 6 and o > 1 + p . If

(log(fe/t))n(log log{k/t))aX(t) € BV{0, ir)

and

(logCfe/t))11"1^ log(k/t))°t-\(t) € L(0, TT) ,

then

log n ) P € |i?, e(u), Y| •

2 .2 . REMARK I . We note tha t the hypotheses on the function <)> are

independent of 3 and y . Therefore in view of the consistency theorems

https://doi.org/10.1017/S0004972700009758 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009758


Riesz Summability 95

for Riesz means (for the 'first theorem of consistency1 refer to [2] and

for a 'second theorem of consistency' refer to [4]), to obtain the best

results we may choose y > 0 as small as we please and similarly 3 may

be taken any positive number however large.

REMARK 2. The case p = 0 and a = 1 of the theorem (Corollary l)

gives an improvement on a previous result (see [3, Theorem 1]). Corollary

1 also extends a recent result due to Chandra and Yadava [7, Theorem 1]. A

second corollary (Corollary 2) gives another result of Chandra and Yadava

[1, Theorem 2].

3. Lemmas

We shall need the following lemmas for a proof of our theorem. These

results are given in [3]. Lemmas 2, 3, U and 5 are given there for a = 0

and 0 = 0 . The modification in the proofs for other values of these

parameters is rather routine.

LEMMA 1. Let b and n be real numbers such that b + n > 0 and

let F be a function defined over (0, TT) . Then the following conditions

(i) F(t)(log(fe/t))n € BV(0, IT) 3

(ii) F{t)[lo&{klt))
n~Xt~X € L(0, TT) ,

are equivalent to the conditions

(Hi) lim F(t) {log(k/t))~° = 0 , and

< °° .(iv) f {log{k/t))b+n\d{F(t)[log(k/t))~b}\
Jo

LEMMA 2. Let a and b be real numbers and b i 0 . Then for

0 < t < u , as n -*• °° ,

Gin, t) = 0((log n)&(log log n)~°) + 0{nt[log(k/t))b+1(log Iog(fc/t))'°) .

LEMMA 3 . L e t B > 0 , 0 < Y < 1 . » C C > 0 and a and c b e r e a l

numbers. Then, as B + t o ,

Y. Q(n, a, a, c) = o(eY(u)wa(log w)a~ (log log w)c) + Q(m, a, a, c) .
n<u
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LEMMA 4. Let y and B be positive and 6 and a be any real
numbevs. Then the alternating series

I (-DV^log n)6(log log nf e \R, e(w), y\ .

LEMMA 5. Let & > 0 , 0 < y < 1 ., a > 0 ., 6 and a be real

numbers, 0 < t £ IT , w 2 {2k/1) and 9 a constant independent of n .

Then, as w -»• <*> ,

n<w
, a, 6, e)sin(wt+6)

= 0(*-V-Y(log y)6+6(Y-l)(log log u)V(w)) + Q(m, a, 6, o)

4. Proof of the theorem

In view of the 'first theorem of consistency' for Riesz means, it is

sufficient to consider the case 0 < Y < 1 • Let b > 0 and be such that

b + 6 + 1 > 0 and let us write X*U) = XU) (logU/t)) (log log(?c/t))a .

Then using the Dirichlet integral and Lemma 1 we get

-r
Jo

X ( t ) 'dt

f7

=
J0

Therefore

2 1 (log »)6(log log nf € \R, e(w), y\

if

r
2

>n<w
, 0, 6, p) G(«,

Jo
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Since, by Lemma 1,

f {log(k/t))b+T]\dx*(t)\ < » ,
0

i t is sufficient to show that , for 0 < t S n ,

(1) I{t) = f e'(w)e-y-\w)
> 2
e

Q(n, 0, 6, p)G(n, t)

n<w
dw

Let T = 2(/c/£)(log(fc/fc)) and l e t

(kit ri

J 2 J f c / i >T X
(2) I(t) = | + + | = J + I + I , say.

J 2 Jfc/t JT 1 2 3
&

Write L{t) for (log(k/t) )(log log(fe/t))~ . Using Lemma 2 and Lemma

3 we obtain that

rk/t &+b Q _±

(3) I, — ^-, ( log w) ( log log .w) w dm
1 1 J 2

e

•kit

2

! y 1
+ K e'(w)e ' (u)e(m, 0 , 8+b, p-o)dw

e

rk/trk/t &

+ K tL(t) (log u) (log log
2

K,tL(t) e'(w)e ' (w)§(m, 1 , 6,
' 2
e

= o((iog(k/t))°(iog :

f̂ /* _v-l
+ K I e'(w)e {.w)Q{m, 0, 6+fo, p-a)<Aj

1 J pV
rk / t Y i

+ K2tL(t) e'(w)e ' x(u)C(m, 1, 6, p)&> , for 0 < t 5 n
e2

Note that for 0 < y < 1 and for a, a, c and p and q real numbers

such that q > p > 3 ,
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(U) [ e'(w)e~y~1(w)Q{m, a, a, a)do

e'(w)e~y~1(w){e(w)-e(m)}y~1e(m)ma~1(log m)a(log log mfdwJ fJ f
m=[p] 'm

5 K T ma"1(log m)a(log log mf{l - e(m)/e(m+l) }Y

S K L, m (log m ) (log log m) , by the mean value theorem.

IP]

Therefore from (3) and (U) we get that, for • 0 < t 5 TT ,

(5) Jx = 0(

= 0((lo&(k/t))
b+T])

r J , w

(6) \G{n, t)\ =

For J , we first note that by the second mean value theorem

for some t : 0 < t < t < IT,

2 2L(t), for 0 < t S T .

Therefore, using (6) and Lemma 3 we get

( 7 ) Io{t)SKL{t) (log u)6(log log u l V 1 *
>k/t

+ KMt) I e'(w)e"Y"1(u)e(m, 0, 6, p)du

[T]

log m)p , by (k)
[k/t]

= 0{{log(k/t))b+T)) , for 0 < t £ TT .

Next we note that
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(8) G(n, t) = [L(u)sin(n+k)u]t -

- L(t)sln{n+k)t - sin{n+k)udL(u)

and that for r > 0 and b 2 0 ,

i-IT

(9) j u.-rdL(u) =

Therefore, after (8), (9) and (6), in view of Lemma 1*, Lemma 5 and the

result at (U) we obtain that

(10) SK f e'CuJe^^Cw) I «(n, 0, 6, p)(-l)n
L t 2 n<w

e

I i -Y-l/ ^6+8Y/ \(
w (log w) (log log w)

X^L(t) j e'(w)e"Y"1(u)«(m) 0, 6,

T)6+6Y(log log T ) P

oo

X_£(t) I m^dog ml^^dog log «)p+ K- I
3 [T]

= K± * 0({log(k/t))b+1+&{loS

, for 0 < * < ir ,

and this completes the proof of the theorem.

5. Corollaries

We obtain the following results as special cases of our theorem.

COROLLARY 1. Let 3, y and 6 be real numbers such that 3 > 0

and Y > 0 . If

6 + 1 log(fc/*))x(t) € BV(0, ir)
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and

(log(fe/t))6(log log(k/t))t~\(t) 6 L(0, ir)

then

\R, e{w),

This corollary provides an improvement on a previous result [3,

Theorem 1] and it also includes a theorem due to Chandra and Yadava [I,

Theorem 1] - their result corresponds to the case 6 = 1 .

The case 6 = 0 of Corollary 1 contains the following:

COROLLARY 2. Let B > 0 and y > 0 . If

X(0+) = 0 and I [log(k/t)) (log log(k/t))\d\(t)\ < ~
J0

then

s(x)-s

L* n ' •

Proof. Note that as x(°+) = ° .

> y\ •

fir

I
J0

'X(t)\dt

= f (log(fe/t)log log(fc/t)) ' f
J0 J0

dX(u) dt

ff
I |(log(fe/t)log log{k/t))'\dt\dx(u)\

'0 >u
F

< K log(fc/w)log
Jn

and therefore
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(11) |d{log(k/t)log log(k/t)x(t)}|
Jo

/•tr
< |(log(fc/t)log lozik/t)) 'X(t) |dt + I log(k/t)log

JQ JO

f"
<X log(k/t)log log(k/t)\dx(t)\ ,

Jo

and then

fTT -,
(12) t log log(k/t)|x(t)|dt

JO

fir n

< t (log log(k/t)+l)|x(t)|dt
Jo

5 f |d{log(k/t)log log(k/t)x(t)}| + f log(k/t)log
Jo Jo

fTT

Jo

Thus from (ll) and (12) we see that the hypotheses of Corollary 2 imply

those of Corollary 1 in the case 6 = 0 . Hence Corollary 2 follows from

Corollary 1.

Corollary 2 is due to Chandra and Yadava ([!]» Theorem 2 ) .
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