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Abstract

The aim of this article is to provoke discussion concerning arithmetic properties of the function pd(n)
counting partitions of a positive integer n into dth powers, where d ≥ 2. Apart from results concerning
the asymptotic behaviour of pd(n), little is known. In the first part of the paper, we prove certain
congruences involving functions counting various types of partitions into dth powers. The second part
of the paper is experimental and contains questions and conjectures concerning the arithmetic behaviour
of the sequence (pd(n))n∈N, based on computations of pd(n) for n ≤ 105 for d = 2 and n ≤ 106 for
d = 3, 4, 5.

2020 Mathematics subject classification: primary 11P83; secondary 05A17.
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1. Introduction

Given A ⊂ N+ and n ∈ N, a partition of a nonnegative integer n with parts in A is any
representation of n in the form

n = a1 + · · · + ak,

where ai ∈ A. Two partitions that differ only in the order of their summands are
considered to be the same and we can assume that a1 ≥ a2 · · · ≥ ak. In particular, if
A = N+, then the number of partitions with parts in N+ is denoted by p(n), the famous
partition function introduced by Euler and extensively studied by Ramanujan.

The literature on arithmetic properties of functions counting various types of
partitions is enormous. However, the theory concentrates mainly on the case when the
set A is a sum of disjoint arithmetic progressions. In this case, the theory is especially
rich because of the connections with modular forms and the general theory of q series
(see, for example, [2]). In this case, the counting function A(x) = #{a ∈ A : a ≤ x} is
linear, that is, A(x) = O(x). There is also a nice theory connected with the set of powers
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of a fixed integer m (so-called m-partitions); in this case, A(x) has logarithmic growth,
that is, A(x) = O(log x).

On the other hand, very little is known about the arithmetic behaviour of partition
functions counting partitions into dth powers, where d ∈ N≥2 is fixed. In this case,
A = {kd : k ∈ N} and the growth of A(x) is O(x1/d), which is between the two cases
mentioned earlier. Let pd(n) denote the number of partitions of n into dth powers.
From general principles, the ordinary generating function of the sequence (pd(n))n∈N
has the form

Pd(q) =
∞∑

n=0

pd(n)qn =

∞∏
n=1

1
1 − qnd .

Up to now, the main line of research has been to investigate the asymptotic
behaviour of pd(n). Hardy and Ramanujan claimed in [6], and Wright proved in [10],
that

log pd(n) ∼ (d + 1)
(1
d
Γ

(
1 +

1
d

)
ζ
(
1 +

1
d

))d/(d+1)

n1/d.

Wright’s very complicated proof was simplified by Vaughan in the case d = 2 (see
[9]) and in the general case by Gafni (see [5]). The proofs of Vaughan and Gafni are
based on the circle method. A new proof, using only the saddle point method, was
presented by Tenenbaum et al. (see [8]). To the best of our knowledge, apart from
identities between partitions into dth powers of various types, which can be deduced
from simple manipulations of infinite products, and a recent result of Ciolan (see [3]),
who proved that the number of partitions into squares with an even number of parts
is asymptotically equal to that of partitions into squares with an odd number of parts,
there are no theoretical or experimental results. The absence of such results was the
main motivation for our research.

In Section 2, we prove some congruences for functions counting various types of
partitions into dth powers, where d ∈ N≥2. In particular, if A2,p2 (n) denotes the number
of partitions into dth powers of integers not divisible by 2d or pd

2 and B2,p2 (n) denotes
the number of partitions of n into distinct dth powers not divisible by pd

2, where each
part has one among 2d − 1 colours, then A2,p2 (n) ≡ B2,p2 (n) (mod 2).

In Section 3, we present many computational observations based on our computer
experiments. In particular, we state several questions and conjectures concerning the
arithmetic behaviour of the sequence (pd(n))n∈N for d = 2, 3, 4, 5.

2. A class of congruences

This short section is devoted to the proof of a class of congruences involving
partitions into dth powers under certain restrictions. More precisely, let p1, p2 ∈ N≥2
and assume that (p1, p2) = 1. Let Ap1,p2 (n) denote the number of partitions into dth
powers of integers not divisible by pd

1 or pd
2. It is easy to see that the generating function
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for the sequence (Ap1,p2 (n))n∈N is

Ap1,p2 (q) =
∞∑

n=0

Ap1,p2 (n)qn =

∞∏
n=1

(1 − q(p1n)d
)(1 − q(p2n)d

)

(1 − qnd )(1 − q(p1 p2n)d )
.

We prove the following result. Here, P denotes the set of primes.

THEOREM 2.1. Let d ∈ N+, n ∈ N and p1, p2 ∈ N≥2. Let Bp1,p2 (n) denote the number
of partitions of n into distinct dth powers not divisible by pd

2, where each part has one
among pd

1 − 1 colours, and let Cp1,p2 (n) denote the number of partitions of n into dth
powers not divisible by pd

2, where each part has one among pd
1 − 1 colours.

(1) If p1 = 2 and p2 is odd, then A2,p2 (n) ≡ B2,p2 (n) (mod 2).
(2) If p1 ∈ P≥3 and p2 ∈ N≥2, p1 � p2, then, for n ≥ 1,

n∑
i=0

Ap1,p2 (i)Cp1,p2 (n − i) ≡ 0 (mod p1).

PROOF. From the general theory, it is easy to see that the generating functions of the
sequences (Bp1,p2 (n))n∈N, (Cp1,p2 (n))n∈N are

Bp1,p2 (q) =
∞∑

n=0

Bp1,p2 (n)qn =

∞∏
n=1

( 1 + qnd

1 + q(p2n)d

)pd
1−1

,

Cp1,p2 (q) =
∞∑

n=0

Cp1,p2 (n)qn =

∞∏
n=1

(1 − q(p2n)d

1 − qnd

)pd
1−1

.

We recall a well-known property of formal power series with integer coefficients:
if f ∈ Z[[q]] and p is a prime number, then f (qpk

) ≡ f (q)pk
(mod p) for each k ∈ N+.

Let p1 be prime. Using the aforementioned property, we note the chain of modulo
p1 equivalences

∞∑
n=0

Ap1,p2 (n)qn =

∞∏
n=1

(1 − q(p1n)d
)(1 − q(p2n)d

)

(1 − qnd )(1 − q(p1 p2n)d )
≡
∞∏

n=1

(1 − qnd
)pd

1 (1 − q(p2n)d
)

(1 − qnd )(1 − q(p2n)d )pd
1

≡
∞∏

n=1

( 1 − qnd

1 − q(p2n)d

)pd
1−1

(mod p1).

If p1 = 2, then
∞∏

n=1

( 1 − qnd

1 − q(p2n)d

)2d−1
≡
∞∏

n=1

( 1 + qnd

1 + q(p2n)d

)2d−1
=

∞∑
n=0

B2,p2 (n)qn

and the first result follows by comparison of coefficients in the extreme expressions.
If p1 ≥ 3, then

∞∏
n=1

( 1 − qnd

1 − q(p2n)d

)pd
1−1
=

∞∏
n=1

(1 − q(p2n)d

1 − qnd

)1−pd
1
=

( ∞∑
n=0

Cp1,p2 (n)
)−1

,
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and so

Ap1,p2 (q)Cp1,p2 (q) ≡ 1 (mod p1).
Comparing coefficients on both sides of this congruence gives the second part of the
theorem. �

REMARK 2.2. If we assume that p1, p2 are both primes, then performing the same
reasoning as in the proof of the theorem above with respect to the modulus p2 instead
of p1 gives an additional congruence

Ap1,p2 (q)Cp2,p1 (q) ≡ 1 (mod p2).

Thus

Ap1,p2 (q) ≡ a
Cp1,p2 (q)

+
b

Cp2,p1 (q)
(mod p1 p2),

where a, b are the unique solutions of the system of congruences

a ≡ 1 (mod p1), a ≡ 0 (mod p2), b ≡ 0 (mod p1), b ≡ 1 (mod p1).

Consequently,∑
i1+i2+i3=n

Ap1,p2 (i1)Cp1,p2 (i2)Cp2,p1 (i3) ≡ aCp2,p1 (n) + bCp1,p2 (n) (mod p1 p2).

REMARK 2.3. The number A2,p2 (n) has another interpretation: if Dp2 (n) denotes the
number of partitions into dth powers of odd integers in which no part appears more
then pd

2 − 1 times, then A2,p2 (n) = Dp2 (n). Indeed, this can be deduced from the general
theorem concerning partition ideals (see [1, Theorem 8.4]) or can be directly proved by
performing simple manipulations of infinite products. We owe this remark to George
Andrews (personal communication, 27 April 2020).

3. Questions and conjectures concerning the sequence (pd(n))n∈N

Let d ∈ N≥2 be fixed. In this section, we state some questions and conjectures
concerning certain aspects of the arithmetic behaviour of functions counting dth power
partitions.

Let us write

Pd(q) =
∞∏

n=1

1
1 − qnd =

∞∑
n=0

pd(n)qn.

Using the standard method of logarithmic differentiation,

q
P′d(q)

Pd(q)
=

∞∑
n=1

ndqnd

1 − qnd =

∞∑
n=1

σ(d)(n)qn,

where

σ(d)(n) =
∑
kd |n

kd,
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with the usual convention that σ(d)(0) = 0. Simple manipulations give the following
recurrence relation satisfied by the sequence (pd(n))n∈N: that is,

npd(n) =
n−1∑
i=0

σ(d)(i)pd(n − i), pd(0) = 1.

This formula can be used to compute pd(n) in terms of pd(i) for i < n. However, even
for relatively small values of n, the computations are slow. It would be interesting to
find a different recurrence formula for pd(n) that allows faster computation for large
values of n.

For d = 2, 3, 4, 5, we compute the coefficients pd(n) for n ≤ 105, using the following
approach. First, we note that

Pd(q) −

105/d�∏

i=1

1
1 − qid

= O(q105+1),

that is, instead of working with the infinite product Pd(q), it is enough to work with a
rational function. If we write

Pd,k(q) =
k∏

i=1

1
1 − qid

=

∞∑
n=0

pd,k(n)qn,

then pd,k(n) = pd(n) for n ≤ kd. Note that, for fixed k, d, the sequence (pd,k(n))n∈N
satisfies a linear recurrence. More precisely, pd,1(n) = 1 and, for k ≥ 2,

pd,k(n) = pd,k−1(n) for n ≤ kd, pd,k(n) = pd,k−1(n) + pd,k(n − kd) for n ≥ kd.

We used this observation to compute pd(n) for d = 2 and n ≤ 105 and pd(n) for
d = 3, 4, 5 and n ≤ 106. To compute p2(n) for n ≤ 105, we take k = 
105/2� = 317.
Similarly, to compute pd(n) for d = 3, 4, 5 for n ≤ 106, we take k = 102, 32, 16,
respectively. All computations were performed on an ordinary laptop with 16 GB of
memory and an i7 type processor.

Based on our data, we formulate several question and conjectures.

CONJECTURE 3.1. Let d ∈ N≥2 and m ∈ N≥2 be given and take r ∈ {0, . . . , m − 1}.
Then there are infinitely many values of n ∈ N such that pd(n) ≡ r (mod m).

The next question concerns the asymptotic behaviour of the number of solutions of
the congruence pd(n) ≡ r (mod m), where m ∈ N≥2 and r ∈ {0, . . . , m − 1}.

QUESTION 3.2. Let d ∈ N≥2 and m ∈ N≥2 be given and take r ∈ {0, . . . , m − 1}. Are the
values of pd(n) mod m equidistributed modulo m? More precisely, is it true that

lim sup
N→+∞

#{n ≤ N : pd(n) ≡ r (mod m)}
N

=
1
m

?

This is a very difficult question. We do not even know any equidistribution
modulo m results for the classical partition function p(n) = p1(n) for any m. In fact,
the expectation is that, for m co-prime to six, the values of p1(n) mod m are not
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TABLE 1. Values of #{n ≤ 105 : p2(n) ≡ r (mod m)} for 0 ≤ r ≤ m − 1 ≤ 9.

m\r 0 1 2 3 4 5 6 7 8 9

2 50299 49702
3 33373 33249 33379
4 25252 24695 25047 25007
5 19940 20125 19971 19955 20010
6 16769 16454 16735 16604 16795 16644
7 14121 14272 14320 14401 14257 14301 14329
8 12679 12288 12496 12371 12573 12407 12551 12636
9 11158 11081 11033 10941 11186 11239 11274 10982 11107
10 10001 10025 10024 9866 10085 9939 10100 9947 10089 9925

TABLE 2. Values of #{n ≤ 106 : p3(n) ≡ r (mod m)} for 0 ≤ r ≤ m − 1 ≤ 9.

m\r 0 1 2 3 4 5 6 7 8 9

2 500013 499988
3 333942 333563 332496
4 250099 249905 249914 250083
5 199907 200126 200490 199879 199599
6 167109 166685 166026 166833 166878 166470
7 142501 142721 142969 143340 142937 142913 142620
8 125203 124636 125023 125198 124896 125269 124891 124885
9 111451 111275 111186 111459 110992 110438 111032 111296 110872
10 100033 100134 100021 99625 99713 99874 99992 100469 100254 99886

equidistributed. However, it is not clear what to expect in our situation because there
are no connections to modular forms and Galois representations as in the case of the
classical partition function. Our computations of the quantities

#{n ≤ md : pd(n) ≡ r (mod m)}

for d = 2, 3, 4, 5 seem to confirm Conjecture 3.1 and the equality stated in Question 3.2
(at least, for m ≤ 10); see Tables 1, 2, 3 and 4).

In the context of Euler’s classical partition function, p(n) = p1(n), there are plenty
of triples a, b, m, where m ∈ N≥5 and a, b ∈ N+, such that p(an + b) ≡ 0 (mod m) for
all n ∈ N. This suggests the following question.

QUESTION 3.3. Let d ∈ N≥2 be fixed. Do there exist m ∈ N≥2, r ∈ {0, . . . , m − 1} and
positive integers a, b such that pd(an + b) ≡ r (mod m) for each n ∈ N?
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TABLE 3. Values of #{n ≤ 106 : p4(n) ≡ r (mod m)} for 0 ≤ r ≤ m − 1 ≤ 9.

m\r 0 1 2 3 4 5 6 7 8 9

2 500517 499484
3 333153 333474 333374
4 250463 249010 250054 250474
5 200555 199837 199524 200091 199994
6 166388 166699 167354 166765 166775 166020
7 143174 142713 143172 142658 142908 142621 142755
8 125224 124544 125595 125373 125239 124465 124459 125101
9 111012 111100 111214 111263 111238 111071 110878 111136 111089
10 100310 99810 99660 99706 100135 100245 100027 99864 100385 99859

TABLE 4. Values of #{n ≤ 106 : p5(n) ≡ r (mod m)} for 0 ≤ r ≤ m − 1 ≤ 9.

m\r 0 1 2 3 4 5 6 7 8 9

2 500386 499615
3 334253 332498 333250
4 249768 249985 250618 249630
5 199971 199526 200089 200380 200035
6 167002 166054 166940 167251 166444 166310
7 143141 142701 142907 143029 142768 143046 142409
8 124187 125010 125168 125302 125581 124975 125450 124328
9 111905 111078 110740 110779 111233 111095 111569 110187 111415
10 100264 99955 100250 100380 100301 99707 99571 99839 100000 99734

In the range of our calculations, we were unable to find a single quadruple (m, r, a, b)
and d ∈ {2, 3, 4, 5} such that pd(an + b) ≡ r (mod m) for n = 0, 1 . . . , 100. In order
to guarantee that 100a + b ≤ 105, we considered the range a ∈ {2, . . . , 999} and b ∈
{0, . . . , a − 1}. This may suggest that even if there are quadruplets (m, r, a, b) such that
pd(an + b) ≡ r (mod m) for all n, they are rare.

A sequence (an)n∈N is convex if 2an ≤ an−1 + an+1 for n ≥ 1. We formulate the
following general conjecture.

CONJECTURE 3.4. Let d ∈ N≥2. Then there is an integer Nd such that, for all n ≥ Nd,

2pd(n) ≤ (pd(n − 1) + pd(n + 1))
(
1 − 1

nd

)
.

In particular, the sequence (pd(n))n≥Nd is convex.
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This conjecture can be seen as a natural generalisation of log-concavity of the
classical partition function p(n) = p1(n). We checked that

2p2(n) ≤ (p2(n − 1) + p2(n + 1))(1 − 1/n2) for n ∈ {379, . . . , 105 − 1},
2p3(n) ≤ (p3(n − 1) + p3(n + 1))(1 − 1/n3) for n ∈ {6769, . . . , 106 − 1},

2p4(n) ≤ (p4(n − 1) + p4(n + 1))(1 − 1/n4) for n ∈ {239603, . . . , 106 − 1},

that is, we believe that N2 = 379, N3 = 6769, N4 = 239603. It seems that the number
N5 (if it exists) is ≥ 106.

A sequence (an)n∈N of positive reals is log-concave if a2
n ≥ an−1an+1 for n ≥ 1,

that is, the sequence (− log an)n∈N is convex. We formulate the following general
conjecture.

CONJECTURE 3.5. Let d ∈ N≥2. Then there is an integer Md such that, for all n ≥ Md,

p2
d(n) ≥ pd(n − 1)pd(n + 1)

(
1 +

1
nd

)
.

In particular, the sequence (pd(n))n≥Md is log-concave.

We checked that

p2
2(n) ≥ p2(n − 1)p2(n + 1)(1 + 1/n2) for n ∈ {1086, . . . , 105 − 1},

p2
3(n) ≥ p3(n − 1)p3(n + 1)(1 + 1/n3) for n ∈ {15656, . . . , 106 − 1},

p2
4(n) ≥ p4(n − 1)p4(n + 1)(1 + 1/n4) for n ∈ {637855, . . . , 106 − 1},

that is, we believe that M2 = 1042, M3 = 15656, M4 = 637855. It seems that the
number M5 (if it exists) is ≥ 106.

It is very likely that this conjecture can be resolved using the classical asymptotic
formula for pd(n) of Wright (see [10]) or its current improvements. An analogous result
for Euler’s partition function p(n), that is, the case d = 1 of the conjecture, was proved
by DeSalvo and Pak (see [4]) and recently generalised by Hou and Zhang (see [7]).
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