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DIFFERENTIAL EQUATIONS IN SPACES OF
HILBERT SPACE VALUED DISTRIBUTIONS

MAXIM ALSHANSKY

A Gaussian measure is introduced on the space of Hilbert space valued tempered
distributions. It is used to define a Hilbert space valued Q-Wiener process and a
white noise process with a nuclear covariance operator Q. The proposed construction
is used for solving operator-differential equations with additive noise with the operator
coeflicient generating an n-times integrated exponentially bounded semigroup.

1. INTRODUCTION

Let X and Y be separable Hilbert spaces. We denote by D'(X) the space of X-
valued distributions defined on D, the space of infinitely differentiable functions with
compact supports. By I, (X') we denote the subspace of distributions from D’(X) with
supports bounded from below. :

Any linear time-invariant dynamic system is fully determined by its state equation
which can be written in the form

1) PxU=F,

where P € D', (L(X;Y)), U € D'.(X), F € D', (Y) (see [1]). The system is said to be
invertible if there exists G € D/, (L(Y; X )), the convolution inverse for P, so that the
equalities P+*G = 0® 1y and G* P = § ® Ix hold. In this case formula U = G * F yields
the unique solution of (1) (see details in [1]).

One can model stochastic influence of the environment on the system by introducing
an appropriately defined ‘noise’ term W into the right-hand side of (1).

(2) PxU=F+W,.

A solution of the perturbed equation formally can be written in the form U = @ (F+W).

In this note we construct a Gaussian measure on the space of H-valued tempered
distributions, where H is a separable Hilbert space, using the approach of [3]. We use
the approach of [2] to define Q-Wiener process and Q-white noise process as generalised
processes with values in H (where @ : H — H is a nuclear operator). This makes
convolution @ * BW well-defined for any linear bounded operator B : H — Y in the
same sense as it is defined for Hilbert space valued distributions.
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2. PRELIMINARIES

Consider a Gelfand triple
SCScys,

where Sy = L%(R), S is the Schwartz space of rapidly decreasing test functions and S’ is
the space of corresponding tempered distributions.

Denote by (-,-)o and |- |¢ the inner product and the corresponding norm in Sp.
Consider the linear operator A := —(d?/dz*)+z2+1. Forallp € Z, £ € S let |£|, = |AP¢|,.
Let (-, ), be the corresponding inner product and S, be the completion of S with respect
to | - |p. The space S_, is the dual of S, for each p > 0. Then we have the following
inclusions:

S=()8%C-CSHucCSC--CcHc...5,c8 puc--clS=5.
pEN . peEN
We denote by (w,£) the dual pairing of w € § and € € S. For w € Sy, we have
(w,€) = (w,€)e. The space S is a countably Hilbert nuclear space endowed with the
projective limit topology. Its dual S’ is the inductive limit of {S_,, p > 1}.
Consider Hermite polynomials

2

(3
S , n=0,1,2,...

Hn(z) = (_1)"‘6 dz‘"
and the corresponding Hermite functions

1 —(z?
én(z) = WH,;(Z‘)C @/ n=0,12,....

The set {£,}3%, is an orthonormal basis for Sy and we have

Abn=(2n+2)&, n=012,....

For any £ € S, p € Z we have

lp = (imnn)zv@,gn)g) "

n=0

Let H be a separable Hilbert space with scalar product (-, -) g and the corresponding
norm || - ||u. Let {e,}32, be an orthonormal basis in H.

Consider tensor products of Hilbert spaces S, ® H for p € Z. Denote by [-,-], the
inner product in S, ® H and by || - ||, the corresponding norm. Since {£; ®e;}:2 ;- is an
orthonormal basis in Sp ® H, any 7 € S, ® H admits the following unique representation

o0 o0 o0
n= Y m&®e)=) n®e= &®h,
i=0;j=1 j=1 =0
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00 o]
where 7;; = [0, & ® ejlo, 15 = ;)nijfi € Sp hi = _Zlnijej € H.
1= 1=

We have
oo <] o0
Inlz =D mf@i+2) =" In;ls = (2 +2)*||hill}s-
i=0;j=1 j=1 1=0

For the inner product in S, ® H we have

oo o0 oo

.6l = D mfs(2i+2)% = (0,02 = (2 +2)%"(hi, 9:)nr -

1=0;5=1 j=1 =0

Consider tensor products S ® H and S’ ® H. We have

S@H:ﬂs,,®Hc---cSp+1®HcSp®Hc---cSo®Hc
PEN

C..S,®HCS , ®HC---C|JS,®H=S5®H.
pEN

Clearly, S ® H is a countably Hilbert space endowed with the projective limit topology,
S’ ® H is its dual and is the inductive limit of {S_, ® H, p > 1}. Note that S® H is
not a nuclear space.

Denote by [-,-] the dual pairing of elements from S’ ® H and S ® H. For any
w€S ®H and n € §® H with

[ o] o0 o0
W= Z w.’j(&i ®€j) = ij® € = Z& ®g:, wij € ]R,wj € S',gi cH
i=0;5=1 j=1 =0
and
o] o0 .
n= Y mn;(&®e) Zn,cae, > &®h, nyeRn;€S,hieH,
1=0;7=1 i=0
we have o o -
wonl= Y wimg =D (wim) = (g0 hi)u
i=0,j=1 j=1 i=0

In particular, if w € Sy ® H, then [w, n] = [w, n)o.
Now we numerate the elements of {£; ® ;}2 ;-;- Define ; = ; ® e;, where

k=k(G,)) =142+ -+ ({+j-D+j= 5

In this case we have
k k)-1
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and
o i) = MOWW 41

where

N(k):ma.x{neN

i=1

3. ()-WHITE NOISE MEASURE ON S'® H
Let @ be a linear operator in H, defined by

o0
Qr = Za?(:r, ej)uej, T€H

7j=1

o v
with 012- < oo. It is positive, self-adjoint and nuclear.
j=1
Consider a functional on S ® H defined by

Coln) =exp{ - 5[(I®Qm.1),}, nes@H.

Denote by B the Borel o-field in S’ ® H.
THEOREM 1. There exists a probability measure mg on (S’ ® H,B) such that

Caln) = [ expliwl}imo(w), neS@H.

PROOF: Denote by P.,, ., the projector from S’ ® H onto Sp{ey,...,en}:

(=] n
Poppon 1 W=D WiGk)j0EK > D Wilk),j(k)Ek -
k=1 k=1

Let pe,,..en : Pey,..en(S' ® H) — R” be the natural isomorphism. Denote by B, ., the
collection of subsets in $'® H defined by B.,,..., = P;} . ol . (B(R")), where B(R")

ElyenEn

is the Borel o-field in R™. It consists of all sets of the form

)
A= {w = Zwi(k),j(k)ak €ES®H | (wi(l),j(l), .. ,w,-(,,),j(n)) eB }, Be B(Rn) .

k=1

Define
Csl,..,,e.. (E) = CQ(2161 + -+ ann), zZ= (Zl, cee zn) eR".

For any n € N, C,, . .. is a continuous positive-definite functional on R™ with C,,, ., (0)
= 1. Therefore by Bochner’s theorem it is a characteristic functional of a probability
measure m,, ¢, on the measurable space (K", B(R")), so that

Ce,..e. () =/ exp{i(i,’i)}dmeh,,_,sn(f), zeR".
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Let m,,,. ., be a probability measure on (S’ ® H,B,, . .,.) defined by
Me,, en(A) = Mey, en(B), A€ By, ey A=P1. o7} . (B), BeBR").

It is not difficult to see that {m,,, ..}, is a consistent family of measures. Therefore
by Kolmogorov’s theorem there exists a probability space (2, F, P) and a sequence of
random variables {X,}%2, such that

Mey.en = P(X,) with Xp=(Xy,...,Xa), n=1,2,...,
and we have
Ce,..en(Z) = / exp{i(Z, z) }dm.,,.....(T)
Rn

= / exp{i[w, 2614+ + z,.e,,]}dmel,,,_,sn (w)
S'®H

(3) = / expi(X,,Z)dP.
a a
LEMMA 1. For any ¢ > 0 there exists ko € N such that for any p € N
/ exp{—l Z(2z(k) + 2)_2”X,f} dP>1-c¢.
a2 2 k=ko

PRrOOF: For any m,! € N with m < | we have

/n exp{-—% Xl:(%(k) + 2)‘2”X,f}dP

k=m
{
o (2i(k) +2 1 :
/ /m - eXP{ Zxkzk}n" ) ((,(_,3)/2) i exp{—52(2z(k)+2)zpzf}dEdP
- k=m k=m .
l
2i(k) + 2)° 1 :
= Hk(2,;.r()(u(m)/2)) /R Comnct(Zms - - z;)exp{—iZ(2z(k)+2)2pzz}d2
- k=m
S S Y 2 Vool 13 )
T @O g\ ifm) 2 @) +2p) TP\ T2 &
Therefore
1
1- /nexp{—% Z(2i(k) +2)‘2”X,f}dP

k=m
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1 z,,.' 2 1 : 2
~ o) @mm /m - (1 Ceme @i(m) +27" " @) + 2)")) e""{"i gf} =
1 k)zk 1¢
1— J( _ 1 2
= En@mm /,R, - ( e"p{ Z ~ (2i(k) + 2) }) e"p{ 2 :_{1 z"} az
! i
1 J(k)zk 1 2
S o@D /,R, > @i(k) + 2)% "p{ PIEILE

k=m k=m
3

[

22': T _ )%
= @i(k)+ 2% = (2(k) +2)7

Since
[o o]

(k)zk [+,°] [>.]

: j

Z(2z(k)+2 JZI" Zl 2z+2)2

as a product of absolutely convergent series, we let ! — oo and apply the Lebesgue
dominated convergence theorem. We have

- | ex _lw i -2p x2 - J(k)
1 /,, p{ 2’§n(2(k)+2) Xk} ;2z(k)+2)2

Hence the assertion follows.
END OF THE PROOF OF THEOREM 1. Given £ > 0 we use Lemma 1 to choose m € N
so that for any p € N

oo
P{Z(%(k) +2) X2 < oo} = / 1dP
(S5 (2i(k)+2) -2 X <00}

k=1
1 o0
2/ exp{—E Z(2i(k)+2)’2”X,f}dP> l-¢.

{Z 2 m(2i(k)+2)-2P X 2 <00} k—m

Hence )
oo

P{ > (2i(k) +2) P X2 < oo} =1.
k=1
Define

X(w) =) Xe(wer, weq.

The mapping X : @ — S’ ® H is measurable. Let mg = P o X~!. It is a probability
Borel measure on §' @ H.
By (3) we have

Co(Pey.cvm) = /n exp{ilPsy,..c. X,n]} dP.
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Since P, ..,n—nasn — ocoin S® H and Cq is continuous, by Lebesgue’s dominated
convergence theorem we have

/exp{i[Pel,_,,,EnX, n}dP — / exp{i[X,n]}dP, n— 0.
Q o
Hence we obtain

Col(n) = /nexp{i[X, n}dP = /s'@;H exp{ilw,n]} dm(w). 0

REMARK. Note that mg(S_,®H) = 1forany p > 1. Hence, mg is supported by S_,®H.

4. Q-WHITE NOISE MEASURE ON S'(H)

Consider the space S'(H) of H-valued distributions. It consists of all linear contin-
uous operators from S to H. We write w(§) for w € S'(H) evaluated against £ € S. For
any w = Y w; ®e; € S'® H we define Jw € S'(H) by

Jj=1

(4) Ju(€) =Y (wj,€)e;, E€S.

j=1
Since the mapping J : ' ® H — S'(H) is an isomorphism, we identify w € &’ ® H with
Jw € §'(H) and use the same notation. So we write

o0

w(€) = (gw ® ej) €) =D (W&

i=1
Denote by B the o-field in S§'(H) defined by B = J(®B). Obviously B coincides
with the Borel o-field in S’(H). For any A € B let ug(A) = mg(B) where B satisfies
A = J(B). ’

Let w € S'(H),6 € S,h =3 hje; € H. Then we have
i=1

(&) h),, = ((iw ®)©.h) = 2<wj,a>h,~ - i:;w Al

Here &, = ) hjé ® e; € S ® H since for any p € N we have
=1

S lhiglp = 1€ D" h2 < oo.
i=1

j=1
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Hence the following equality holds true

/S’(H) exp{i(w(f), h)H} dpgw) = /S’@H exp{ilw, &) }dmeo(w)
= exp{—%[(f ® Q)ﬁh,fh]o} = exp { - % Z:gﬂhjﬂg}

%) = exp{~31EB(@h, W)n }.

Consider the probability space (S'(H),B,pq). Define a generalised H-valued
stochastic process {W(§,w), £ € S} by

W(§,w) =w(f).

It follows from the equality (5) that for any h € H the R-valued generalised stochastic
process {(W(£,w),h)n, £ € S}, which can be regarded as a projection of W onto Sp{h},
is a smoothed white noise with variance (Qh,h)y. On the other hand, for any £ € S,
W(&, ) is an H-valued Gaussian random variable with mean 0 and covariance operator
I€]2Q. Therefore we refer to (S'(H), B, ug) as the H-valued Q-white noise space. The
generalised stochastic process W(€,w) is referred to as the H-valued Q-white noise.

Consider the space L2(S'(H); H) of square (Bochner) integrable H-valued random
variables defined on S'(H). For any £ € S random variable W(¢, ) : S'(H) — H belongs
to L?(S'(H); H). We have

2
(6) ||W(€, .)”LZ(S’(H);H) =Tr Q : ”6”.25‘0 .
Define stochastic process {W(t) | t > 0} on (S'(H), B, nq) by
(7) W(t) (w) = w(X[O;t]) = r}i)ngow(on) 3

where limit is taken in L?(S'(H); H) and {6,}32, C S'is a sequence convergent to X[0:t]
in L2(R). Existence of the limit in (7) and its independence of the choice of {#,}32, C S
follow from (6). It is not difficult to check that W (¢) is a Q-Wiener process. Its trajectories
are continuous H-valued functions.

For any £ € S we have

- [wgwi = - [weetd=o( - [xoe )
R

R R

- w( - 7§’(t) dt> = w(f).

Thus, W can be regarded as a generalised derivative of W(t) (in S'(H) sense).
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Let Wy(t) be defined by

W(t), t=0,

W°(t):{0 t<0.

Its trajectories are continuous with probability 1. Define generalised stochastic process
Wy by Wy(é,w) = Wy(€), where derivative is understood in the generalised sense:

Wo(§,w) = /Wo dt = —/OOW(t)ﬁ'(t) dt
0

It is natural to call Wy the @)-white noise with support in [0, c0), or the @-white noise
starting at ¢ = 0.

5. EQUATIONS WITH ADDITIVE NOISE

Let X,Y and H be separable Hilbert spaces. Consider the equation
(8) P+«U = F + BW,,

where P € D' (L(X;Y)), U € D' (X), F € D\, (Y), B € L(H;Y) and W, is the H-
valued @-white noise with support in [0; 00), on the probability space (S'(H), B, ng). Let
P have a convolution inverse G € D', (L(Y; X)). Then the generalised stochastic process
{U(¢,w), € € S}, defined by

(9) U(§,w) = (G x F)(§) + (G * BW,)(£,w),

is the unique solution of (8). Convolution G * BW, is well defined since BW;(+, w) has
support bounded from below for any w € S'(H) (see [1]).

Now we consider a particular example of P. Let A be a closed linear operator acting
in Y and X = [D(A)] be the domain of A, endowed with the graph-norm. Then

P=§®@I-6®AcD, (L(X;Y)).
Define F' € D/ (Y) by

(10) F({€) :=¢(0) u°+/§(t)f(t) dt, £€D, felR)Y),ueY.
0

Then the Cauchy problem
(11) u'(t) = Au(t) + f(t), t>0, u(0)=1u°
can be written in the form

PxU=F
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(see [1, 4]). If the right-hand side of (11) is perturbed by a white noise term, then it is
natural to write it in form (8) in the space of distributions S'(H).

Let A in (10) be the generator of a Cy-semigroup {S(t), ¢t > 0}. Then the convo-
lution inverse to P is

G(€) = / £(t)S(t) dt

and formula (9) becomes

t

U(E,w) = /f(tS(t)udt+//St—s s)ds £(t) dt

0
t

- [ [ 5~ 9Butxea) ds e o
0 0

If A is the generator of an exponentially bounded n-times integrated semigroup
{V(t), t = 0}, then the convolution inverse to P has the form

(=1)" / M)V () dt,

and formula (9) becomes

U({,w)z(—l)"/f(")(t) By dt + (— //Vt—s f(s)ds £M(t) dt
0 0 0

oo t
—1)"+1//V (t ~ 5)Bw(x(0;s) ds €V (t) dt .
0 0
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