
Bull. Aust. Math. Soc. 92 (2015), 98–110
doi:10.1017/S000497271500026X

SHAPIRO’S UNCERTAINTY PRINCIPLE IN THE
DUNKL SETTING

SAIFALLAH GHOBBER

(Received 6 January 2015; accepted 5 February 2015; first published online 29 April 2015)

Abstract

The Dunkl transform Fk is a generalisation of the usual Fourier transform to an integral transform
invariant under a finite reflection group. The goal of this paper is to prove a strong uncertainty principle
for orthonormal bases in the Dunkl setting which states that the product of generalised dispersions cannot
be bounded for an orthonormal basis. Moreover, we obtain a quantitative version of Shapiro’s uncertainty
principle on the time–frequency concentration of orthonormal sequences and show, in particular, that if
the elements of an orthonormal sequence and their Dunkl transforms have uniformly bounded dispersions
then the sequence is finite.
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1. Introduction

In an unpublished manuscript [20], Shapiro proved a number of uncertainty
inequalities for orthonormal sequences that are stronger than the corresponding
inequalities for a single function. In particular, he proved that for any orthonormal
sequence {ϕn}

∞
n=1 in L2(R),

sup
n

(‖xϕn‖
2
L2(R) + ‖ξF (ϕn)‖2L2(R)) =∞,

where F is the Fourier transform defined for f ∈ L1(Rd) ∩ L2(Rd) by

F ( f )(ξ) = (2π)−d/2
∫
Rd

f (x)e−i〈x,ξ〉 dx

and extended from L1(Rd) ∩ L2(Rd) to L2(Rd) in the usual way.
A quantitative version of Shapiro’s result has been proved by Jaming and Powell

[12]: if {ϕn}
∞
n=1 is an orthonormal sequence in L2(R) then for all N ≥ 1,

N∑
n=1

(‖xϕn‖
2
L2(R) + ‖ξF (ϕn)‖2L2(R)) ≥ N2. (1.1)
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The latter inequality is sharp. The equality cases have been entirely described (see
[12]) and are given by the sequence of Hermite functions. The higher-dimensional
version of (1.1) involving generalised dispersions was obtained by Malinnikova [14].
That is, for s > 0 and {ϕn}

∞
n=1 an orthonormal sequence in L2(Rd),

N∑
n=1

(‖ |x|sϕn‖
2
L2(Rd) + ‖ |ξ|sF (ϕn)‖2L2(Rd)) ≥ C N1+s/d. (1.2)

We refer the reader to [1, 2, 8, 11, 16] for numerous results and discussions on time–
frequency localisation of orthonormal sequences and bases.

The goal of this paper is to provide an analogue of inequality (1.2) for the Dunkl
transform, which is a generalisation of the usual Fourier transform to an integral
transform invariant under a finite reflection group. We show also that the product
of generalised dispersions cannot be bounded for an orthonormal basis.

In order to describe our results, we first need to introduce some notation (further
details can be found in Section 2.2). In this paper we consider the Dunkl operators
(see [5]) T j, j = 1, . . . , d, associated to an arbitrary finite reflection group G and
a nonnegative multiplicity function k. These are differential-difference operators,
generalising the usual partial derivatives, and they play a useful role in the algebraic
description of exactly solvable quantum many-body systems of Calogero–Moser–
Sutherland type. Among the extensive literature, we refer to [13, 15].

The Dunkl kernel Kk on Rd × Rd associated with G and k was introduced by Dunkl
in [5, 6]. It generalises the usual exponential function (to which it reduces in the
case k = 0) and can be characterised as the solution of a joint eigenvalue problem for
the associated Dunkl operators. This kernel is of special interest as it gives rise to a
corresponding integral transform on Rd. The Dunkl transform Fk associated with G
and k involves a weight function wk and is defined for an integrable function f on Rd

with respect to the measure dµk(x) = wk(x) dx by

Fk( f )(ξ) := ck

∫
Rd
Kk(−iξ, x) f (x) dµk(x), ξ ∈ Rd,

and extended to L2(Rd, µk) by a Parseval-type relation when ck is a suitable constant.
For p = 1 or 2, we will denote by Lp

k (Rd) = Lp(Rd, µk) the spaces of complex-valued
measurable functions f on Rd such that

‖ f ‖Lp
k

=

(∫
Rd
| f (x)|p dµk(x)

)1/p
<∞.

Our first result will be the following strong uncertainty principle for orthonormal
bases of L2

k(Rd).

Theorem A. Let s > 0 and let {ϕn}
∞
n=1 be an orthonormal basis of L2

k(Rd). Then

sup
n

(‖ |x|sϕn‖L2
k
‖ |ξ|sFk(ϕn)‖L2

k
) =∞.
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This theorem shows that there does not exist an orthonormal basis {ϕn}
∞
n=1 for L2

k(Rd)
such that the sequence {‖ |x|sϕn‖L2

k
‖ |ξ|sFk(ϕn)‖L2

k
}∞n=1 is bounded. It is not difficult

to construct an infinite orthonormal sequence in L2
k(Rd) with bounded product of

dispersions (see Remark 3.9).

Our next result will be the following quantitative dispersion inequality.

Theorem B. Let s > 0 and let {ϕn}
∞
n=1 be an orthonormal sequence in L2

k(Rd). Then for
all N ≥ 1,

N∑
n=1

(‖ |x|sϕn‖
2
L2

k
+ ‖ |ξ|sFk(ϕn)‖2L2

k
) ≥ c(k, s)N1+s/(2γ+d). (1.3)

This theorem implies in particular that, if the elements of an orthonormal sequence
and their Dunkl transforms have uniformly bounded dispersions, then the sequence is
finite. Moreover, it implies that

sup
n

(‖ |x|sϕn‖
2
L2

k
+ ‖ |ξ|sFk(ϕn)‖2L2

k
) =∞.

When the multiplicity function k is identically 0 (therefore γ = 0), the Dunkl transform
coincides with the usual Fourier transform F , and then inequality (1.3) coincides with
the inequality (1.2).

The remainder of the paper is organised as follows. The next section is devoted to
some preliminaries on the Dunkl transform. In Section 3 we prove Theorems A and B.

2. Preliminaries

2.1. Notation. Throughout this paper, we denote by |x| and 〈x, y〉 the usual norm
and scalar product on Rd. The unit sphere of Rd is denoted by Sd−1 and we endow
it with the (nonnormalised) Lebesgue measure dσ, that is, rd−1 dr dσ(ζ) is the polar
decomposition of the Lebesgue measure.

If A is a subset of Rd, then we denote by Ac = Rd\A the complement of A in Rd,
and by χA the characteristic function of A. Given a multi-index n ∈ Nd, we write
|n| = n1 + · · · + nd and, for r > 0, B(0, r) = {x ∈ Rd : |x| ≤ r} is the closed ball in Rd

centred at 0 and of radius r.

2.2. The Dunkl transform. Let us fix some notation and present some necessary
material on the Dunkl transform. Let G be a finite reflection group on Rd associated
with a root system R, and R+ the positive subsystem of R (see [4, 6, 19]). We denote
by k a nonnegative multiplicity function defined on R with the property that k is G-
invariant. We associate with k the index

γ := γ(k) =
∑
ξ∈R+

k(ξ) ≥ 0

and the weight function wk defined by

wk(x) =
∏
ξ∈R+

|〈ξ, x〉|2k(ξ).
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Further, we introduce the Mehta-type constant ck given by

ck =

(∫
Rd

e−1/2|x|2 dµk(x)
)−1
,

where dµk(x) = wk(x) dx. Moreover,∫
Sd−1

wk(x) dσ(x) =
c−1

k

2γ+d/2−1Γ(γ + d/2)
:= dk.

By using the homogeneity of wk, it is shown in [19] that for a radial function
f ∈ L1

k(Rd) the function f̃ , defined on [0,∞) by f (x) = f̃ (|x|) for x ∈ Rd, is integrable
with respect to the measure r2γ+d−1 dr. More precisely,∫

Rd
f (x)wk(x) dx =

∫ ∞

0

(∫
Sd−1

wk(ry) dσ(y)
)

f̃ (r)rd−1 dr

= dk

∫ ∞

0
f̃ (r)r2γ+d−1 dr.

As introduced by Dunkl in [5], the Dunkl operators T j, 1 ≤ j ≤ d, on Rd associated
with the reflection group G and the multiplicity function k are the first-order
differential-difference operators given by

T j f (x) =
∂ f
∂x j

+
∑
ξ∈R+

k(ξ)ξ j
f (x) − f (σξ(x))

〈ξ, x〉
, x ∈ Rd,

where f is an infinitely differentiable function on Rd, ξ j = 〈ξ, e j〉, (e1, . . . , ed) being
the canonical basis of Rd, and σξ denotes the reflection with respect to the hyperplane
orthogonal to ξ.

The Dunkl kernel Kk on Rd × Rd was introduced by Dunkl in [6]. For ξ ∈ Rd the
function x 7→ Kk(x, ξ) can be viewed as the solution on Rd of the initial value problem

T ju(x, ξ) = ξ ju(x, ξ), 1 ≤ j ≤ d; u(0, ξ) = 1.

This kernel has a unique holomorphic extension to Cd × Cd and for all λ ∈ C, (z, z′) ∈
C2d, (x, ξ) ∈ R2d (see [17]),

Kk(z, z′) = Kk(z′, z), Kk(λz, z′) = Kk(z, λz′), Kk(−iξ, x) = Kk(iξ, x),
|Kk(−iξ, x)| ≤ 1.

The Dunkl transform Fk of a function f ∈ L1
k(Rd) ∩ L2

k(Rd), introduced by Dunkl (see
[4]), is given by

Fk( f )(ξ) := ck

∫
Rd
Kk(−iξ, x) f (x) dµk(x), ξ ∈ Rd,

and extends uniquely to an isometric isomorphism on L2
k(Rd) with

F −1
k ( f )(ξ) = Fk( f )(−ξ), ξ ∈ Rd,
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and
‖Fk( f )‖L2

k
= ‖ f ‖L2

k
. (2.1)

Finally, according to [4, 19], we have, for all f ∈ L1
k(Rd),

‖Fk( f )‖∞ ≤ ck‖ f ‖L1
k
,

where ‖ · ‖∞ is the usual essential supremum norm.

3. Time–frequency concentration of orthonormal sequences in L2
k
(Rd)

3.1. Heisenberg-type uncertainty inequality for the Dunkl transform. The
Heisenberg–Pauli–Weyl inequality leads to the following classical formulation of the
uncertainty principle in the form of a lower bound for the product of the dispersions of
a function in L2(Rd) and its Fourier transform:

‖ |x| f ‖L2(Rd) ‖ |ξ|F ( f )‖L2(Rd) ≥
d
2
‖ f ‖2L2(Rd), (3.1)

with equality if and only if f is a multiple of a Gaussian. Heisenberg’s inequality (3.1)
may also be written in the form

‖ |x| f ‖2L2(Rd) + ‖ |ξ|F ( f )‖2L2(Rd) ≥ d ‖ f ‖2L2(Rd). (3.2)

In this section we will give a slightly simpler proof of the sharp Heisenberg uncertainty
inequality for the Dunkl transform which was first proved by Rösler [17] and then by
Shimeno [21]. Rösler in [17] used expansions in terms of Dunkl Hermite polynomials
and the recurrence relations among them as given in [18]. This generalises a well-
known method for the (one-dimensional) classical situation (see, for example, [3]).
Shimeno in [21] used expansions in terms of the basis given by Dunkl in [7] and
recurrence relations for the classical Laguerre polynomial. Our proof is quite similar
to that of Rösler but without using any recurrence relations.

The Dunkl Hermite functions {hk
n}n∈Nd associated with G and k, introduced by Rösler

in [18], are defined by

hk
n(x) = (ck2−|n| e−|x|

2
)1/2Hk

n(x), x ∈ Rd,

where Hk
n represents the Dunkl Hermite polynomials of degree |n|, with real

coefficients.
It is well known (see [18]) that the sequence {hk

n}n∈Nd is an orthonormal basis for
L2

k(Rd) and hk
n is an eigenfunction for the Dunkl transform associated to the eigenvalue

(−1)|n|, that is,
Fk(hk

n) = (−1)|n|hk
n, n ∈ Nd.

Now if we denote by ∆k = −
∑d

j=1T 2
j the Dunkl Laplacian, then the hk

n form the
family of eigenfunctions of the Dunkl Hermite operator (or Dunkl harmonic oscillator)
Lk = ∆k + |x|2 with corresponding eigenvalues 2|n| + 2γ + d, that is,

Lkhk
n = (2|n| + 2γ + d)hk

n, n ∈ Nd.
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Moreover, for sufficiently regular functions f ,

Fk(∆k f )(ξ) = |ξ|2Fk( f )(ξ), ξ ∈ Rd,

so that we can define the nonnegative self-adjoint extension of ∆k (still denoted by the
same symbol) defined by

∆k f = F −1
k [|ξ|2Fk( f )], f ∈ Dom(∆k), (3.3)

where Dom(∆k) = { f ∈ L2
k(Rd) : |ξ|2Fk( f ) ∈ L2

k(Rd)}.
The Dunkl Hermite operator Lk is symmetric and positive in L2

k(Rd) and it has a
natural self-adjoint extension on L2

k(Rd), still denoted by the same symbol Lk, whose
spectral decomposition is discrete and is given by

Lk f =
∑
n∈Nd

(2|n| + 2γ + d)〈 f , hk
n〉khk

n =

∞∑
m=0

(2m + 2γ + d)Pk
m f (3.4)

on the domain DomLk consisting of all functions f ∈ L2
k(Rd) for which the defining

series converges in L2
k(Rd). Here Pk

m are the spectral projections

Pk
m f =

∑
|n|=m

〈 f , hk
n〉khk

n,

and 〈·, ·〉k is the usual inner product in the Hilbert space L2
k(Rd).

From this it immediately follows that, for each f in the domain of Lk,

〈Lk f , f 〉k =
∑
n∈Nd

(2|n| + 2γ + d)|〈 f , hk
n〉k|

2.

Theorem 3.1. For every f ∈ L2
k(Rd),

‖ |x| f ‖2L2
k

+ ‖ |ξ|Fk( f )‖2L2
k
≥ (2γ + d)‖ f ‖2L2

k
,

with equality if and only if f (x) = ce−|x|
2/2 for some c ∈ C.

Proof. Let f ∈ L2
k(Rd) be a nonzero function such that

‖ |x| f ‖L2
k
, ‖ |ξ| Fk( f )‖L2

k
<∞.

Then from (3.3) and Parseval’s equality for the Dunkl transform,

‖ |ξ|Fk( f )‖2L2
k

= 〈|ξ|2Fk( f ),Fk( f )〉k = 〈Fk(∆k f ),Fk( f )〉k = 〈∆k f , f 〉k.

Thus
‖ |x| f ‖2L2

k
+ ‖ |ξ|Fk( f )‖2L2

k
= 〈|x|2 f , f 〉k + 〈∆k f , f 〉k = 〈Lk f , f 〉k.

It follows by (3.4) that the self-adjoint operator Lk has only discrete spectra, of which
the minimum is (2γ + d). Therefore

‖ |x| f ‖2L2
α

+ ‖ |ξ|Fk( f )‖2L2
k
≥ (2γ + d)‖ f ‖2L2

k
.

Further, the equality holds if and only if f is an eigenfunction of Lk corresponding
to the minimum eigenvalue (2γ + d), namely f is a scalar multiple of hk

0, which is a
constant multiple of e−|x|

2/2. �
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A simple well-known dilation argument allows us to obtain the following corollary
(see [17, Proof of Theorem 1.1]).

Corollary 3.2. For every f ∈ L2
k(Rd),

‖ |x| f ‖L2
k
‖ |ξ|Fk( f )‖L2

k
≥ (γ + d/2)‖ f ‖2L2

k
,

with equality if and only if f (x) = ce−µ|x|
2/2 for some c ∈ C and µ > 0.

If the multiplicity function k is identically 0, then the above inequality coincides
with the Heisenberg inequality (3.1).

3.2. Strong uncertainty principle for orthonormal bases. In this section we will
prove a strong uncertainty principle for orthonormal bases for L2

k(Rd) which shows
that the Heisenberg inequality (3.2) for the Dunkl transform can be refined for an
orthonormal basis. Our proof is inspired by Malinnikova [14] who proved a similar
result in the classical setting. In order to do this, we will need to introduce the time-
limiting and the frequency-limiting operators on L2

k(Rd) defined by

ES f = χS f , FΣ f = F −1
k [χΣFk( f )],

where S and Σ are measurable subsets of Rd of finite measure, 0 < µk(S ), µk(Σ) <∞.
A straightforward computation shows that ES FΣ is an integral operator with kernel

N(x, ξ) = ckχS (x)Fk(χΣKk(ix, ·))(ξ).

Thus ES FΣ is a Hilbert–Schmidt operator with (see, for example, [9, Lemma 3.2]),

‖ES FΣ‖
2
HS ≤ c2

k µk(S )µk(Σ). (3.5)

The phase space restriction operator is defined by

LS ,Σ = (ES FΣ)∗ES FΣ = FΣES FΣ,

where (ES FΣ)∗ = FΣES .
An elementary calculation of the trace of the self-adjoint operator LS ,Σ allows as to

obtain the following localisation inequality.

Theorem 3.3. Let {ϕn}
N
n=1 be an orthonormal system in L2

k(Rd). If

‖ES cϕn‖
2
L2

k
≤ a2

n and ‖FΣcϕn‖
2
L2

k
≤ b2

n,

then
N∑

n=1

(
1 −

3
2

an −
3
2

bn

)
≤ c2

k µk(S )µk(Σ).
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Proof. We will apply a standard estimate of the trace (see, for example, [10,
Theorem 5.6, page 63]) of the time–frequency restriction operator LS ,Σ to conclude
that

tr (LS ,Σ) = ‖ES FΣ‖
2
HS .

Then by means of relation (3.5),

N∑
n=1

〈LS ,Σϕn, ϕn〉k ≤ tr (LS ,Σ) ≤ c2
k µk(S )µk(Σ).

On the other hand, as the identity operator I = ES + ES c = FΣ + FΣc , so

〈LS ,Σϕn, ϕn〉k = 〈ES FΣϕn, FΣϕn〉k

= 〈ϕn, ϕn〉k − 〈FΣcϕn, ϕn〉k − 〈FΣϕn, ES cϕn〉k − 〈ES FΣϕn, FΣcϕn〉k.

Therefore, 〈LS ,Σϕn, ϕn〉k ≥ 1 − an − 2bn and

N∑
n=1

(1 − an − 2bn) ≤ c2
k µk(S )µk(Σ). (3.6)

If we consider the operator L̃S ,Σ = (FΣES )∗FΣES = ES FΣES , we similarly obtain

N∑
n=1

(1 − 2an − bn) ≤ c2
k µk(S )µk(Σ). (3.7)

Combining (3.6) and (3.7), we deduce the desired result. �

Definition 3.4. Let 0 < ε < 1 and f ∈ L2
k(Rd). Then:

(1) f is ε-concentrated on S if ‖ES c f ‖L2
k
≤ ε‖ f ‖L2

k
,

(2) f is ε-bandlimited on Σ if ‖FΣc f ‖L2
k
≤ ε‖ f ‖L2

k
.

It is clear that if f is ε-bandlimited on Σ then, by the Plancherel theorem (2.1),
Fk( f ) is ε-concentrated on Σ.

From Theorem 3.3, we can immediately obtain the following corollary.

Corollary 3.5. Let a, b > 0 and 0 < ε1, ε2 < 1 such that ε1 + ε2 <
2
3 . Let {ϕn}

N
n=1 be an

orthonormal system in L2
k(Rd). If ϕn is ε1-concentrated on B(0, a) and ε2-bandlimited

on B(0, b), then

N ≤
( ckdk

2γ + d

)2 (ab)2γ+d

1 − 3
2 (ε1 + ε2)

.

Therefore if the generalised dispersions of the elements of an orthonormal sequence
are uniformly bounded then this sequence is finite and we can give a bound on the
number of elements in that sequence. More precisely, we have the following result.
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Corollary 3.6. Fix A, B > 0. Let s > 0 and let {ϕn}
N
n=1 be an orthonormal sequence

in L2
k(Rd) that satisfies ‖ |x|sϕn‖

1/s
L2

k
≤ A and ‖ |ξ|s Fk(ϕn)‖1/s

L2
k
≤ B. Then the sequence is

finite, that is,

N ≤
(2((2γ+d)/s)+1

2γ + d
ck dk

)2
(AB)2γ+d.

Proof. Since, for any r > 0,

‖EB(0,r)cϕn‖L2
k
≤ r−s‖ |x|sϕn‖L2

k
,

it follows that
‖EB(0,41/sA)cϕn‖L2

k
≤

1
4As ‖ |x|

sϕn‖L2
k
≤

1
4
.

In the same way we get
‖EB(0,41/sB)cFk(ϕn)‖L2

k
≤ 1

4 .

Thus ϕn is 1
4 -concentrated on B(0, 41/sA) and 1

4 -bandlimited on B(0, 41/sB). The
desired result follows from Corollary 3.5. �

Lemma 3.7. Let S and Σ be measurable subsets of finite measure µk(S ), µk(Σ) < ∞.
Then there exists a nonzero function f ∈ L2

k(Rd) such that supp f ⊂ S c and
suppFk( f ) ⊂ Σc.

Proof. Let PW(Σ) be the space of functions f ∈ L2
k(Rd) such that Fk( f ) is supported

on Σc. Then from [9, Theorem 4.4(2)], there exists a positive constant Ck(S , Σ) such
that for all functions f ∈ PW(Σ),

‖ f ‖L2
k
≤ Ck(S ,Σ)‖ f ‖L2

k (S c).

Therefore the trace space Λ = { f |S c : f ∈ PW(Σ)} forms a closed subspace in L2
k(S c)

which is obviously not the whole space. Let g be a nonzero function in Λc = L2
k(S c)\Λ.

Since g = FΣg + FΣc g, we have that f = FΣc g is a nonzero function in L2
k(Rd) such that

f is supported on S c and Fk( f ) is supported on Σc. We extend f by zero on S in order
to get the required function. �

Theorem 3.8. Let s > 0 and let {ϕn}
∞
n=1 be an orthonormal basis for L2

k(Rd). Then

sup
n

(‖ |x|sϕn‖L2
k
‖ |ξ|sFk(ϕn)‖L2

k
) =∞.

Proof. Assume that there exists an orthonormal basis {ϕn}
∞
n=1 such that

‖ |x|sϕn‖
1/s
L2

k
‖ |ξ|sFk(ϕn)‖1/s

L2
k
≤ C2.

Let j ∈ Z and let
Ak = {ϕn : ‖ |x|sϕn‖

1/s
L2

k
∈ (2− jC, 2− j+1C]}.

Clearly, {ϕn}
∞
n=1 =

⋃
j Aj, and for ϕn ∈ Aj, we have

‖ |x|sϕn‖
1/s
L2

k
≤ 2− j+1C and ‖ |ξ|sFk(ϕn)‖1/s

L2
k
≤ C2 j.

https://doi.org/10.1017/S000497271500026X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271500026X


[10] Shapiro’s uncertainty principle in the Dunkl setting 107

By Corollary 3.6, Aj is finite and, if N j is the number of elements in Aj, then N j is
bounded by a constant ck,s that does not depend on j.

Let r > 0. By Lemma 3.7, there is a nonzero function f ∈ L2
k(Rd) with ‖ f ‖L2

k
= 1,

that vanishes on B(0, r) with its Dunkl transform. Then, for j ≥ 0 and ϕn ∈ Aj, the
Cauchy–Schwartz inequality gives

|〈 f , ϕn〉k|
2 ≤ r−2s‖ f ‖2L2

k
‖ |x|sϕn‖

2
L2

k
≤ (2Cr−1)2s4−s j. (3.8)

Similarly, for j < 0 and ϕn ∈ Aj, Parseval’s theorem for the Dunkl transform gives

|〈 f , ϕn〉k|
2 = |〈Fk( f ),Fk(ϕn)〉k|

2 ≤ r−2s‖ f ‖2L2
k
‖ |ξ|sFk(ϕn)‖2L2

k
≤ (Cr−1)2s4s j. (3.9)

Since {ϕn}
∞
n=1 is a basis for L2

k(Rd),

1 = ‖ f ‖2L2
k

=
∑

j

∑
ϕn∈Aj

|〈 f , ϕn〉k|
2,

and, by combining inequalities (3.8) and (3.9), we obtain

1 ≤ (2Cr−1)2s
∞∑
j=0

4−s jN j + (Cr−1)2s
∞∑
j=1

4−s jN− j

≤ ck,s(2Cr−1)2s
∞∑
j=0

4−s j + ck,s(Cr−1)2s
∞∑
j=1

4−s j

≤
4ck,s(2C)2s

3r2s .

Choosing r large enough, we get a contradiction. The theorem is proved. �

Remark 3.9. There is an infinite orthonormal sequence {ϕn}
∞
n=1 in L2

k(Rd) with bounded
product of dispersions. Indeed, fix φ : Rd → R a radial, real-valued Schwartz function
supported in B(0, 2)\B(0, 1) with ‖φ‖L2

k
= 1. Consider ϕn(x) = 2n(γ+d/2)φ(2nx). Then

‖ϕn‖L2
k

= ‖φ‖L2
k
, suppϕn ⊂ B(0, 2−n+1)\B(0, 2−n) and

Fk(ϕn)(ξ) = 2−n(γ+d/2)Fk(φ)(2−nξ).

Therefore, {ϕn}
∞
n=1 is an orthonormal sequence in L2

k(Rd) and, for every s > 0,

‖ |x|sϕn‖L2
k

= 2−ns‖ |x|sφ‖L2
k
, ‖ |ξ|sFk(ϕn)‖L2

k
= 2ns‖ |ξ|sFk(φ)‖L2

k
.

Hence, for all n,

‖ |x|sϕn‖L2
k
‖ |ξ|sFk(ϕn)‖L2

k
= ‖ |x|sφ‖L2

k
‖ |ξ|sFk(φ)‖L2

k
<∞.
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3.3. Quantitative dispersion inequality for orthonormal sequences. In this
section we will prove Theorem B. To do so let us recall the general form of the
Heisenberg-type uncertainty inequality for the Dunkl transform (see [9, Theorem 4.4,
(3)] or [22]).

Theorem 3.10. Let s > 0. Then there exists a constant Cs,k such that for all f ∈ L2
k(Rd),

‖ |x|s f ‖L2
k
‖ |ξ|sFk( f )‖L2

k
≥ Cs,k‖ f ‖2L2

k
. (3.10)

Inequality (3.10) is equivalent to

‖ |x|s f ‖2L2
k

+ ‖ |ξ|sFk( f )‖2L2
k
≥ 2Cs,k‖ f ‖2L2

k
.

Consequently, we immediately obtain the following result.

Corollary 3.11. Let s > 0 and let {ϕn}
∞
n=1 be an orthonormal sequence in L2

k(Rd). Then
there exists j0 ∈ Z such that,

∀n ≥ 1, max(‖ |x|sϕn‖L2
k
, ‖ |ξ|sFk(ϕn)‖L2

k
) ≥ 2s( j0−1). (3.11)

Theorem 3.12. Let s > 0 and let {ϕn}
∞
n=1 be an orthonormal sequence in L2

k(Rd). Then
for every N ≥ 1,

N∑
n=1

(‖ |x|sϕn‖
2
L2

k
+ ‖ |ξ|sFk(ϕn)‖2L2

k
) ≥

( (2γ + d)2(42γ+d − 1)
2(2γ+d)(4+3/s)+3c2

kd2
k

)s/(2γ+d)
N1+s/(2γ+d).

Proof. For each j ∈ Z, we define

P j = {n : max(‖ |x|sϕn‖
1/s
L2

k
, ‖ |ξ|sFk(ϕn)‖1/s

L2
k

) ∈ [2 j−1, 2 j)}.

First, by inequality (3.11), we see that P j is empty for all j < j0. Moreover, since for
each n ∈ P j ( j ≥ j0),

‖ |x|sϕn‖
1/s
L2

k
≤ 2 j and ‖ |ξ|sFk(ϕn)‖1/s

L2
k
≤ 2 j,

P j is finite for all j ≥ j0, by Corollary 3.6. If we denote by N j the number of elements
in P j then

N j ≤

(2(2γ+d)/s+1

2γ + d
ck dk

)2
4 j(2γ+d).

Therefore, for every m ≥ j0, the number of elements in
⋃m

j= j0 P j is less than
ck,s 4m(2γ+d), where

ck,s =

( 2(2γ+d)(1+1/s)+1

(2γ + d)
√

42γ+d − 1
ck dk

)2

is a constant that does not depend on m.
Now if N > 2ck,s4 j0(2γ+d), then we can choose an integer m > j0 such that

2ck,s4(m−1)(2γ+d) < N ≤ 2ck,s 4m(2γ+d).

https://doi.org/10.1017/S000497271500026X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271500026X


[12] Shapiro’s uncertainty principle in the Dunkl setting 109

Therefore, at least half of 1, . . . ,N do not belong to
⋃m−1

j= j0 P j and we obtain

N∑
n=1

(‖ |x|sϕn‖
2
L2

k
+ ‖ |ξ|sFk(ϕn)‖2L2

k
) ≥

N∑
n=1

max(‖ |x|sϕn‖
2
L2

k
, ‖ |ξ|sFk(ϕn)‖2L2

k
)

≥
N
2

4s(m−1)

≥
1
2

N
4s

( N
2ck,s

)s/(2γ+d)

=
1
2

( (2γ + d)2(42γ+d − 1)
2(2γ+d)(4+2/s)+3c2

kd2
k

)s/(2γ+d)
N1+s/(2γ+d).

Finally, if N ≤ 2ck,s4 j0(2γ+d), then from Corollary 3.11,

N∑
n=1

(‖ |x|sϕn‖
2
L2

k
+ ‖ |ξ|sFk(ϕn)‖2L2

k
) ≥

N∑
n=1

max(‖ |x|sϕn‖
2
L2

k
, ‖ |ξ|sFk(ϕn)‖2L2

k
)

≥ N4s( j0−1)

≥
N
4s

( N
2ck,s

)s/(2γ+d)

=

( (2γ + d)2(42γ+d − 1)
2(2γ+d)(4+2/s)+3c2

kd2
k

)s/(2γ+d)
N1+s/(2γ+d).

This completes the proof. �

The last dispersion inequality implies in particular that there does not exist an
infinite sequence {ϕn}

∞
n=1 in L2

k(Rd) such that the two sequences {‖ |x|sϕn‖L2
k
}∞n=1 and

{‖ |ξ|sFk(ϕn)‖L2
k
}∞n=1 are bounded. More precisely, we have the following corollary.

Corollary 3.13. Let s > 0 and let {ϕn}
∞
n=1 be an orthonormal sequence in L2

k(Rd). Then
for every N ≥ 1,

sup
1≤n≤N

{‖ |x|sϕn‖
2
L2

k
, ‖ |ξ|sFk(ϕn)‖2L2

k
} ≥

( (2γ + d)2(42γ+d − 1)
2(2γ+d)(4+4/s)+3d2

k

)s/(2γ+d)
N s/(2γ+d).

In particular,
sup

n
(‖ |x|sϕn‖

2
L2

k
+ ‖ |ξ|sFk(ϕn)‖2L2

k
) =∞.

References
[1] J. J. Benedetto, ‘On frame decompositions, sampling and uncertainty principle inequalities’, in:

Wavelets: Mathematics and Applications, Studies in Advanced Mathematics (CRC Press, Boca
Raton, FL, 1994), 247–304.

[2] J. Bourgain, ‘A remark on the uncertainty principle for Hilbertian basis’, J. Funct. Anal. 79 (1998),
136–143.

[3] N. G de Bruijn, ‘Uncertainty principles in Fourier analysis’, in: Inequalities (Proc. Symp. Wright–
Patterson Air Force Base, OH, 1965) (Academic Press, New York, 1967), 57–71.

https://doi.org/10.1017/S000497271500026X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271500026X


110 S. Ghobber [13]

[4] M. F. E. de Jeu, ‘The Dunkl transform’, Invent. Math. 113 (1993), 147–162.
[5] C. F. Dunkl, ‘Differential-difference operators associated to reflection groups’, Trans. Amer. Math.

Soc. 311 (1989), 167–183.
[6] C. F. Dunkl, ‘Integral kernels with reflection group invariance’, Canad. J. Math. 43 (1991),

1213–1227.
[7] C. F. Dunkl, ‘Hankel transforms associated to finite reflection groups’, in: Hypergeometric

Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991),
Contemp. Math., 138 (American Mathematical Society, Providence, RI, 1992), 123–138.

[8] S. Ghobber, ‘Phase space localization of orthonormal sequences in L2
α(R+)’, J. Approx. Theory.

189 (2015), 123–136.
[9] S. Ghobber and Ph. Jaming, ‘Uncertainty principles for integral operators’, Studia Math. 220

(2014), 197–220.
[10] I. Gohberg, S. Goldberg and N. Krupnik, ‘Traces and determinants of linear operators’, in:

Operator Theory: Advances and Applications, 116 (Birkhäuser, Basel, 2000).
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