
12

Simulation of Geothermal Systems Using MRST

marine collignon, øystein s . klemetsdal, and olav møyner

Abstract

Geothermal energy is renewable, always on, and available anywhere (at least in
principle). Hot underground aquifers are therefore appealing as a source of green
energy but also for large-scale energy storage, which is important to buffer the
seasonal energetic imbalance associated with the use of renewable energies. The
viability of a geothermal exploitation project is determined by a number of factors
such as energy efficiency, storage capacity, economical aspects (e.g., drilling and
operational costs), and compliance with legal regulations. Such assessments require
a detailed characterization of the geology and physical properties of both the aquifer
and aquiclude, groundwater chemistry, and flow properties. Proper understanding
of these processes depends on accurate and flexible numerical simulation tools. In
this chapter, we present geothermal, a module for geothermal simulations of low-
to moderate-enthalpy geothermal systems. The module implements the equations
for conservation of energy and conservation of mass for water and salt (NaCl),
along with pressure-, temperature- and NaCl-dependent viscosity and density and
other functionalities specific to geothermal problems. We demonstrate the accuracy
of the module by benchmarking it with TOUGH2, a widely used groundwater
flow simulator. We also show how geothermal can be used to simulate different
geothermal applications.

12.1 Introduction

A rapid and large-scale transition from a mostly fossil fuel–based to a renewable
energy supply is critical to mitigate the effects of climate change while meet-
ing the world’s increasing energy demand [6, 9, 14, 28]. Conventional sources of

491

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

492 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

renewable energy (e.g., wind, solar, and hydraulic) typically have a strong temporal
and spatial variability, which makes them challenging to implement in a reliable,
large-scale setting. Moreover, these systems often require large and invasive infras-
tructures. In contrast, geothermal energy constitutes a resource that shows little
variability in time, is available anywhere on the planet, and requires limited infras-
tructure [14, 28]. Geothermal energy commonly refers to the production of new
energy but also includes storage strategies in the subsurface [1, 3]. Among these,
aquifer thermal energy storage (ATES) is a cost-effective and large-scale storage
facility system in which the excess energy from multiple temporal resources is
stored in an aquifer for later use in periods of demand [2, 10].

The viability of a geothermal energy system, either for production or for stor-
age, depends on its economic gain (i.e., energy efficiency or storage capacity ver-
sus operational and drilling costs) and compliance with legal regulations [14, 28].
Evaluating the viability of a geothermal system requires a solid knowledge of
the groundwater flow characteristics and reservoir properties [2], which can only
be achieved through numerical simulations [18, 21, 28]. There are a number of
software packages for simulation of geothermal systems; e.g., COMSOL, ANSYS
FLUENT, UTMECH, SEAWAT (MODFLOW family), FEFLOW, and TOUGH2
[8, 11, 16–18, 25]. They all provide a high degree of complexity in terms of phys-
ical properties (e.g., equations of state (EoSs), compositional behavior, chemical
reactions, etc.) but tend to lack support for complex grid geometries and realistic
well modeling (including injection/production strategies and operational limits), as
well as efficient linear and nonlinear solvers (e.g., HYDROTHERM [16]). On the
other hand, software developed for the oil and gas industry usually offers flexible
and complex gridding capabilities, well modeling, and efficient solvers but tends to
limit the physical effects to those needed for simulation of hydrocarbon recovery.
This is particularly true for thermal effects, because most petroleum reservoirs are
almost thermally inert.

In this chapter, we present geothermal, a module for geothermal simulations in
the MATLAB Reservoir Simulation Toolbox (MRST) based on the general, object-
oriented, simulator framework. This framework offers an industry-standard finite-
volume discretization with single-point upstream evaluation and two-point flux
approximation and gives access to powerful solvers widely used by the reservoir
simulation community. Moreover, one can easily integrate the geothermal mod-
ule with well-established functionality from petroleum applications that are already
part of MRST and apply the resulting simulators to realistic geological models
and complex fluid physics. We demonstrate the applicability of geothermal on a
number of cases, ranging from simple conceptual and validity tests to a complex
high-temperature ATES system.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 493

12.2 Governing Equations for Geothermal Applications

The governing equations for thermal field-scale flow in porous media describe two
fundamental physical properties: conservation of mass and conservation of energy.

Mass conservation: Conservation of mass can be written as

∂tMf + ∇ · �Ff = Qf , where Mf = φρf, �Ff = ρf �v, Qf = qf ρf .
(12.1)

Here, Mf , �Ff , and Qf denote fluid mass, mass flux, and sources/sinks, respec-
tively. In particular, φ is the rock porosity, ρf is the fluid density, and qf represents
volumetric source and sink terms (e.g., wells). Darcy’s law gives the velocity �v,

�v = − K
μf

(∇p − ρf g∇z), (12.2)

where K is the permeability tensor, μf is fluid viscosity, z is depth, and g denotes
gravity acceleration.

Energy conservation: The equation for conservation of energy reads

∂t

(
Mf uf +Mrur

)︸ ︷︷ ︸
accumulation

+∇ · (�Ff hf)︸ ︷︷ ︸
advection

+∇ · (�Hf + �Hr)︸ ︷︷ ︸
conduction

= Qf hf︸ ︷︷ ︸
source

. (12.3)

Equations (12.1) and (12.2) are well described in other work on MRST like the
textbook by Lie [19]. The equation for conservation of energy is also described
briefly in [19, section 7.5] but may not be familiar to many readers and therefore
merits some discussion. Equation (12.3) states that the rate of change of the thermal
energy in a given volume, plus the energy transported in/out of the volume due
to fluid flow, plus energy diffusion due to temperature differences should equal
the energy injected into or extracted from the same volume. Because this is a
bookkeeping statement about the change in thermal energy (SI unit Joule [J]) per
time (SI unit second [s]), the expression is given in units of Joules per second, or
watts (W).

The first term in the temporal derivative of (12.3) represents accumulation of
energy in the pores of the rock, which we assume are completely occupied by the
fluid. The thermal energy in a given volume of pore space is then equal to the mass
Mf of the fluid occupying the pore space, multiplied by the energy density uf

(per unit of fluid mass), commonly referred to as internal energy. This is typically
modeled as uf = Cf T , where Cf is the specific heat capacity of the fluid and T

denotes temperature. Simple dimensional analysis tells us that Cf must be given in

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

494 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

units of Joule per kilogram-Kelvin. Likewise, the second term models accumulation
of energy in the solid parts of the rock. The solid rock mass equals

Mr = (1 − φ)ρr,

where ρr is the solid rock density. As for the fluid part, ur denotes the energy
density per unit mass of rock.

The second term in (12.3) accounts for energy transport due to advection. Here,
hf = uf +p/ρf denotes the enthalpy density per mass. Moreover, heat conduction
is modeled by Fourier’s law,

�Hr = −λr∇T and �Hf = −λf∇T , (12.4)

where λr and λf denote the thermal conductivity of the fluid and rock, respectively.
Again, we can use dimensional analysis to find that the thermal conductivity λ has
dimension watts per meter-Kelvin. Finally, Qf hf models energy sources and sinks
due to injection/extraction of fluids.

Consider a sample of solid rock (φ = 0) with uniform and constant density and
conductivity. If we insert Fourier’s law into (12.3), we get the familiar parabolic
heat equation ∂tT = α�T , where α = λr

ρrCr
is the thermal diffusivity.

Notice the similarity between Fourier’s law (12.4) and Darcy’s law (12.2) and
the analogy between thermal conductivity and permeability. Whereas temperature
gradient is the only driving force for the heat flow in Fourier’s law, the fluid flow in
Darcy’s law is driven by both the pressure gradient and gravity effects. The module
currently neglects the pressure–volume work done by the heat on the fluid. This
may, however, be significant in vapor-dominated systems and will be accounted for
in future work.

Conservation of salts: Aquifer water is almost always rich with salts that dis-
solve into the water to form a brine. Conservation of a salt component c can be
written as

∂t (Mf Xc) +∇ · (�Ff Xc) +∇ · �Dc = Qf Xc, where �Dc = −ρf φτDc∇Xc.
(12.5)

Here, �Dc models diffusion of component c due to concentration differences, where
Xc denotes the component mass fraction, τ is the tortuosity of the medium, and
Dc is the component molecular diffusivity. For simplicity, we assume that the
concentration of any salt component is always less than the saturation concentration

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 495

for brine so that we can safely neglect salt precipitation. The component number c

runs from 1 to the number of components m. We also introduce a water component,
which gives us the closure relation

∑
c Xc = 1.

Sodium chloride (NaCl) is the most commonly occurring dissolved salt, and its
concentration may have a significant effect on the brine thermodynamic properties
such as density, viscosity, enthalpy, and internal energy. In this work, we consider a
two-component water–NaCl model to account for salt effects. Fluid density ρf and
viscosity μf can be related to pressure, temperature, and NaCl mass fraction by a
mathematical formulation, itself derived from an EoS. A large body of research has
been devoted to developing reliable EOSs based on experimental data for both pure
water [15, 29, 30] and NaCl–H2O systems (e.g., [12, 13, 20, 22–24, 26]). Most of
these formulations are accurate over a given pressure, temperature, or salinity range
and may therefore be limited to specific applications. Here, we consider low- to
moderate-enthalpy geothermal systems with a liquid brine and no phase transition.
We use the formulations by Spivey et al. [27] for both density and viscosity of a
brine. These formulations are valid for temperatures from 0◦C to 275◦C, pressures
up to 200 MPa, and salinity below the solubility limit, which is usually sufficient
to investigate the first 5 km of most sedimentary basins. Note that the module in
principle supports any number of salt components, but this requires the user to
provide a suitable EoS. In addition to density and viscosity, specific heat capacities
Cf and Cr and thermal conductivities λf and λr will generally depend on pressure,
temperature, and NaCl mass fraction. Our implementation supports such effects,
but we omit the details here.

Discrete equations: As well described in the MRST textbook [19], the standard
discretization approach in reservoir simulation for (12.1)–(12.2) is to use implicit
backward Euler discretization in time. Applying the same method to (12.3) gives
the following equation, written in residual form:

Rn+1 = 1

�tn

(
[Mf uf +Mrur]n+1 − [Mf uf +Mrur]n

)
+ ∇ · [�Ff hf]n+1 +∇ · [�Hf + �Hr]n+1 − [Qf hf]n+1 = 0. (12.6)

Here, superscript n refers to time tn, and �tn = tn+1 − tn denotes the timestep.
To obtain a fully discrete formulation of the equations, we use a finite-volume
discretization with single-point upwind weighting, in which both the mass flux
(12.2) and the heat flux (12.4) are discretized with a two-point flux approximation.
The result is a robust discretization that is stable over a wide range of timesteps.
Equation (12.5) for conservation of NaCl mass is discretized in an equivalent man-
ner, with a two-point discretization of the second-order diffusion term.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

496 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

12.3 The Geothermal Module

The geothermal module is built using the object-oriented, automatic differen-
tiation (AD-OO) simulator framework in MRST, which is discussed in detail in
chapters 11 and 12 of the MRST textbook [19]. In its basic form, the AD-OO
framework offers a general setup for fully implicit simulators, and if we for a
moment disregard wells, source terms, and boundary conditions other than no flow,
all you have to do to make a new simulator is to create a simulator class that defines
the necessary physical variables and implements the governing equations.

The framework has many existing simulator classes we can use as a template
for implementing the flow equations. Using the discrete differentiation operators
offered by the framework, we can write the fully discrete conservation equations
for energy in a form very similar to (12.6):

eq = ((Mf.*uf + Mr.*ur) - (Mf0.*uf0 + Mr0.*ur0))/dt ...
+ op.Div(Ff.*hf) + op.Div(Hf + Hr) - Qf.*hf

To compute the accumulation, flux, and source terms, we use so-called state
functions, which are a recent addition to MRST that modularizes the implemen-
tation of physical models and introduces a compute-cache mechanism that avoids
redundant function evaluations; see Chapter 5 for details. More about this in
Subsection 12.3.2.

Evaluating the fully discrete conservation equations gives a system of nonlin-
ear equations, which by default is solved using Newton’s method in the AD-OO
framework. This involves repeated computation of the Jacobian of the residual
equations. In MRST, this is done by means of automatic differentiation, which
automatically computes exact numerical values for all derivatives with respect to
a prescribed set of variables when evaluating the discrete equations. This means
that you entirely avoid the cumbersome and error-prone process of analytically
deriving and implementing Jacobians of complex functional expressions. You can
find more details on automatic differentiation in sections 4.4 and 7.2 of the MRST
textbook [19]. The module is also compatible with the faster backends for automatic
differentiation described in Chapter 6.

12.3.1 A Simple Worked Example

Before going into more details about the actual implementation, we present key
components of the geothermal module by means of an example. The setup con-
sists of a 2D vertical 100×50 m2 domain, into which we inject warm water through

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 497

one side. This yields a propagating thermal front that progressively tilts due to
temperature-induced density differences. You can find the example source code in
the geothermalExample2D script of the module.

First, we load the geothermal module, along with the modules it depends on:

mrstModule add geothermal ad-core ad-props ad-blackoil compositional

and then use a uniform Cartesian grid to discretize the domain:

physdim = [100 50]; % Domain size in x, y directions
celldim = [50 50]; % Number of cells in x, y directions
G = computeGeometry(cartGrid(celldim, physdim)); % Cartesian grid

Fluid model: The single-phase fluid model is constructed in two steps by first
using a standard routine to initialize a single-phase fluid object and then adding
thermal properties (heat capacity and thermal conductivity), as well as an EoS [27]
that overwrites the default (constant) pressure–volume–temperature (PVT)
properties:

fluid = initSimpleADIFluid('phases', 'W', 'mu', 1, 'rho', 1); % Fluid structure
fluid = addThermalFluidProps(fluid , ... % Original fluid structure

'Cp' , 4.2e3, ... % Specific heat capacity
'lambdaF', 0.6 , ... % Thermal conductivity
'useEOS' , true); % Use equation of state

Figure 12.1 shows how density and viscosity depend on pressure and temperature
in this EoS model. Alternatively, you can use a simpler expression of the form

ρf = ρS
f exp

(
cp[p − pS] + cT [T − T S] + cXXc

)
, (12.7)

where cp, cT , and cX are the factors for compressibility, thermal expansion, and
salinity, whereas ρS

W , pS , and T S are the density, pressure, and temperature at
surface (or any other reference) conditions. Thermal expansion and salinity factor
are provided to the fluid structure using the keywords 'cT' and 'cX' and the
reference temperature by 'TRef'. Reference density, pressure, and compressibil-
ity cp must be provided when calling initSimpleADIFluid (see the function
documentation). A final option is to apply your own user-defined density/viscosity
functions to, e.g., interpolate tabulated data, by introducing appropriate functions as
function handles in the fluid structure; e.g., fluid.rhoW = @(p,T)rhoW(p,T).
Note that this is also true for the specific heat capacity, 'Cp'.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

498 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

Figure 12.1 Density (left) and viscosity (right) as functions of pressure and
temperature from the standard EoS [27] in the geothermal module. Standard
operational conditions are delimited by black lines.

Rock properties: We follow the same approach as for the fluid properties by first
imposing homogeneous permeability and porosity and then subsequently adding
thermal properties to the rock object:

rock = makeRock(G, 1e-14, 0.1); % Rock structure
rock = addThermalRockProps(rock , ... % Original rock structure

'CpR' , 1000, ... % Specific heat capacity
'lambdaR', 2 , ... % Thermal conductivity
'rhoR' , 2700), % Rock density

The rock properties can be given to the function either as a scalar variable, as an
array with one entry per grid cell, or using function handles.

Conductivities: The conductivities λr and λf are assumed to depend on pressure
and temperature and are given as function handles:

fluid.lambdaF = @(p,T) lambdaF(p,T); % Fluid thermal conductivity
rock.lambdaR = @(p,T) lambdaR(p,T); % Rock thermal conductivity

At each nonlinear iteration, the class DynamicTransmissibility computes heat
transmissibilities for the fluid and rock using a two-point expression. This class
can also be used to introduce pressure- and temperature-dependent permeability
but currently only supports isotropic tensors. If the user provides a constant to
'lambdaF' or 'lambdaR', the conductivities are treated as constant.

Simulation model and initial state: We now have all of the parts necessary to
construct a simulator. In the AD-OO framework, this is done by instantiating a
model class. The model class in geothermal is called GeothermalModel and by
default implements single-component flow modeled by (12.1) and (12.3):

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 499

gravity reset on, gravity([0 -9.81]); % Gravity along -y
model = GeothermalModel(G, rock, fluid); % Single-phase geothermal model

We also need to set up the initial state, with constant pressure and temperature.
This is done by first calling a standard initialization routine and then expanding the
resulting state object with an extra field T for temperature:

state0 = initResSol(G, 100*barsa, 1); % Pressure and saturation
state0.T = ones(G.cells.num,1).*(273.15+10); % Temperature

Drive mechanisms: To drive flow within a model, we must also prescribe forcing
terms in the form of wells, boundary conditions, or source terms. In this example,
we model inflow of warm water at the left boundary by imposing fixed pressure
and temperature boundary conditions with higher values than those in the reservoir.
Outflow at the right boundary is modeled by imposing fixed pressure and tempera-
ture boundary conditions but with values equal to the initial reservoir conditions:

bc = pside([], G, 'left' , pInj, 'sat', 1); nf = numel(bc.face); % Injection
bc = pside(bc, G, 'right', pRes, 'sat', 1); % Production
Tbc = repmat(Tres, numel(bc.face), 1); Tbc(1:nf) = Tinj; % Temperature
bc = addThermalBCProps(bc, 'T', Tbc);

Fixed temperature can be imposed at a boundary closed to flow by first imposing a
flux boundary condition with zero value and then prescribing the temperature. For
example, a heat flux can be imposed at the base of a model to represent conductive
heat from a far-field magmatic source without any flow across that boundary. It
is also possible to prescribe heat flux by using the keyword argument 'Hflux'
instead of 'T' in addThermalBCProps. Each boundary face must have either a
prescribed temperature or a prescribed heat flux.

Running the simulation: The only remaining part of the setup is to prescribe a
series of timesteps with associated controls on drive mechanisms, which together
are referred to as a schedule [19, section 11]. Here, we define timesteps that
gradually increase up to 30 days, defining a total simulation time of one year:

timesteps = rampupTimesteps(1*year, 30*day, 8); % Define time steps
schedule = simpleSchedule(timesteps, 'bc', bc); % Simulation schedule

Finally, we simulate with the standard simulator function from AD-OO:

[~, states] = simulateScheduleAD(state0, model, schedule);

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

500 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

t = 3 months t = 6 months t = 12 months

10 20 30 40 50

Temperature (◦C)

Figure 12.2 Evolution of the reservoir temperature under constant injection of
warm water from the left boundary. The right boundary has a fixed temperature
and pressure equivalent to the initial reservoir conditions, allowing a flow out of
the reservoir. The top and bottom boundaries are thermally insulated, with no-
flow conditions. Notice how the thermal front progressively tilts while propagating
toward the right side of the reservoir.

You can now use the standard plotting functions in MRST to inspect the results;
e.g., the graphical user interface plotToolbar for interactive plotting.
Figure 12.2 shows the evolution of the temperature distribution in the reservoir
during injection. Notice how the propagating warm water front tilts due to
temperature-induced density differences.

12.3.2 Utility and State Functions

The geothermal module offers a set of model classes that are derived from
the ReservoirModel class in the ad-core module. This generic class does
not implement any flow equations per se and can therefore not be used directly
for simulation but has properties to represent entities found in most reservoir
models (grids, fluid model, petrophysical properties, phase indicators, well/facility
models, etc.) as well as the basic numerical machinery necessary to run simula-
tions (discretization and averaging operators, nonlinear solvers and linearization
mechanisms, linear solvers, timestep controls, etc.), which are inherited from the
underlying PhysicalModel class. You can read more about these template classes
in section 12.2 of the MRST textbook [19].

Model classes: The basic GeothermalModel class implements core function-
ality for geothermal simulations, like the thermal conductivities discussed in the
previous subsection, and functionality for setting up thermal effects in models
of wells and surface facilities and in boundary conditions. It also declares a
number of so-called state functions for evaluating necessary physical proper-
ties and discretizations of intercell fluxes. The main purpose of the class is to
assemble the discrete equations, which is done in three steps: First, discrete
forms of the accumulation, fluxes, and sources/sinks (i.e., terms one, two, and

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 501

Table 12.1 Description of utility functions in the geothermal module.

Function Description

addThermalFluidProps Add thermal properties to the fluid
addThermalRockProps Add thermal properties to the rock
addThermalBCProps Add temperature or heat flux to boundary condition struct
addThermalWellProps Add temperature to wells

four) in (12.5) are obtained from the parent model through the class method
getModelEquations. Then, molecular diffusion (i.e., term three) is computed
and added to the flux, before everything is assembled. Finally, (12.3) is assembled
using many of the properties already computed to discretize (12.5). In addition to
this model, the GeothermalExtendedFacilityModel implements everything
related to wells. This includes declaration of state functions for computing heat
fluxes in and out of wells and setting up an additional equation to associate the
temperature in the wellbore to that in the reservoir.

Utility functions: The introductory example discussed in the previous subsection
already introduced you to some of the utility functions the module offers for setting
thermal properties for fluids and rock and for specifying thermal boundary con-
ditions. Similar functions also exist for specifying thermal contributions to source
terms and well models. Table 12.1 summarizes the module utility functions.

State functions: Rock and fluid properties are conveniently implemented in
an object-oriented framework using state functions described in detail in
Chapter 5. A StateFunction implements a specific physical property with
defined dependencies. These are organized together into a state-function group
that collects interdependent state functions. The GeothermalModel has three
such groups: PVTPropertyFunctions, FlowPropertyFunctions, and
FlowDiscretization. These groups are populated with state functions that
are common to most subsurface flow models, in addition to those specific to
geothermal applications. For instance, the PVT property group holds all state
functions needed to compute the enthalpy:

>> disp(model.PVTPropertyFunctions)
PVTPropertyFunctions (edit|plot) state function grouping instance.

Intrinsic state functions (Class properties for PVTPropertyFunctions,
always present):

Density: ThermalDensity (edit|plot)

PhasePressures: PhasePressures (edit|plot)

...

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

502 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

Figure 12.3 Execution graph for computing the enthalpy. Names in gray represent
properties and state functions that are inherited from existing properties and
state functions in MRST, whereas names in black represent properties and state
functions that are specific to the module.

Extra state functions (Added to class instance):
ComponentPhaseMassFractions: ComponentPhaseMassFractionsBrine (edit|plot)

ComponentPhaseMoleFractions: ComponentPhaseMoleFractionsBrine (edit|plot)

Temperature: Temperature (edit|plot)

Enthalpy: Enthalpy (edit|plot)

PhaseInternalEnergy: PhaseInternalEnergy (edit|plot)

...

Figure 12.3 illustrates these properties and the order in which they must be com-
puted. Once a property is computed during a nonlinear solution step, it is cached
to state. This way, we avoid potentially costly recomputations of these properties
within the same nonlinear iteration. Notice that the state functions for pressure,
internal energy, and mole and mass fractions contain Phase. This is a formality
that will ease the extension to multiple phases. In fact, many of the state functions
in geothermal already support multiphase fluids. Note also that temperature
appears both as a property on state and as a PVT property function. This is because
we intend to implement a formulation with enthalpy instead of temperature as a
primary variable in the future, so that Temperature will be derived from the EoS.
Such a formulation is needed to properly treat phase transitions. For now, however,
Temperature simply gets the temperature from state.

12.4 Numerical Examples

In the following, we present three more examples to demonstrate how the module
can be used to simulate various geothermal scenarios, including effects of brine and
complex well schedules.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 503

P
right

 = P
res

 T
right

 = T
res

y

x

P
inj

= 250 bars
T

inj
 = 50ºC

xulf oNxulf oN

N
o

flu
x

N
o

flu
x

10
0

m

200 m

M
inj

(1, 101)

M
cen

(51, 101)

Injection (face centroids)
(0,99) and (0,101)

T
res

= 10ºC

P
res

Figure 12.4 Schematic drawing of the model setup (rotated) showing grid dimen-
sions, initial and boundary conditions, and monitoring points (red and blue) for
the benchmark between geothermal and TOUGH2.

12.4.1 Benchmark with TOUGH2

The geothermalExampleBenchmark example presents a comparison with the
widely used flow simulator TOUGH2 [25]. Figure 12.4 illustrates the setup, which
consists of a 100 × 200 m2 Cartesian grid with 50 × 100 cells and homogeneous
rock properties. We add thermal properties to the fluid structure:

fluid = addThermalFluidProps(fluid , ... % Original fluid
'Cp' , 4.2e3, ... % Specific heat capacity
'lambdaF', 0.6 , ... % Thermal conductivity
'useEOS' , true); % Use equation of state

Thermal properties of the rock are added as before, and we must now provide the
medium’s tortuosity as well:

rock = addThermalRockProps(rock , ... % Original rock
'CpR' , 1000, ... % Specific heat capacity
'lambdaR', 2 , ... % Thermal conductivity
'rhoR' , 2700, ... % Rock density
'tau' , 1); % Tortuosity

To define a model with brine, we must make a CompositionalBrineFluid

object. This is inherited from CompositionalFluid in the compositional

module and holds the component names, molar mass, and molecular diffusivity.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

504 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

% Provide data for one-phase two-component model with H2O and NaCl
compFluid = CompositionalBrineFluid(...

{'H2O' , 'NaCl' }, ... % Component names
[18.015281*gram/mol, 58.442800*gram/mol], ... % Molar masses
[0 , 1e-6]); % Molecular diffusivities

% Make model
model = GeothermalModel(G, rock, fluid, compFluid, 'extraStateOutput', true)

In fact, GeothermalModel makes a compositional fluid with a single H2O com-
ponent by default. Initial temperature, pressure, and NaCl mass fraction are set at
10◦C, 100 bar, and 0.1, respectively:

state0 = initResSol(G, 100*barsa, 1); % Pressure and saturation
state0.T = ones(G.cells.num,1).*283.15; % Temperature
X = repmat([0.9, 0.1], G.cells.num, 1); % Initial mass fractions
state0.components = model.getMoleFraction(X); % Convert to mole fractions

A pressure of 250 bar and a temperature of 50◦C are imposed on two faces in
the middle of the left boundary to simulate injection of warm pure water in the
reservoir. The right boundary has the same initial conditions as the reservoir for
pressure, temperature, and NaCl mass fraction to allow for outflow (Figure 12.4):

bc = pside([], G, 'right', 100*barsa, 'sat', 1); % Right (p)
bc = addBC(bc, faces, 'pressure', 250*barsa ,'sat', 1); % Left (p)
Tbc = [repmat(283.15, 100, 1); repmat(323.15, 2, 1)];
bc = addThermalBCProps(bc, 'T', Tbc); % Temperature
Xbc = [repmat(0.1, 100, 1); zeros(2, 1)]; % Mass fractions
bc.components = model.getMoleFraction([1-Xbc, Xbc]); % Mole fractions

We monitor pressure, temperature, and NaCl mass fraction in two cells of the
model: near the injection and in the center (red and blue, respectively, in
Figure 12.4). Generally, we observe less than 1% difference in pressure, NaCl
mass fraction, and temperature between both codes (Figure 12.5). However, there
are two exceptions where the results show a larger discrepancy: Near the injection,
the pressure shows up to 5% difference between the solvers in the beginning, and
there is a slight overshoot of the pressure for TOUGH2. The latter may be due to
a convergence issue in the solver; indeed, TOUGH2 requires smaller timesteps to
converge in the beginning of the simulation than our implementation. This results
in reduced numerical diffusion and, indirectly, a more accurate result than from the
prescribed steps. The temperature in the model center shows up to 3.6% relative
difference between the results after 150 days. This is possibly due to a difference
in the formulation of thermal properties, such as internal energy, heat capacity, and
conductivity: In TOUGH2, specific heat capacity Cα and thermal conductivity λα

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 505

Figure 12.5 Pressure (top), NaCl mass fraction (middle), and temperature (bot-
tom) evolution recorded at two points of the model (see Figure 12.4) for both
geothermal and TOUGH2.

are functions of both pressure and temperature, whereas we keep these constant in
our implementation.

12.4.2 Subset of SPE10 Model 2

In geothermalExampleSPE10Subset, we consider an inverted five-spot pattern
and use the upr module from Chapter 1 to construct a perpendicular bisector grid
with refinement around each well. We then sample permeability and porosity from
Layer 10 from Model 2 of the SPE10 benchmark study [4]. Figure 12.6 shows the
result. To ensure a high thermal energy throughput in the solid rock, we assign a
high thermal conductivity and low specific heat capacity to the rock structure:

rock = addThermalRockProps(rock, 'lamdaR', 100, 'CpR', 250);

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

506 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

Figure 12.6 Setup for the SPE10 Model 2 example. The colors indicate per-
meability, and the wells (injection in the center, production in each corner) are
indicated by white dots.

The center well injects 100◦C water at a constant rate of 50 m3/day, whereas the
producers are operated at a fixed bottom-hole pressure (BHP) of 4 000 psi. We must
prescribe the well temperatures after constructing the wells:

Tinj = (273.15 + 100)*Kelvin; % 100 degrees Celsius
W = addThermalWellProps(W, 'T', Tin); % Add temperature field T to wells

We prescribe no-flow boundary conditions on all sides and simulate two types of
thermal boundary conditions: fully insulated and fixed temperature. By default,
MRST computes mass and energy fluxes across internal interfaces only and adds
in fluxes across boundary faces only where boundary conditions are given. This
means that the fully insulated case can be set up without providing boundary con-
ditions, whereas fixed-temperature conditions must be provided. We assign a fixed
temperature equal to the initial reservoir temperature on all sides:

bc = addBC([], boundaryFaces(G), 'flux', 0); % Set up no-flow BCs
bc = addThermalBCProps(bc, 'T', Tres); % Prescribe temperature

Figure 12.7 shows the reservoir temperature at the end of both simulations, along
with the logarithm of the (approximate) thermal Péclet number. The thermal Péclet
number measures the heat transfer efficiency and is approximated as advective to
conductive heat flux:

Pe = ‖ �Ff hf ‖
‖ �Hf + �Hr‖

= ‖ρf �vf hf ‖
‖ − (λf + λr)∇T ‖ .

As expected, the fully insulated case achieves a higher temperature near the bound-
ary. The Péclet number also indicates that advective heat transfer dominates in

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 507

Temperature (◦C)

Thermal Péclet number (log10)

Fully insulated Fixed temperature

Figure 12.7 Temperature distribution at the end of the simulation using fully
insulated boundary conditions (left) and fixed-temperature boundary conditions
(right).

almost all parts of the domain, with more than five orders of magnitude near the
center well. The Péclet number is also slightly higher with fully insulated boundary
conditions.

12.4.3 Enhanced Geothermal System

Enhanced geothermal systems are built by fracturing the subsurface rock in a region
with low permeability and high temperature. By injecting and extracting fluids
from the resulting fracture network, the fractures serve the same purpose as the
fins of a conventional heat exchanger. This setup is ideal for utilizing the abundant
geothermal energy, because there is typically almost no flow outside the fractures
and consequently a very small heat loss. We model a small enhanced geothermal
system by a network of intersecting fractures in a confined box of 50× 50× 15 m3

using a predefined artificial fracture data set. The source code for this example can
be found in geothermalExampleEGS. From a 2D grid constructed using the upr
module, we make a 3D model by extruding it in the vertical direction:

G2D = pebiGrid2D(dx, xmax(1:2), ...
'cellConstraints', data.fractures, ... % Fractures
'CCRefinement' , true , ... % Refine fractures
'CCFactor' , 0.1); % Relative fracture cell size

G = makeLayeredGrid(G2D, layers);

Figure 12.8 shows the setup. Permeability and porosity are set to 0.1 md and 0.05
in the matrix and 10 000 md and 0.7 in the fractures.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

508 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

5 10 15 20 25
Time (years)

1.1

1.2

1.3 Heat extraction efficiency

Temperature (◦C)

Figure 12.8 Enhanced geothermal system. The injection and production wells are
placed in opposite sides of a fracture network, which is 104 times more permeable
than the matrix rock.

rock = makeRock(G, 1*milli*darcy, 0.05);
rock.perm(fracture_cells) = 1e4*milli*darcy; % Fracture permeability
rock.poro(fracture_cells) = 0.8; % Fracture porosity

In this example, we use a density formulation of the form (12.7):

fluid = initSimpleADIFluid(...
'phases', 'W' , ... % Water only
'mu' , 0.5*centi*poise , ... % Viscosity
'rho' , 1000*kilogram/meter^3, ... % Reference density
'c' , 4.4e-10/Pascal , ... % Compressibility
'pRef' , 1*atm); % Reference pressure

% Add thermal properties
fluid = addThermalFluidProps(fluid , ...

'Cp' , 4.2*joule/(gram*Kelvin), ... % Heat capacity
'lambdaF', 0.6*Watt/(meter*Kelvin), ... % Thermal conductivity
'cT' , 207e-6/Kelvin , ... % Thermal expansion
'TRef' , K0 + 10*Kelvin); % Reference temperature

Two wells are placed in opposite corners of the fracture network, one injects water
at 10◦C at a constant rate equal to half the fracture pore volume per year, whereas
the other produces at a constant BHP. The initial reservoir temperature is 95◦C.
Figure 12.8 reports the heat extraction efficiency (produced to injected energy)
during 25 years of operation, along with reservoir temperature at three selected
timesteps. The reservoir gradually cools down, which is also reflected in the
decreasing extraction efficiency.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 509

Permeability

Figure 12.9 Setup for the high-temperature ATES system. Colors indicate the
permeability, and the black, vertical pillars indicate the hot (H1–H4) and cold
(C1–C4) well groups.

12.4.4 Thermal Aquifer Energy Storage

In the next example, we consider a setup inspired by previous work [5], in which
we investigated high-temperature ATES in the Greater Geneva Basin, Switzerland.
Thermal energy is produced at a waste incinerator near Geneva and distributed to
the local-district heating systems for heating of buildings. However, whereas energy
supply (e.g., waste) is fairly constant throughout the year, the energy demand is
highly seasonal. Storing excess energy in summer to use it in winter may therefore
lead to potentially large energy savings. Full source code for this example is given
in the geothermalExampleHTATES script.

We use the unstructured Voronoi-type geomodel shown in Figure 12.9. Chapter 1
describes in detail how the upr module can be used to generate this grid. The model
has three intersecting faults and a layered permeability structure as commonly seen
in engineering geomodels. Injection and extraction of heated water are controlled
by two groups of four wells each, which we refer to as hot and cold, respectively.
The hot group (H1–H4) injects hot water for storage during summer and extracts
the hot water for heating in winter. The cold group (C1–C4) provides pressure
support by injecting or extracting cold water, with a low BHP during storage and a
high BHP during extraction. In between storage and extraction, there is a period of
rest during which all wells are closed.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

510 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

For simplicity, we assume a constant energy supply and impose constant water
injection of 1 000 m3 per day at a temperature of 100◦C in each of the wells in
the hot group during storage and a production rate of 1 000 m3 per day during
extraction. The cold group operates at a constant BHP of 70 bar during storage and
85 bar during extraction. The storage and extraction periods last for four months
each, whereas the intermediate rest period lasts for two months. In other words, one
cycle (storage–rest–extraction–rest) totals one year, and we simulate four cycles.
For simplicity, we neglect salinity effects and assume that the reservoir constitutes
a closed, thermally insulated flow compartment. Initial hydrostatic equilibrium is
approximated by simulating ten years with fixed pressure and temperature bound-
ary conditions at the topmost part of the reservoir using eight timesteps. The EoS
is valid for pressure/temperature within a given range. We provide these to the
model, which ensures that pressure/temperature remain within these values during
the nonlinear solution step. This is crucial to get a robust nonlinear solver, because
intermediate states in a Newton loop may result in pressure and temperature values
far outside the EoS validity range.

model.maximumPressure = 200e6; % Maximum pressure
model.minimumTemperature = K0; % Minimum temperature
model.maximumTemperature = K0 + 275; % Maximum temperature

Because the problem is fairly large (pressure and temperature in 27 449 cells gives
54 898 degrees of freedom), we speed up the simulation using a compiled itera-
tive Krylov solver with constrained pressure residual (CPR) preconditioning [7]
together with the mex-accelerated AD backend detailed in Chapter 6.

model.AutoDiffBackend = DiagonalAutoDiffBackend('useMex', true);
mrstModule add linearsolvers, lsolver = AMGCL_CPRSolverAD();

Figure 12.10 shows the temperature distribution in the reservoir after storage
and extraction in the first and last cycles. The plots only show cells where the
temperature deviates from its initial value by more than 20%. We see that all
important dynamics takes place in the near-well regions, which indicates that the
ability to incorporate near-well refinement in the computational grid is crucial for
efficient simulation of large cases. Figure 12.11 reports the temperature in all wells
as a function of time, along with the energy recovery factor. The latter is defined as
the ratio of extracted to stored energy, in this case reported as the total cumulative
factor over time. The vertical lines indicate the storage, rest, and extraction periods,
with the second cycle (from Year 1 to Year 2) emphasized in color.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 511

Figure 12.10 Reservoir temperature after storage and extraction in the first and
last cycles, reported in cells where the temperature deviates more than 20% from
the initial temperature.

This example demonstrates how geothermal can be used to simulate complex
injection strategies with multiple wells and different constraints. The current setup
is, however, very simplified compared to real high-temperature ATES applications,
for which factors such as aquifer drift, thermal diffusion out of the reservoir, well
operating limits, and temporal variations in energy supply play an important role
and tend to result in much lower energy recovery factors. Such effects can also be
simulated with geothermal, and the reader can refer to [5] for a more advanced
example simulated with the geothermal module.

12.5 Concluding Remarks

The new geothermal module in MRST enables intuitive and rapid testing of
geothermal applications involving complex injection schedules and geological
grids. Currently, the module can be used to investigate low- to moderate-enthalpy
geothermal systems, in which water is always present as a liquid phase. The module
can also account for transport of dissolved salt and its impact on fluid flow through
density and viscosity changes. The implemented EoS has a pressure, temperature,
and salinity range suitable for modeling the first 5 km of most sedimentary
basins. As part of MRST, the module can be integrated with well-established

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

512 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (years)

0

20

40

60

80

100

W
el

l t
em

pe
ra

tu
re

 (
C

)

Storage
Rest
Extraction

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (years)

0

0.2

0.4

0.6

0.8

1

E
ne

rg
y

re
co

ve
ry

 fa
ct

or

Storage
Rest
Extraction

Figure 12.11 Well temperatures and energy recovery during four cycles of high-
temperature ATES. Cumulative energy recovery factor measures the efficiency of
the system, reported as the aggregated recovery factor for all four wells in the hot
group.

functionality from petroleum applications, such as optimal well control, sensitivity
analysis, adjoint-based optimization, and uncertainty quantification, and applied to
realistic geological models using complex fluid physics. The module represents
a first step toward a more advanced module that will consider water-phase
transition and the presence of other components such as carbon dioxide or methane,
which are commonly found in geothermal systems. Such an implementation will
permit exploring high-enthalpy geothermal systems in volcanic settings or mud
volcanoes, which possess a strong energetic potential. Other possible extensions
include combining the module with existing modules in MRST to consider, e.g.,
thermomechanical or thermochemical processes, which may have a strong impact
on the efficiency of geothermal energy systems.

Acknowledgement. The authors thank Antonio Rinaldi for his contribution to bench-
marking geothermal with TOUGH2 and Halvor Møll Nilsen and Odd Andersen for
scientific discussions and insightful comments. Finally, we thank Knut-Andreas Lie
for improving the chapter through careful review and constructive suggestions.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

Simulation of Geothermal Systems Using MRST 513

References

[1] R. Al-Khoury. Computational Modeling of Shallow Geothermal Systems, Volume 4
of Multiphysics Modeling. CRC Press, 2011.

[2] O. Andersson. Aquifer thermal energy storage. In H. Ö. Paksoy, ed., Thermal Energy
Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and
Design, Volume 234, pp. 155–176. Springer, Dordrecht, The Netherlands, 2007. doi:
10.1007/978-1-4020-5290-3.

[3] T. A. Buscheck, J. M. Bielicki, T. A. Edmunds, Y. Hao, Y. Sun, J. B. Randolph,
and M. O. Saar. Multifluid geo-energy systems: using geologic CO2 storage for
geothermal energy production and grid-scale energy storage in sedimentary basins.
Geosphere, 12(3):678–696, 2016. doi: 10.1130/GES01207.1.

[4] M. A. Christie and M. J. Blunt. Tenth SPE comparative solution project: a comparison
of upscaling techniques. SPE Reservoir Evaluation and Engineering, 4(4):308–316,
2001. doi: 10.2118/72469-PA.

[5] M. Collignon, Ø. S. Klemetsdal, O. Møyner, M. Alcanié, A. Pio, H. Nilsen, and
M. Lupi. Evaluating thermal losses and storage capacity in high-temperature aquifer
thermal energy storage (HT-ATES) systems with well operating limits: insights from a
study-case in the Greater Geneva Basin, Switzerland. Geothermics, 85:101773, 2020.
doi: 10.1016/j.geothermics.2019.101773.

[6] U. Colombo. Development and the global environment. In J. M. Hollander, ed., The
Energy-Environment Connection, pp. 3–14. Island Press, Washington, DC, 1992.

[7] D. Demidov. AMGCL: an efficient, flexible, and extensible algebraic multigrid
implementation. Lobachevskii Journal of Mathematics, 40(5):535–546, 2019. doi:
10.1134/S1995080219050056.

[8] H.-J. G. Diersch. Finite Element Modeling of Flow, Mass and Heat Transport in
Porous and Fractured Media. Springer, 2014. doi: 10.1007/978-3-642-38739-5.

[9] I. Dincer. Energy and environmental impacts: present and future perspectives. Energy
Sources, 20(4-5):427–453, 1998. doi: 10.1080/00908319808970070.

[10] I. Dincer. Renewable energy and sustainable development: a crucial review.
Renewable and Sustainable Energy Reviews, 4(2):157–175, 2000. doi: 10.1016/
S1364-0321(99)00011-8.

[11] I. Dincer and M. A. Rosen. Thermal Energy Storage: Systems and Applications.
Wiley, 2011.

[12] T. Driesner. The system H2O-NaCl. Part II. Correlations for molar volume, enthalpy,
and isobaric heat capacity from 0 to 1 000 degrees C, 1 to 5 000 bar, and 0 to 1 XNaCl .
Geochimica et Cosmochimica Acta, 71:4902–4919, 2007. doi: 10.1016/j.gca.2007.05.
026.

[13] R. Gibson and O. Loeffler. Pressure–volume–temperature relations in solutions. Part
IV. The apparent volumes and thermal expansibilities of sodium chloride and sodium
bromide in aqueous solutions between 25 and 95◦. Journal of the American Chemical
Society, 63(2):443–449, 1941. doi: 10.1021/ja01847a026.

[14] W. Glassley. Geothermal Energy: Renewable Energy and the Environment. CRC
Press, 2010. doi: 10.1201/b17521.

[15] L. Haar, J. S. Gallagher, and G. S. Kell. NBS/NRC Steam Tables Thermodynamic and
Transport Properties and Computer Programs for Vapor and Liquid States of Water
in SI Units. Hemisphere Publishing Company, Washington, DC, 1984.

[16] K. L. J. Kipp, P. Hsieh, and S. Charlton. Guide to the Revised Ground-Water Flow and
Heat Transport Simulator: HYDROTHERM – Version 3, Volume 6-A25 of Techniques
and Methods. U.S. Geological Survey, 2008.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

514 M. Collignon, Ø. S. Klemetsdal, and O. Møyner

[17] C. D. Langevin, D. T. Thorne Jr., A. M. Dausman, M. C. Sukop, and W. Guo. SEAWAT
Version 4.0: A Computer Program for Simulation of Multi-Species Solute and Heat
Transport, Volume 6-A22 of Techniques and Methods. U.S. Geological Survey, 2007.

[18] K. S. Lee. A review on concepts, applications, and models of aquifer thermal energy
storage systems. Energies, 3(6):1320–1334, 2010. doi: 10.3390/en3061320.

[19] K.-A. Lie. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave:
User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge
University Press, Cambridge, UK, 2019. doi: 10.1017/9781108591416.

[20] S. Lvov and R. Wood. Equation of state of aqueous NaCl solutions over a wide range
of temperatures, pressures and concentrations. Fluid Phase Equilibria, 60:273–287,
1990. doi: 10.1016/0378-3812(90)85057-H.

[21] M. J. O’Sullivan, K. Pruess, and M. J. Lippmann. State of the art of geothermal reser-
voir simulation. Geothermics, 30(4):395–429, 2001. doi: 10.1016/S0375-6505(01)
00005-0.

[22] C. Palliser and R. McKibbin. A model for deep geothermal brines, I: T-p-X state–
space description. Transport in Porous Media, 33:65–80, 1998. doi: 10.1023/A:
1006537425101.

[23] K. Pitzer, J. Peiper, and R. Busey. Thermodynamic properties of aqueous sodium
chloride solutions. Journal of Physical and Chemical Reference Data, 13:1–102,
1984. doi: 10.1063/1.555709.

[24] K. Pitzer and M. Sterner. Equations of state for solid NaCl-KCl and saturated
liquid NaCl-KCl-H2O. Thermochimica Acta, 218:413–423, 1993. doi: 10.1016/
0040-6031(93)80440-L.

[25] K. Pruess, C. Oldenburg, and G. Moridis. TOUGH2 User’s Guide, Version 2.0.
Lawrence Berkeley National Laboratory, 1999.

[26] P. Rogers and K. Pitzer. Volumetric properties of aqueous sodium-chloride solutions.
Journal of Physical and Chemical Reference Data, 11:15–81, 1982. doi: 10.1016/
0040-6031(93)80440-L.

[27] J. P. Spivey, W. D. McCain, and R. North. Estimating density, formation volume
factor, compressibility, methane solubility, and viscosity for oilfield brines at temper-
atures from 0 to 275◦C, pressures to 200 MPa, and salinities to 5.7 mole/kg. Journal
of Canadian Petroleum Technology, 43(7):52–61, 2004. doi: 10.2118/04-07-05.

[28] I. Stober and K. Bucher. Geothermal Energy: From Theoritical Models to Exploration
and Development. Springer, 2013.

[29] W. Wagner, J. Cooper, A. Dittman, J. Kijima, H.-J. Kretzschmar, A. Kruse, R. Mares,
K. Oguchi, H. Sato, I. Støcker, O. Sifner, Y. Takaishi, I. Tanishita, J. Trübenbach,
and T. Willkommen. The IAPWS industrial formulation 1997 for the thermodynamic
properties of water and steam. ASME Journal of Engineering for Gas Turbines and
Power, 122:150–182, 2000. doi: 10.1007/978-3-540-74234-0_3.

[30] W. Wagner and A. Pruss. The IAPWS formulation 1995 for the thermodynamic
properties of ordinary water substance for general and scientific use. Journal of
Physical and Chemical Reference Data, 31:387–535, 2002. doi: 10.1063/1.1461829.

https://doi.org/10.1017/9781009019781.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.018

