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ON SOME ALTERNATIVE CHARACTERIZATIONS
OF RIORDAN ARRAY S

DONATELLA MERLINI, DOUGLAS G. ROGERS, RENZO SPRUGNOL|
AND M. CECILIA VERRI

ABSTRACT. Wegive several new characterizationsof Riordan Arrays, the most im-
portant of whichis: if {dn-k}n.keN isalower triangular array whose generic element d,, x
linearly depends on the elements in a well-defined though large area of the array, then
{ dn~k}n.keN is Riordan. We also provide some applications of these characterizations
to the | attice path theory.

1. Introduction. In December 1994, during the second author’s visit to the “Di-
partimento di Sistemi e Informatica’ in Florence (Italy), we began to investigate the
enumeration of lattice paths having diagonal stepsfrom the Riordan Array point of view
(see, [23, 24]). This problem had been previously studied by Handa and Mohanty [17];
we approached the problem according to the theory discussed in [23, 24].

This theory had previously been developed for lattice paths with “steep” diagonal
steps, asillustrated in Figures 1(i) and 1(ii); it is well-known that the arrays determined
in this case are Riordan (see [16] for example). But [17] treats lattice paths having
“shallow” diagonal steps, illustrated in Figures 1(iii) and 1(iv).

Thelogical consequencewould beto extend thetheory of Riordan arraysto the second
type of diagonal stepsand thisiswhat we want to do. The counting sequencesonthemain
diagonal are obviously the same for both shallow and steep steps if their gradients are
reciprocal. Thiscan be verified simply by running the lattice paths backwards (compare
Figures 1(i) and 1(iii), or Figures 1(ii) and 1(iv)). It is worth noting, however, that
whereas the array in Figure 1(iii) is also a Riordan array, the onein Figure 1(iv) is not.

By using both algebraic and combinatorial techniques, we were able to prove several
properties for lattice paths having both kinds of diagonal steps (steep and shallow).
To our surprise, we realized that many of these properties were so general that they
actually extended the original characterization of Riordan Arrays. The resulting The-
orem 2.5 greatly extends the Riordan Array theory, and shows that a lower triangular
array {dnx}nken is Riordan whenever its generic element dn.q +1 linearly depends on
the elements d; s lying in a well-defined, but large zone of the array (see Figure 2). This
is fundamental to the lattice path theory, (seelast section), and it is also important in the
general Riordan Array theory, becauseit provides aremarkable characterization of many
lower triangular arrays of combinatorial importance, (that is, all the arrays for which a
recurrence can be given involving elements belonging to the relevant zone).
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FIGURE 1. Some arrays illustrating the numeration of
| attice paths having diagonal steps.

These results seem significant to us and led us to divide our work into two parts. In
the present paper, we give an account of the new developmentsin the Riordan Array
theory, and use lattice paths as a guiding example. We focus our attention on the new
characterizationsof Riordan Arraysand, in order to maintain the necessary generality, we
mainly use an algebraic approach based on generating functions. In our companion paper
“Lattice paths with steep and shallow steps’ we deal with lattice path problems directly
and we use combinatorial proofs to determine which problems correspond to Riordan
Arrays and which do not. Even though they are limited to non-negative coefficients,
many of these proofs, will constitute the combinatorial counterpart of proofs given in
the present paper.

To be more specific, this paper is organized in the following way: in Section 2, we
give the definitions and the above-mentioned characterizations of Riordan Arrays. In
Section 3, we develop our algebraic theory by giving anumber of results concerning the
generating functions related to the Riordan Arrays. Finally, in Section 4, we show how
the theory can be applied to lattice path problems.

We wish to point out that the combinatorial objects we are mainly interested in are
subdiagonal lattice paths in the Cartesian plane. Our paper treats some of the topics
studied by Gessel [4] and Labelle [10, 11, 12] but differs from these works in its
emphasison paths not ending on the main diagonal . The simple geometric transformation
(6,6") — (6 +&',6" — &) changes underdiagonal pathsinto paths that never go below the
x-axis. This lattice path notation can be called “French notation” because it is mainly
used by researchers belonging to the French area (see Goulden and Jackson [7]).
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For brevity’s, we only outline many of our demonstration and so we refer the reader
to the report [15] for the details of the complete proofs.

2. Riordan arrays. By some abuse of language (see Shapiro et al. [23]), aRiordan
arrayisapair (d(t), h(t)) in which d(t) and h(t) are analytic functions (or formal power
series) such that d(0) # O; if h(0) # O, then the Riordan array is called proper. The pair
defines an infinite, lower triangular array {dnk }nken, in the sensethat:

e = ["]dO)(th(0)"

by definition. From this definition, it easily follows that d(t)(th(t))k is the generating
function of columnk inthe array (in particular, d(t) is the generating function of column
0). The most common example of a Riordan array is the Pascal triangle, in which we
have d(t) = h(t) = 1/(1 — t). Proper Riordan Arrays are known as “recursive matrices’
in the theory of Umbral Calculus (see Barnabei, Brini and Nicoletti [1]). A non-proper
Riordan Array (d(t), h(t)) can be easily reduced to a proper one: if h(t) hasorder s > 1,
i.e., h(t) = tSv(t), with v(0) # 0, then (d(t). v(t)) isaproper Riordan Array and is obtained
from (d(t), h(t)) by moving every column k up ks positions. The Riordan Array theory
allows us to find properties concerning these matrices; for example, we have:

(2.1) éohkfk = [t"]d(Of (th(t))-

for every sequencefy having f (t) asits generating function. A description of the Riordan
Array theory together with many examplesof it, can be found in Shapiro et al. [23] or in
Sprugnoli [24].

Rogers[19] hasproved the following, fundamental characterization of proper Riordan
Arrays.

THEOREM 2.1. An array {dnk}nken iS @ proper Riordan Array if and only if there
exists a sequence A = {a; }ien With ag # 0 such that every element dyq k+1 (not lying in
column 0 or row 0) can be expressed as a linear combination with coefficientsin A of
the elementsin the preceding row, starting from the preceding column on, i.e.:

(22 On1ke1 = @o0nk + @10nke1 + @0npen + - -

PROOF. See Rogers[19]. ]

The sumin (2.2) is actually finite because d,x = 0, Vk > n. Sequence A, called the
A-sequence of the Riordan array, is characteristic in the sense that it determines (and is
determined by) function h(t). If A(t) is the generating function of the A-sequence, it can
be proven (see Sprugnoli [24]) that h(t) is the solution of the functional equation:

2.3) h(t) = A(th(b)).
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Conversely, A(y) can be determined by the relation:
Ay) = [h(t) | t = yh(®) ™.

where this notation means that A(y) is obtained by substituting the solution of the
functional equationt = yh(t)~* havingt(0) = Ofor tin h(t). For example, thislast relation
in the Pascal triangle gives:

=gk =] [ = 25 =2

Therefore, the A-sequence for the Pascal triangleis {1, 1, 0.0, ...} and (2.2) becomes:

(n+1) _(n\ [ n
= + N
\k+1) k) \k+1
the well-known basic recurrence for binomial coefficients.
Let us now come to the latest developments in the Riordan Array theory. First of
all, as previously mentioned, the A-sequence does not completely characterize a proper

Riordan array (d(t), h(t)) becausethe function d(t) is independent of A(t). We therefore
prove the following:

THEOREM 2.2. Let {dnk}nken be any infinite lower triangular array with dnn #
0,Vn € N (in particular, let it be a proper Riordan array); then a unigue sequence
Z = {20,271, 2, ...} exists such that every element in column O can be expressed as a
linear combination of all the elementsin the preceding row, i.e.:

(2.4) On+1,0 = ZoOno + Z10n1 + ZoCho + - - -

PROOF. Let zp = dio/doo. Now we can uniquely determine the value of z by
expressing d; o in terms of the elementsinrow 1, i.e.

doodzo — 02

doo =210+ 21011 OF 2= dood1.1

In the same way, we can determine z, by expressing ds in terms of the elements in
row 2, and by substituting the values just obtained for zy and z;. By proceeding in this
way, we determine the Z-sequence in a unique way. ]

The Z-sequence characterizes column 0, while the A-sequence characterizes al the
other columns. Thetriple (do. Z(t), A(t)) characterizes a proper Riordan array:

THEOREM 2.3. Let (d(t). h(t)) beaproper Riordanarray andlet Z(t) bethegenerating
function of the array’'s Z-sequence. Therefore we obtain:

_ do
dey = 1—tZ(th(r))’
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PrROCF. By the preceding theorem, the Z-sequence exists and is unique. Therefore,
equation (2.4) is valid for every n € N, and we can go on to the generating functions.
Since d(t) (th(t)) “isthe generating function for column k, we have:

M = 7d(t) + 2 d(t)th(t) + d(t)t2h(t)? + - - -
= d(t)(zo + zath(t) + t*h(t)* + - - -) = d()Z(th(t)).
By solving this equation in d(t), we immediately find the relation desired. ]

Therelation can be inverted and this gives us a formula for the Z-sequence:

d(t) — do
td(0)

2) = | | t=yhy?).

The reader can easily apply these formulas to the Pascal triangle, which we can apply
the following theorem to:
THEOREM 2.4. Let dy = hg # 0. Then d(t) = h(t) if and only if A(y) = dp + YZ(y).

PROOF. Letusassumethat A(y) = do+yZ(y) or Z(y) = (A(y)—do) /y. By Theorem 2.3,
we have:

d(t) = do do _ doth(t)

_ _ = = hv).
1—tZ(th(t) 1— (tA(th(t)) - dot) / th) ot ¥

becauseA(th(t)) = h(t). Viceversa, by theformulafor Z(y), weobtain from the hypothesis

d(t) = h(t):
_ 1 dO _ -1
do+y20) = [do+y(§ = fpy) | 1=YhO
h doth
= [ao+ T2 = Y 12300 = [0 | =300 = A0).

Riordan arrayshaving d(t) = h(t) werefirst introduced by Rogers[19] who called them
“renewal arrays’. As the concepts of A- and Z-sequences show, what seems essential
in a Riordan array is the fact that the elements in a given row linearly depend on the
elements of the row above it, starting from the element on the left. It is surprising that
this dependence can be made much looser, as the following theorems show (see also
the presentation of Shapiro [22]). They greatly increase the applicability range of the
Riordan Array theory and play abasic role in our approach to lattice path problems. Let
us begin by the following:

LEMMA 2.4.1. If in alower triangular array {dn k}nken We have:

Oniiker = Z q dn,k+j
j>0
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for some coefficients g (j > 0), independent of n and k, with ag # 0, then we obtain

(2.5) Onk = D bjne ke
j>0

for coefficientsb; (j > 0) also independent of n and k. Moreover, if A(t) and B(t) are the
generating functions of the two sequences, then B(t) = A(t)~* and therefore:

1 10
2.6 bo==.bh=—=>ban; (>1
(2.6) 0= bn aoj:ZIJanl (=1

PROOF SKETCH. By writing formula (2.5) in a matrix form and by using Henrici’s
result [9, Section 1.3], we immediately obtain that A(t)~* = B(t) and formula (2.6) is
simply the J. C. P. Miller formula for reciprocal formal power series (see Henrici [9,
Theorem 1.6c]). L]

This lemmais the basis of the following Riordan Array characterizations. We wish
to point out that, by Theorem 2.3, the Z-sequence exists for every lower triangular array,
and therefore we can implicitly assumeits existencein all the subsequent theorems. Our
first resultis:

THEOREM 2.5. A lower triangular array {dnk}nken iS Riordan if and only if there
exists another array { i }ijen, With ago 7 0, such that every dns k1 (N, k > 0) can be
expressed as:

(2.7) One1ke1 = Z Z ai.jdnfi.k+j
i>0j>0

PrROOF sKETCH. If the array is Riordan, let {g;}jen be its A-sequence: the array
defined asap; = &, Vj € N, and oj = 0, Vi > 0.j > 0, is exactly as we desired. The
proof of the“if” part givenin[15] israther long and complex. It consistsin proving that
an A-sequence existsfor the given array and, therefore, it is Riordan. Lemma2.4.1 plays
abasicrolein this proof. ]

This theorem shows that we can characterize a Riordan Array by means of an A-
matrix, rather than by a simple A-sequence. However, while the A-sequence is unique
for a given Riordan Array, the A-matrix is not. For example, the following A-matrices,
and many others, all define the Pascal triangle (the proof is quite obvious and relies on
the basic recurrence for the binomial coefficients):

1100 - 1 000 1 000 1 000
0 00O - 1100 1 000 1 000
0 00O 0 00O 1100 1 000
0 00O 0 00O 0 0O0O 1100

O A CETEEEY L NI B

We can extend the linear dependence of the generic element dp.q k41 to allow for
elements on its own row, starting from dn.+1k+2. In fact, we can prove the following
characterization:
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FIGURE 2: The zones which dn.1 k+1 can depend on.

THEOREM 2.6. A lower triangular array {dnx}nken is Riordan if and only if there
exist another array { i }ijen, With a0 7 0, and a sequence { pi }ien such that:

(2.8) Onr1ke1 = Z Z Qi j dn—i.k+j + Z Pj dn+1,k+1+j
i=0j>0 i>0

PROCOF. Hereagain,the“onlyif” partisobvious. Astothe“if” part, we can eliminate
dn+1k+2 from the recurrence, by applying relation (2.8) and by eventually changing the
array { o} into {of; }. Inthe sameway, we can subsequently eliminate all the dn. 1 k+14'S.
Since only afinite number of them actually appearsin the evaluation of dp.1 k+1, We can
aways reduce dn.1x+1 to depend on some array { i j }i=o.1..., which is the left part of a
limit array {«f; }, as happensin Theorem 2.5. Therefore, we can conclude that {dnk} is
aRiordan Array. n

Thisresult will be usedin our study of lattice path problems. Moreover, we can obtain
the widest possible characterization of Riordan Arrays (see Theorem 3.5 below):

THEOREM 2.7. A lower triangular array {dnk}nken iS Riordan if and only if there

exists another array {ai }ijen, With ago 7 0, and ssequenceﬁ{pj[i]}jeN (i=12...., s)
such that: .
(2-9) dn+1.k+1 = Z Z Ofi.jdnfi.k+j + Z Z PJ'[I]dn+i.k+i+j+1~

>0i>0 i=11>0

PrROOF. Repeated applications of the elimination technique used in the previous
theorem’s proof. ]

In Figure 2, we try to give a graphic representation of the zones which the generic
element d.1 k+1 (denoted by asmall disk or “bullet”) is allowed to depend on so that the
array can be Riordan. The three zones correspond to Theorems 2.5, 2.6 and 2.7, and the
only restrictions are that g # 0 and that the number of rows below row n be finite.

Up to now, we have assumed that ogo # O because this condition assures that the
resulting Riordan Array is proper. However, if we change this hypothesis, but maintain
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that some a; o # 0, for i > 0, then we obtain a non-proper Riordan Array, i.e., a Riordan
Array with h(0) = 0. This happens under the following conditions:

THEOREM 2.8. Let {dk}nken be an array whose generic element dp.q k+1 is defined
by a linear recurrence:

Oniiker = Z Zﬂi.jdy.kﬂ' v < n+ Sfor someSe N.

i=0j>0

Let v be the minimum index for which 3,0 #Z 0 and set v/ = v —7j. If Vg3i; # O we
havei = n— v and, whenever v’ > n, we also havej > v’ — n, then {dnx}nken iS @
non-proper Riordan Array (d(t), h(t)) with h(t) = t'v(t) and v(0) # 0.

PrOOF. The theorem’s conditions allow us to define anew array {d/,, }nken Whose
generic element d/,,, .., isgiven by:

S .
r/1+1.k+1 = Z Z O‘i~jdr/17i.k+j + Z Z PJ'[I] r/1+i.k+i+j+1~

i>0j>0 i>1j>0

where aij = f3,,,j When v’ < n, and pj“] = B,,_nj When v/ > n. The number s exists
thanksto the condition v < n+ S for some S Thisis actually the definition of a proper
Riordan Array, in which d,, = dysiy x becausethe columnsof {d; } are the columns of
{dnk} moved Yk positions up. If (d(t), v(t)) is the new proper Riordan Array, then we
should have h(t) = t"v(t). n

In Section 4, wewill examinean exampleof anon-proper Riordan Array in connection
with alattice path problem.

3. Generating functions. As previously noted, the A-sequence and the function
h(t) of aRiordan Array are strictly related to each other. Thisfact allows usto think that
h(t) can be deduced from the A-matrix { i }ijen and the set of sequences {pj[i] }ien for
i =0,1,...,s Then, after finding the function h(t), we can also find the A-sequence by
determining its generating function A(t).

Almost always, dn+1x+1 ONly depends on the elements of a finite number of rows
above it; therefore, instead of treating a global generating function for the A-matrix, let
us examine a sequence of generating functions PO (t). Pl (t). PIA(t). . .. corresponding
totherows0, 1,2, ... of the A-matrix, i.e.:

plal () = cgo + gt + Oto.zt2 + oco,3t3 +...

PIU(t) = ago+ apat + agot? + ag gt + - -

and so on. Moreover, let QU (t) be the generating function for the sequence {l" }jcn.
Thus we have:

THEOREM 3.1. If {dnk}nken is@ Riordan Array whose generic element One1ke1 IS de-
fined by formula (2.9) through the A-matrix { i ; }i jen and the set of sequences { pf }jen,
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i = 1.2.....s, then the functions h(t) and A(t) for {d,x} are given by the following
implicit expressions:

(3.1 h(t) = Y- t'P(th(t)) + i th(t) QM (th(t)).
i>0 i=1
(3.2 At) = S tAR) TP () + tZ ADIQ ().
i>0

PROOF. Letdy(t) = d(t)(th(t)) “ bethe generating function of column k of the Riordan
Array; from (2.9) we deduce:

M =22 ot dk+J ®+ Z Z p[ It dk+|+j+1(t)
t i>0j>0 s
U - . i+
M = Z(:)Z;)Ofi.jt'd(t)(th(t)) + z; %P[I]t Id(t)(th(t))k i 1.
12012 i=1 >

We can now divide everything by d(t)(th(t))k:

ht) = 33 oy (th(t))' + Zt (th(t) ™ > o (th))'.

i>0 j>0 >0

We now go on to the generating functions P (t) and QI (t) and formula(3.1) immediately
follows. Finaly, by applying formula (2.3) we obtain the expression (3.2) for A(t). =

This theorem allows us to give some explicit formulas for the element a, of the
A-sequence. By extracting the coefficient of t", we find:

an = [t"A(t) = _Z[t“’i]B(t)i Pl(t) + i[t“ﬂ] ADQI (1)

>

n—i

s
bl) Ain— iﬂ“”ZZa](')Pn i—j°
=0

i=1

=)

i=0j

o
o

where a® and b{" denote the coefficients of ti in the formal power series A(t)' and
B(t)' = A®t)™ respectlvely Asfar as Theorem 2.5 is concerned, we have s = 0 and so:

]
ik

n .
ENEDY bj(l)ai.nfifjs
i=0 j

iy
o

which agrees with the values ag = b( )Ofoo anda; = b(0)a01 + b( Doio = gy + boarg =
ao1 * a10/ oo (seethe proof of Theorem 2.6in[15]). Asto Theorem 2.6, we have:

=}

n n—i
an=>_ b'l)ai,nfifj +> apn—ijs
=

i=0 j

Ty
o

which only depends on the previously computed & values.
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The generic element dp+1 k+1 Often only depends on the two previous rows and some-
times on the elements of its own row. In this case, the functional equation (3.2) reduces
to a second degree equation in A(t) and, as a result, we can give an explicit expression
for the generating function of the A-sequence.

THEOREM 3.2. Let {dnk}nken be @ Riordan Array whose generic element dnaq e
only dependson the two previousrows and, in case, on its own row. If P(t), P(t) and Q(t)
are the generating functions for the coefficients of this dependence, i.e., P(t) = P9(t),
P(t) = P(t) and Q(t) = QI¥(t), then we have:

P@+ ¢ P()? + 4P()(1 - tQ()
b= 2(1- Q) '

PROOF sSkETCH. Formula(3.2) givestwo solutionsfor A(t) and the one having A(0) =
0 must be discarded because we always assume that ag # 0. n

(3.3)

It is worth noting that if Q(t) = 0O, that is dn.+1 k+1 does not depend on the elements of
its own row, then we have:

P(t) + /P(t)2 + 4tP(t)

2 9
which is quite useful in several cases. When the dependence is more complicated, it is
naturally more difficult to give an explicit expression for the A-sequence.

As shown in the previous section, h(t) is related to A(t) and d(t) isrelated to Z(t), the
Z-sequence generating function. Since the Z-sequence exists for every lower triangular
array (see Theorem 2.2), every recurrence defining d,+1 o in terms of the other elements
in the array can be accepted as a good definition of column 0. Therefore, in analogy to
(2.9), let us assume that we have the following linear relation:

S .
(34) G20 =20 D Gijtheij + D> O'j[I]dn+i.i+j-

i>0j>0 i=1j>0

A(t) =

In general, there is no connection between the ¢; j’s and the o j's or between the pj[i] 'sand
the of'’s and so we take the following generating functions into account:

RO(t) = (oo + oat + Got® + Goat® + - -
RAE®M) = Qo+ Gat +Got? +Gat® +- -

(etc.) and 9(t) = >0 aj“]tj. The coefficients defining dns1 k+1 and dnv1,0 are sometimes
the same ones, in the sense that:

Gj = aij+1 and Uj[i] = pj[i] i, Vj.

In this case, we say that column O is unprivileged and we obtain the following formulas
for our generating functions:

Ri(t) =

PO -0 g gy = iy
t
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for every i which R, Pl 91 and QIi! are well-defined for.
At any rate, we can easily prove the following:

THEOREM 3.3. If {dnk}nken iS @ Riordan Array whose elements in column O are
defined by a relation (3.4), then the function d(t) is given by the following formula:
doo
1 — Yiso t*IRI(th(t)) — t %, h(t) S (th(t))

(3.5) d@) =

PrROOF SKETCH. We go on to generating functions and find (3.5) by solvingin d(t). =

When column Ois unprivileged, the formulafor d(t) can be drastically simplified and,
nevertheless, actually covers a large class of lattice path problems. For this reason, we
state it as a separate theorem:

THEOREM 3.4. If {dnk}nken iSaRiordan Array whose column O isunprivileged, then
d(t) is given by the formula:
(36) d(t) = eo®

Yiso ot

PROOF. We simply take the denominator in formula (3.5) and substitute Rl (t) and
Sil(t) by their counterparts when column 0O is unprivileged; we then use Theorem 3.1's
first result. ]

Besides being important for its own sake, this theorem also allows usto prove avery
interesting characterization of “renewal arrays’, i.e., Riordan Arrays having d(t) = h(t),
when column O is unprivileged:

COROLLARY 3.4.1. Let {d,k}nken be a Riordan Array whose column 0 is unprivi-
leged; then {d,k}nken iSarenewal arrayif and only if the following two conditions are
satisfied: 1) dn+1x+1 ONly depends on d, x and not on any other element in column k;
i) oo = doo.

ProoF. If column O is unprivileged and d(t) = h(t), then by (3.6) we have:
Yi>0 aiott = doo; therefore ajo = 0.Vi > 1 and this is equivalent to condition i).
Only agp = dop is left and constitutes condition ii). Vice versa, if column O is un-
privileged, then condition i) implies: Yo aiot' = ago, S0 d(t) = dooh(t) / ao0, and so
condition ii) gives d(t) = h(t). ]

We wish to conclude this section by introducing an important result concerning the
characterizations proven in the previous section. By means of generating functions, we
can show that Theorem 2.7 givesthe largest possible characterization of Riordan Arrays.
In other words, we can show that if dn+1x+1 depends on elements not contained in the
grey zones of Figure 2, then {d,k}nken iS NOt @ Riordan Array. It is worth noting that
if dh1k+1 depends on some elementsd, . with v > nand k < k+ 1+ v — n, then the
recurrenceis not well-defined, and the computation of d,.1 k+1 entersan infiniteloop and
its indexes keep growing, and, as aresult, {dnx }nken is actualy not defined. We must
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therefore show that {dnk nken iS NOt a Riordan Array when dn.q k+1 depends on some
elementd,, withy < nandx < _k. The following theorem shows this under the same
conditions as Theorem 2.5 (no p{! is involved) and with & > k — 1. Actually, this is

sufficient for our purposes becausethe presenceof some pj[i] 'sdoes not changethe proof.
Moreover, the method isvirtually the samewhen v < k— 1 (only afew technical aspects
are slightly modified).

THEOREM 3.5. If the generic element dpyq k41 in@narray {dn i }nken is defined by the
recurrence:
Ons1ke1 = Z Z Ofi*.j Oniksj (dn—1=0,¥Yn€ N)
i>0j>—1
with some o _; # 0, then {dp }nken iSNOt @ Riordan Array.

PROOF SKETCH. By assumingthat the array is Riordan and by going on to generating
functions, we obtain the contradictionthat all the o' _; arezero. This provesthe theorem.
|

4. Lattice path problems. In the foregoing sections, we assumed that Figure 1 can
provide arepresentation of four samplelattice path enumeration problems on the integer
square lattice. To state it in more formal—though less abstract—terms, a lattice path
of m steps is a finite sequence (sy. . . . , Sm) of ordered pairs s = ((Xi-1. i-1). (%, ¥i)),
1 <i < m, of lattice points such that:

a) X0 =Yo=0;

b) for 1 <i<m,x =X—1+06i.Yi =Yi-1+0];

c) the pairs (5i,46),1 < i < m, are drawn from a set of permissible step templates;

and

d) these permissible step templates obey some conditions on their occurrence.

We say that such a path starts at the origin (0, 0) and ends at (Xm, Ym)-

Therefore, in al the examplesillustrated in Figure 1, we refer to the step templates
(0,1), (1,0), and (4. 4"), subject to the condition that 0 < y; < x;, for 0 <i < m, and
only the choice of (6,4") is at issue. In the examples that include Figure 1(i) and 1(ii),
6 = 1, whileé’ isapositive integer, so the gradient 4’ /4 of the step template is large and
therefore the step is said to be “steep”. In the examples that include Figure 1(iii) and
1(iv), &' = 1, while § is a positive integer, and we get a small gradient. Therefore, the
step is said to be “ shallow”. We could obviously give some more complicated examples
that allow combinations of these step templates, and sometimes may have different
colours. Thereis vast literature on lattice path enumeration, and we particularly want to
mention the following: [2, 3, 5, 6, 7, 8, 13, 14, 16, 17, 18, 20, 21]. In all the examples
illustrated in Figure 1, we obtain lower triangular arrays {dnk},, . Where dny is the
number of pathswhich start at (0, 0) and end at (n, n— k), asillustrated in Figure 3. To be
more precise, we are going to examine some lattice paths having templates in the class
T={(.6") 6.8’ eN,6+& >0} U{(6.8") | 6 < 0,8 > 0}. We denote a step template
(6,8") having§ > 0 by &n’’, where e stands for east and n for north; atemplate is steep
if 6 < ¢ andisshallowif § > § +1; if § = § + 1 the template will be called almost
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steep. A step template (5, 6’) having 6 < 0 will be dejnoted by wi'ln?’, where w stands
for west; for convenience's sake, we consider every template of this kind as being steep
too. In Figure 4(a) weillustrate the different kinds of templates and distinguish the sets
of steep from almost steep templates by two different shades of grey. These templates
play afundamental role in our approach to the lattice path theory.

nk|] 0 1 2 3 4 n/k|] 0 1 2 3 4
0 1 ol 1
11 1 111 1
21 3 2 1 ° 2l 2 2 1 °°
3/ 9 7 3 1 © 3/ 6 5 3 1 S
40131 24 12 4 1 4119 16 9 4 1

(@) (i)
nk|] 0 1 2 3 4 nk|] 0 1 2 3 4
ol 1 . ol 1 e 00 o0
11 1 i 111 1 °o 00 o
2| 3 3 1 o 2l 2 2 1 °c e o0 o0
3/ 9 9 5 1 3| 6 6 41 oco@e
4131 31 19 7 1 4119 19 13 6 1

(i) (i)

FIGURE 3: The lower triangular arrays resulting from Figure 1

We can now define alattice path problem Ras a pair (Ra, Ra), where:

o Ry isapossibly infinite set of templatesin T ;

e Ry isapossibly infinite set of steep templatesinT .
An R-path is a path composed of steps with templatesin R, and satisfies the following
conditions; i) if a step ends on the main diagonal x — y = 0, then its template should
belong to Ra; otherwise ii) the template should belong to Ra. There is an important
definition related to these conditions: let Rs be the subset of Ry made up of all its steep
templates; if Rs # Ra, then we say that R is alattice path problem with privileged access
to the main diagonal; otherwise, if Rs = Ra, then R have unprivileged accessto the main
diagonal. None of the examplesin Figure 1 have privileged accessto the main diagonal;
an example having privileged accesswill be given further on.

Thanks to these definitions, we can now prove our main result regarding lattice path
problems. When we go from a lattice path problem R = (Ra, Ra) to the lower triangular
array counting the pathsfromtheoriginto the point (n, n—Kk), aswedidtogofrom Figure 1
to Figure 3, we simply change the two sets Ry and R, into two recurrences: onevalid in
general, the other only valid for the column corresponding to its main diagonal, i.e., for
column 0. It isimmediately clear that atemplate (6, &’) translates into the dependence of
On+1k+1 from dn_s+1 kesr+1-5. Since we aways have dy g = 1, corresponding to the empty
path, these recurrences completely define the array. It is worth noting that a problem
with privileged (unprivileged) access to the main diagonal is translated into an array
with privileged (unprivileged) column O.
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mwA nw| nd | n*e|n®e&?|n’e! |n®e? e | ne® |n’e® n*e’|n'e?
w4 nPw| n? | n’e|n’e?|n’e® |n%e € |né |n’é|n’¢? |n*e?
n? | nw | n | ne |[né |ne® |net e [ne |n%e |ne |n'e
®le & & & ON AT
@ (b) nw | nw [n*w
nw? |?w?

FIGURE 4:Possible steps originating from a given point in Z2
and their positions in the corresponding triangular array: e=east, n=north, w=west.

In Figure 4(b) we show, in terms of step templates, the dependence of the generic
element dyea k41 (Or dn+1,0) (denoted by “©”) from other elementsin the array. Since Ra
is only made up of steep templates, the recurrence for dn.10 does not depend on any
elements in the white or dark-grey zones, and this makes very good sense. All these
considerations help us to prove our main theorem:

THEOREM 4.1. Let (Ra, Ra) be alattice path problemand let {dn  }nken beits corre-
sponding counting array. Then {d”-k}n,keN isa Riordan Array if and only if Ry is made
of both steep templates and at least one almost steep template, and a number S exists
such that for every (6.6") € RaU Ry withé < 0, we have§’ < S Besides, {dnk}nken iS
proper if Ra contains the almost steep template (1, 0).

PROOF. Thisisan obvious consegquence of Theorems2.7 and 3.5; the conditionon S
implies that there is only a finite number of rows below row nwhich dp+q k+1 (OF dne1.0)
may depend on. ]

This theorem justifies our initial statement that only case (iv) in Figure 1 does not
correspond to a Riordan Array. The Riordan Array theory can be applied to the other
cases to solve the lattice path problems, as we are now going to show:

In Figure 3(i), we give a schematic illustration of the dependence of d.1 k+1 from the
other elementsin the array and obtain the recurrence:

Onia ket = Ok + Onpez + dne ke

However, we can directly use Theorem 3.1 to obtain the function h(t) because Pl9(t) =
1+1t2 and QI (t) = 1, and therefore h(t) is the solution to the equation:

h(t) = 1+ t2h(t)? + th(t).
Since apo = 1, the Riordan Array is proper, i.e., h(0) # O; thisimplies that:

1—V1—4t— 412

=1+t+3t2+9t3+ 314+ 113t°+ - - -
2t(1+1)

h(t) =
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The conditionsin Corollary 3.4.1 are now satisfied and so the Riordan Array is actually
arenewal array and d(t) = h(t). Finally, the A-sequence can be computed with formula
(3.3), where P(t) = 0 and we find the simple expression:

1+t2

- =S1+t+28+28 + 284+ 2t + - -

Al =

TheRiordan Array theory can now be used to obtain someinformation about these paths.
For example, the total number N, of paths extending up to x = n is given by the row
sums, which can be computed by means of formula (2.1) with f(t) = (1 — t)~:

N@®=> Nt"= dt) 1-2t—1—-4t—482

S 1—th(t) 42

We can obtain the average height of these pathsin asimilar way. We begin by computing
the weighted row sums:

dh(t)  1—4t—(1—20v/I—4t— 42
W1 => Wit = = :
0=2 (1—th) 8t

we then extract the asymptotic value for W, and N,,, by means of Darboux’ method:

N YAT2V2 242/ W @-VAVA-2/2 @2+2/2)
T4 (@2n+3)mh+2) 8 (2n+5)\/x(n+3)

Finaly, the quantity desired is computed by subtracting the value of W, /N, from n
because the weight of an element measures the distance from the diagonal along the
y-axis.

For the problem illustrated in Figure 1(ii), we have Pl(t) = 1+t and QU(t) = 1;
therefore, h(t) is given by the solution of the third degree equation:

(4.1) h(t) = 1+ t3h(t)® + th(t)2.

By Corollary 3.4.1, this is a renewal array and d(t) = h(t). By using the Lagrange
Inversion Formula (see Goulden and Jackson [7]), we can find an explicit expression
(although not a closed formula) for the generic element d, . If we multiply (4.1) by t,
and sety = th(t) so that y(0) = 0, then we havey = t(1+y*) /(1 —y) and, therefore:

dn, k

(1 (th() = 13y = [E™1y

KL (145 " k+1nK/n+1) 20—k ]
nF il ]\1—y “n+1g\j/3)\n—k=j)

which can be easily checked against the true values given in Figure 3(ii) (if j /3 isnot an
integer, the binomial coefficient should be taken as 0).
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Finally, for the problemillustrated in Figure 1(iii), we have Pl (t) = Pl (t) = QM (t) =
1; therefore, h(t) is given by the solution of h(t) = 1+t + th(t)?; that is:

—V1—4t— 4
2t )

ha) = -

By Corollary 3.4.1, thisis not arenewal array and we should compute d(t) by means of
formula (3.5) in Theorem 3.3:

1 1—V1—4t—4ae

AMO=1"mo - aa+y

which, as announced, is the same as for the problem illustrated in Figure 1(i).

The problem in Figure 1(iv) does not correspond to any Riordan Array; we do not try
to solveit here and invite the reader to refer to our paper “Lattice paths with steep and
shallow steps’.

We want to conclude this section with some other examples that illustrate various
ways of applying the results obtained in the previous sections.

The first exampleis R = (Ra. Ra) with Ry = {(1,0), (1. 1), (1, 2)} and Ra = {(1,2)}.
Since Rs = {(1,1).(1,2)} # Ra, we have a problem involving privileged access to
the main diagonal. In this case, we know the A- and Z-sequences, for which we have
A(t) = 1+t +1t? and Z(t) = t. By formula (2.3) and Theorem 2.3, we find:

d(t)_1+t—\/1—2t—3t2 h(t)_l—t—\/l—Zt—Stz
- 2t(1 +1) ’ - 212 ’
3
e o o nk|]0 1 2 3 4 5
o @® o 1 /6 01
10 1
o e 1 6 211 1 1
3|1 3 2 1
(@]
®° 0 3 413 6 6 3 1
1 1 5/6 15 15 10 4 1

FIGURE 5: Walks with e, ne and n’e steps having privileged access to the main diagonal.
Theresulting triangle is shown in Figure 5; its row sums are:

n d(t) 1
Aok = [t" = [t"
kgo k=1 ]1—th(t) [ ]\/1—2t—3t2
which are the well-known trinomial coefficients.
Another example, isR = (Ra, Ra) Ra = {(1,k) | k e N} U {(0. 1)} and R = {(1,K) |

k € N}, i.e.,, having unprivileged accessto the main diagonal. In this case, even though
we have an infinite number of step templates, we can easily find PO(t) = 1/(1 —t)
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and QU(t) = 1. Figure 6 illustrates the situation corresponding to this problem; by
Theorem 3.1, wefind that h(t) is the solution of the following third-degree equation:

1

h(t) = _r
© (1—th)

+th(t)2. or h(t) =

1
1—th(D)

If we sety = th(t), so that y(0) = 0, the previous relation becomes:

t

= amw

and we are now able to apply the Lagrange Inversion Formula. By Corollary 3.4.1, this
isarenewal array and we have:

dni = ["]d(®)(th()) " = [t“]%(th(t))k*1 = [ty
1 k+Dy<  k+1 .4 o kt1l/3n—k+1
_n+1[yn](1_y)2n+2_n+l[yn ](1 y) _n+1\ n_k .
143
30,/ /|88 nk|] 0 1 2 3 4
0 1
7 33 1 2 1
) A 8 2 7 4 1

3 30 18 6 1
41143 8 33 8 1

1 1 1 1 1

FIGURE 6: Walks with n and n‘e steps, k € N, and their corresponding array.

Another example having unprivileged access to the main diagonal and with an infinite
number of step templatesis Ra = {(6,6) | € N.& =& + 1}. We now have Pll(t) = 1,
Vi > 0 and can therefore find:
1
h(t) = —.
O=7—
By Corollary 3.4.1, thisis not a renewal array, but formula (3.6) in Theorem 3.4 gives
d(t) = h(t)/ Zisot' = 1. Therefore, the Riordan Array isD = (1. (1 — t)™) and dyx =
n—1

(kfl)‘

Let us now consider an example having some north-west steps; more precisely, let
Ra ={(1,0), (0, 1), (—1, 1)} with unprivileged accessto the main diagonal. In Figure 7,
we show the first values corresponding to this problem. If we want to compute the first
n rows of the resulting array, we must begin by computing the first 2n starting values on
the x-axis. We then go on to compute the valueson the liney = 1, and so forth, reducing

the number of values computed by one each time. This corresponds to evaluating a
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sufficient number of values on the diagonal n = k in the resulting Riordan Array. We
then examine one diagonal at atime and reduce the number of its rows by one.

298 nk| 0 1 2 3 4
0 1
66 [172\328 11 2 1
2| 10 4 1
100N\24 N2 N\64 \90 3| 66 24 6 1
41498 172 42 8 1
2 N4 N6 \8 0 N12 N4

1 1 1 1 1 1 1 1 1

FIGURE 7: A problem with an nw template.

In this problem we have Pl (t) = QI(t) = Q!4 (t) = 1, and formula (3.1) givesh(t) asa
solution of the third-degree equation:

4.2) h(t) = 1 + th(t)? + th(t)>.
By Corollary 3.4.1, thisis arenewal array and the Lagrange Inversion Formula can be

used to find an explicit expression for d. By setting y = h(t) — 1 so that y(0) = O,
formula (4.2) becomesy = t(1 + y)(2 + y) and we therefore have for n # k:

19+ 9 = Ky ey 2y

k+1ndt /n— k> (2n— k) o+l
n—k & \j+1)/{ | '

which can be checked against the values shown in Figure 7.

[t"]d(t)(th(t))"

31 n/k 0 1 2 o

0] 1 .
14 1 1

21 2 1 O
3 3/ 5 2 l
. 4112 5 1 o

531 14 3 o
‘0 ©

0
FIGURE 8: A problem corresponding to anon-proper Riordan Array.

We conclude by studying a problem corresponding to a non-proper Riordan Array.
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Let Ry = {(0,1), (1, 2). (2, 1), (1,2)} with unprivileged accessto the main diagonal. In
Figure 8, we illustrate the problem schematically. We follow Theorem 2.8 and modify
the templates in order to obtain a problem relative to a proper Riordan Array. Each
template (5., 8') becomesatemplate (5.8"), wheres = § +7(5' — 8) and &’ = 8’ +Y(5' — 6).
In our case, ¥ = 1 and so the new templates are Ry = {(1.2). (1. 1), (1. 0). (2. 3)}.
For this problem, we have PIO(t) = 1+t + t? and Pl(t) = t2. This gives the relation
h(t) = 1 + th(t) + t2h(t)? + t3h(t)?; that is:

1—t—+/1—2t— 32— 43

h) = 22(1+1)

Since we have d(t) = h(t) by Corollary 3.4.1, we can conclude that the original problem
correspondsto the non-proper Riordan Array:

D= (1—t—\/1—2t—3t2—4t3 1—t—\/1—2t—3t2—4t3)
- 22(L+1) ’ 2t(1+1)
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