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Abstract
Lafforgue and Genestier-Lafforgue have constructed the global and (semisimplified) local Langlands correspon-
dences for arbitrary reductive groups over function fields. We establish various properties of these correspondences
regarding functoriality for cyclic base change: For Z/𝑝Z-extensions of global function fields, we prove the existence
of base change for mod p automorphic forms on arbitrary reductive groups. For Z/𝑝Z-extensions of local function
fields, we construct a base change homomorphism for the mod p Bernstein center of any reductive group. We then
use this to prove existence of local base change for mod p irreducible representation along Z/𝑝Z-extensions, and
that Tate cohomology realizes base change descent, verifying a function field version of a conjecture of Treumann-
Venkatesh.

The proofs are based on equivariant localization arguments for the moduli spaces of shtukas. They also draw upon
new tools from modular representation theory, including parity sheaves and Smith-Treumann theory. In particular,
we use these to establish a categorification of the base change homomorphism for mod p spherical Hecke algebras,
in a joint appendix with Gus Lonergan.

Contents

1 Introduction 1
2 Functoriality and the excursion algebra 7
3 Smith theory in locally finite type 13
4 Parity sheaves and the base change functor 19
5 On global base change 30
6 On local base change 44
A The base change functor realizes Langlands functoriality by Tony Feng and Gus Lonergan 56
B Applying Drinfeld’s Lemma to Tate cohomology 61

1. Introduction

In this paper, we prove several results on cyclic base change in the Langlands correspondence over
function fields. To set the context for our results, let us recall some history. Global cyclic base change
functoriality for reductive groups over number fields, established over many years in increasing generality
by work of Saito [Sai77], Shintani [Shi79], Langlands [Lan80], Arthur-Clozel [AC89], Labesse [Lab99],
Harris-Labesse [HL04] and others for cuspidal automorphic representations with characteristic zero
coefficients (under some technical assumptions for general groups), is one of the major triumphs of
Langlands’ program thus far. In addition to its initial applications towards Artin’s Conjecture, it plays a
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crucial role in much subsequent work, such as in automorphy lifting arguments following in the tradition
of Wiles, Taylor, etc.

Our main progress in the present paper is on understanding cyclic base change in the Local Langlands
correspondence, which was constructed (in a semisimplified form) for all reductive groups over local
function fields by Genestier-Lafforgue [GL]. The proof (over number fields) of global cyclic base change
is founded upon the twisted trace formula, a tool which does not seem to apply to our (local and mod p)
context, and is in any case currently unavailable over function fields due to nontrivial analytic difficulties.
We introduce a new strategy, which we use to prove the first general existence results for local base change
of all irreducible representations of arbitrary reductive groups over local function fields. Furthermore,
we establish descent theorems for cyclic base change that were conjectured by Treumann-Venkatesh;
these are new even for specific groups such as GL𝑛, where the full Local Langlands correspondence
(hence, in particular, the existence of local base change) is already known. These advances involve the
construction of a base change homomorphism for Bernstein centers, as has been envisaged by Haines in
the case of characteristic zero coefficients. En route to the local results, we establish new global results
as well: we prove the first general existence theorem for cyclic base change of mod p automorphic forms
on arbitrary reductive groups over global function fields, again without any trace formula arguments.
A major novelty of these results is their applicability to completely general groups and representations.

The proofs assemble a diverse selection of tools ranging from topology (particularly equivariant
localization and Tate cohomology) to arithmetic geometry (of moduli stacks of shtukas) to p-adic groups
(exploiting new constructions with Hecke algebras and Bernstein centers) to modular representation
theory (using crucially the recent inventions of parity sheaves and Treumann-Smith theory).

We now proceed to give more precise descriptions of our results.

1.1. Local results

Genestier-Lafforgue have constructed a semi-simplified form of the Local Langlands correspondence
over function fields [GL]. More precisely, let 𝐹𝑣 be a local field of positive characteristic not equal to p
and 𝑊𝑣 the Weil group of 𝐹𝑣 . Let k be an algebraic closure of F𝑝 .1 For any reductive group G over 𝐹𝑣 ,
[GL] constructs a map{

irreducible admissible representations
𝜋 of 𝐺 (𝐹𝑣 ) over 𝑘

}
/∼ −→

{
semi-simple 𝐿-parameters

𝜌𝜋 : 𝑊𝑣 →
𝐿𝐺 (𝑘)

}
/∼ . (1.1)

Here, 𝐿𝐺 is Langlands’ L-group, regarded over k.
Langlands’ principle of functoriality predicts that given two reductive groups H and G over 𝐹𝑣 ,

and a map of L-groups 𝜙 : 𝐿𝐻 → 𝐿𝐺, every L-packet of irreducible representations of 𝐻 (𝐹𝑣 ) should
admit a ‘transfer’ to 𝐺 (𝐹𝑣 ) compatible with 𝜙. In this paper, we are concerned with a specific type of
functoriality: base change functoriality, arising from the case where H is any reductive group over 𝐹𝑣 and
𝐺 = Res𝐸𝑣/𝐹𝑣 (𝐻𝐸𝑣 ) for a cyclic p-extension 𝐸𝑣/𝐹𝑣 . The relevant map 𝜙BC : 𝐿𝐻 → 𝐿𝐺 is characterized
by the property that it is admissible and induces the diagonal embedding on their underlying identity
connected components (i.e., the respective Langlands dual groups). We emphasize that it is crucial for
our results that the degree of the extension coincides with the characteristic of our representations. In
this situation, let us say that an irreducible representation Π of 𝐺 (𝐹𝑣 ) is a base change of an irreducible
representation 𝜋 of 𝐻 (𝐹𝑣 ) if 𝜙BC ◦ 𝜌𝜋 � 𝜌Π .

Theorem 1.1 (Existence of local base change). Let 𝜋 be any irreducible representation of 𝐻 (𝐹𝑣 ) over k.
Then a base change of 𝜋 to 𝐺 (𝐹𝑣 ) exists.

1In this paper, our varieties are over fields of characteristic not equal to p, while our coefficients are of characteristic p. This is
to adhere to standard notational conventions for Smith theory; unfortunately, it is at odds with standard notational conventions in
arithmetic geometry.
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For 𝐻 = GL𝑛, a full Local Langlands correspondence has been established by Vignéras [Vig01],
giving a much more precise result than Theorem 1.1. It seems reasonable to expect that Vignéras’
methods could (eventually) be extended to some classical groups, after the stabilization of the twisted
trace formula for automorphic forms over function fields is achieved. The novelty of Theorem 1.1 is
that it applies uniformly to all reductive groups and all irreducible representations. A motivation for
Theorem 1.1 is a program of the author to compute explicitly the Genestier-Lafforgue parameters of
explicit supercuspidal representations, such as those arising in [CO]; this depends on the residue field
being ‘large enough’, so is convenient to be able to make an unramified base change.

We also prove a descent result for the above base change situation which was conjectured by
Treumann-Venkatesh and is new even for 𝐻 = GL𝑛 whenever 𝑛 > 1. Let 𝜎 be a generator2 of
Gal(𝐸𝑣/𝐹𝑣 ); it acts on G, and its induced action on 𝐺 (𝐹𝑣 ) = 𝐻 (𝐸𝑣 ) is the Galois action. It is expected
that if the isomorphism class of a k-representation Π of 𝐺 (𝐹𝑣 ) is preserved by 𝜎, then it should come
from base change. For any irreducible admissible representation Π of 𝐺 (𝐹𝑣 ) whose isomorphism class
is fixed by 𝜎, there is a unique 𝜎-action on Π compatible with the 𝐺 (𝐹𝑣 )-action (Lemma 6.16). Hence,
we can form the Tate cohomology groups 𝑇0 (Π), 𝑇1 (Π) with respect to the 𝜎-action (cf. §3.4), which
retain actions of 𝐻 (𝐹𝑣 ) = 𝐺 (𝐹𝑣 )

𝜎 and are conjecturally admissible 𝐻 (𝐹𝑣 )-representations. We prove
the following:

Theorem 1.2 (Tate cohomology realizes cyclic base change). Assume p is an odd good prime3 for 𝐺.
Let Π be an irreducible representation of 𝐺 (𝐹𝑣 ) whose isomorphism class is fixed by 𝜎, and let
Π (𝑝) := Π ⊗𝑘,Frob 𝑘 be the Frobenius twist of Π. Let 𝜋 be any irreducible admissible subquotient of
𝑇0 (Π) or 𝑇1 (Π) as an 𝐻 (𝐹𝑣 )-representation and 𝜌𝜋 : 𝑊𝑣 →

𝐿𝐻 (𝑘) be the corresponding L-parameter
constructed by Genestier-Lafforgue. Then 𝜙BC ◦ 𝜌𝜋 � 𝜌Π (𝑝) .

This verifies, for the Genestier-Lafforgue construction of the semi-simplified Local Langlands
correspondence, a Conjecture of Treumann-Venkatesh [TV16, Conjecture 6.3] that ‘Tate cohomology
realizes functoriality’. It had previously been proved for certain depth-zero supercuspidal representa-
tions of GL𝑛 (𝐹𝑣 ) by Ronchetti [Ron16], by direct calculation of the Tate cohomology and comparison
to Vignéras’ work. The difficulty of the calculations, even in those special cases, made them inacces-
sible to generalization. By contrast, our proof applies uniformly for all groups and all representations
under only a very mild condition on p and is completely conceptual; in particular, it avoids any compu-
tations with specific models of representations – for example, as compact inductions of Deligne-Lusztig
representations.

Remark 1.3. In [BFH+], we will compute Tate cohomology for an interesting class of supercuspidal
representations (of arbitrary depth) studied by Chan-Oi [CO], which provides many examples where
Theorem 1.2 can be made very concrete.

We now proceed to describe our third main local result. Recall that the Bernstein center (with coeffi-
cients in k) of 𝐺 (𝐹𝑣 ), denotedℨ(𝐺), is the ring of endomorphisms of the identity functor on the category
of smooth 𝐺 (𝐹𝑣 )-representations (on k-vector spaces). Informally speaking, an element of ℨ(𝐺) is rep-
resented by a system of compatible endomorphisms of all smooth 𝐺 (𝐹𝑣 )-representations (commuting
with the 𝐺 (𝐹𝑣 )-action). In particular, ℨ(𝐺) acts on any irreducible smooth 𝐺 (𝐹𝑣 )-representation Π
through a character 𝜒Π : ℨ(𝐺) → 𝑘 . Furthermore, the correspondence (1.1) turns out to assign isomor-
phic L-parameters to irreducible representations inducing the same character of ℨ(𝐺). The ideas used
to establish the preceding theorems also allow us to construct a base change homomorphism between
the Bernstein centers of 𝐺 (𝐹𝑣 ) and 𝐻 (𝐹𝑣 ) with the property detailed in the following Theorem.

2The choice of generator is made for convenience of notation; all constructions involving it will be manifestly independent of
the choice.

3Explicitly, this means that we require 𝑝 > 2 if 𝐺 has simple factors of type 𝐴, 𝐵, 𝐶 or D; 𝑝 > 3 if 𝐺 has simple factors of
type 𝐺2 , 𝐹4 , 𝐸6, 𝐸7, and 𝑝 > 5 if 𝐺 has simple factors of type 𝐸8.
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Theorem 1.4 (Base change homomorphism for Bernstein centers). Assume p is an odd good prime
for 𝐺. Then there is a homomorphism

ℨ(𝐺)
ℨTV
−−−→ ℨ(𝐻)

such that for each irreducible 𝐻 (𝐹𝑣 )-representation 𝜋, the character 𝜒𝜋 ◦ℨTV : ℨ(𝐺)
ℨTV
−−−→ ℨ(𝐻)

𝜒𝜋
−−→ 𝑘

has the property that for any irreducible 𝐺 (𝐹𝑣 )-representation Π on whichℨ(𝐺) acts through 𝜒𝜋 ◦ℨTV,
there is an isomorphism of semi-simple L-parameters 𝜌Π � 𝜙BC ◦ 𝜌𝜋 .

A base change homomorphism for Bernstein centers, with characteristic zero coefficients, has been
sought by Haines [Hai14] and was constructed in some low-depth cases [Hai09, Hai12] (cf. also
[Fen20] for the function field case). Haines also constructed a base change homomorphism for the
stable Bernstein center of general groups, which in the case of GL𝑛 coincides with the Bernstein center;
since the stable Bernstein center is defined directly in terms of Galois representations, this is rather
more direct. Our Theorem 1.4 is somewhat different since it concerns characteristic p, but it is the first
such construction that applies to general groups and depth. Its generality and provable connection to the
Local Langlands correspondence make it rather new and compelling evidence for Haines’ vision.

Remark 1.5. The construction of the map ℨTV applies equally well for local fields of characteristic 0
having residue characteristic distinct from p. However, our argument for proving that it has the ‘correct’
effect in terms of the Local Langlands correspondence only works for function fields. The future
work [Fen] aims to prove analogous results with respect to Fargues-Scholze’s construction [FS] of the
(semisimplified) local Langlands correspondence for arbitrary local fields.

1.2. Global results

Although our most striking progress is on the local Langlands correspondence, we also obtain new
results in the global Langlands correspondence. In fact, the local results mentioned above are themselves
deduced from analysis of Lafforgue’s machine for constructing the global Langlands correspondence.

Now let G be a reductive group over a global function field F, of characteristic not equal to p.
Vincent Lafforgue has constructed in [Laf18, §13] a global ‘mod p’ Langlands correspondence, decom-
posing the space of cuspidal automorphic functions 𝐶∞cusp (𝐺 (𝐹)\𝐺 (A𝐹 ), 𝑘) into summands indexed by
semi-simple L-parameters, which are certain 𝐺 (𝑘)-conjugacy classes of continuous homomorphisms
𝜌 : Gal(𝐹𝑠/𝐹) → 𝐿𝐺 (𝑘). Work of Cong Xue [Xue20, Xuea, Xueb] extends Lafforgue’s theory to
the space of all compactly supported automorphic functions, 𝐶∞𝑐 (𝐺 (𝐹)\𝐺 (A𝐹 ), 𝑘). See §5.2.4 for a
more precise discussion. Let us call an L-parameter 𝜌 automorphic if it arises from Lafforgue(-Xue)’s
construction.

Let H be a reductive group over F, and 𝐺 = Res𝐸/𝐹 (𝐻𝐸 ) for a cyclic p-extension 𝐸/𝐹. The relevant
map 𝜙BC : 𝐿𝐻 → 𝐿𝐺 is the diagonal on the identity connected components.

Theorem 1.6 (Existence of global base change). Assume p is an odd good prime for 𝐺. If
𝜌 : Gal(𝐹𝑠/𝐹) → 𝐿𝐻 (𝑘) is automorphic, then 𝜙BC ◦ 𝜌 : Gal(𝐹𝑠/𝐹) → 𝐿𝐺 (𝑘) is automorphic.

We comment on the relation of Theorem 1.6 to other base change theorems known in global contexts.
To appreciate this, it is important to highlight the distinction between ‘weak base change’, which is
determined Hecke eigensystems at almost all places of the global function, and ‘strong base change’
as provided by Theorem 1.6, which concerns the entire L-parameter. These notions are equivalent for
𝐻 = GL𝑛, but for general groups, ‘strong base change’ is a strictly stronger notion. Indeed, Lafforgue’s
correspondence can assign different Langlands parameters to Hecke eigenfunctions with the same
unramified eigensystem; in fact, it can even assign different parameters to different automorphic forms
generating isomorphic automorphic representations,4 with examples occurring already for SL𝑛 when

4This implies that there is a difference between strong base change and an intermediate notion of base change which demands
compatibility with local base change at every place (not just the unramified ones).
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𝑛 ≥ 3 [Bla94, Lap99]. The reason for this is the failure of local conjugacy to imply global conjugacy;
see [Laf18, §0.7] for more discussion of this phenomenon.

Remark 1.7. The distinction between weak and strong base change can be quite important in applica-
tions. For example, recent work of Sawin-Templier [ST21] shows that the Ramanujan Conjecture for
cuspidal automorphic forms satisfying appropriate local conditions is implied by a strong form of cyclic
base change, but weak base change does not suffice for their argument.

Our proof of Theorem 1.6 is inspired by work of Treumann-Venkatesh [TV16], which establishes
existence of ‘weak base change’ for the cohomology of locally symmetric spaces. The analogue of
[TV16] in the function field context would guarantee the existence of a ‘weak base change’ for mod
p automorphic forms. The work of Treumann-Venkatesh is about Hecke operators, but in the function
field, context it is possible to go beyond Hecke operators to Lafforgue’s excursion operators, and this is
necessary to obtain ‘strong base change’; it is also what provides our handhold on the Local Langlands
correspondence.

Over number fields, weak base change results with characteristic zero coefficients are known using the
twisted trace formula, for all cuspidal automorphic representations of GL𝑛 [AC89] or, on more general
groups, cuspidal automorphic representations satisfying certain local conditions [Lab99]. Over function
fields, the analogous results are known for 𝐻 = GL𝑛 because the full global Langlands correspondence
is already known in that case, again using the trace formula. But there are analytic difficulties in the
theory of the twisted trace formula over function fields, which prevent parallel results from being known
more generally. Instead, forthcoming work [BFH+] will combine Theorem 1.6 with automorphy lifting
theorems, generalizing those of [BHKT19], in order to obtain existence of cyclic order p base change for
automorphic forms on split semisimple groups with characteristic 0 coefficients, for sufficiently large p
and under a ‘large image’ assumption (the latter is needed to make the notions of weak and strong base
change coincide).

1.3. Remarks on the proofs

We emphasize at the outset that our arguments make no use of the traditional tool for analyzing cyclic
base change – namely, the twisted trace formula (which is in any case unavailable in our situation). Any
serious discussion of the proofs of our main results would require an explanation of the construction
of Lafforgue’s and Genestier-Lafforgue’s correspondences, in addition to a number of other ideas and
definitions. To prevent this introduction from becoming overly technical, we confine ourselves to vague
hints here.

The Genestier-Lafforgue correspondence is characterized by local-global compatibility, so the main
input to the local results comes from an analysis of the global situation. The Global Langlands
parametrization is extracted from the cohomology of moduli stacks of shtukas. This idea goes back
to Drinfeld [Dri87], who introduced it to establish the global Langlands correspondence for GL2 over
function fields, later extended to GL𝑛 by Laurent Lafforgue [Laf02]. For general groups, the role that
Langlands’ L-group 𝐿𝐺 should play presented a puzzle that was definitively resolved by Vincent Laf-
forgue: via the Geometric Satake equivalence, the category Rep(𝐿𝐺) naturally indexes perverse sheaves
that lives on the moduli stacks of G-shtukas, called Sht𝐺 .

Summarizing roughly, the global Langlands correspondence involves two major inputs:

1. A ‘topological’ input, wherein the p-adic cohomology of spaces Sht𝐺 supplies interesting
Gal(𝐹𝑠/𝐹)-representations.

2. A representation-theoretic input, wherein L-parameters into 𝐿𝐺 are extracted using that the coefficient
sheaves for these cohomology groups are indexed functorially by Rep(𝐿𝐺).

This will be explained more in §5. For now, it is enough to appreciate that in order to produce a functorial
transfer from H to G, we then need to address both of these aspects of Lafforgue’s construction. More
precisely, we need to
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1. Show that cohomology classes on Sht𝐻 can be ‘transferred’ to cohomology classes on Sht𝐺 .
2. Give a geometric interpretation of the restriction functor Rep(𝐿𝐺) → Rep(𝐿𝐻) at the level of

perverse sheaves.
The immediate difficulty of (1) is that, in general, there is not so much as a nontrivial map relating Sht𝐻
and Sht𝐺 . In the base change situation, there is a natural map, but it is not even Hecke-equivariant, nor
is it clear a priori that the map is not too destructive to cohomology groups. Ultimately, we solve (1) in
our situation by looking at Tate cohomology instead of cohomology and using a form of equivariant
localization that relates the Tate cohomology of a space and its fixed points under a Z/𝑝Z-action. Here,
we were inspired by work of Treumann-Venkatesh [TV16], where it was shown that such equivariant
localization for locally symmetric spaces realized functoriality in that context.

For (2), the obvious difficulty, in general, is again that we are seeking to transport sheaves between
two spaces that are not connected by any visible nontrivial geometric maps. In the base change situation,
there is a map, but the obvious functors it induces on sheaves do not come close to having the desired
effect. In some sense, the problem is a categorified and local version of the problem in the previous
paragraph. Our solution to this problem passes through certain ‘exotic’ localizations of categories of
sheaves called Tate categories, which can be seen as a categorification of Tate cohomology. The point is,
vaguely speaking, that the desired relations of functoriality are satisfied in the relevant Tate categories.
However, this does not interface well with Lafforgue’s construction because localization to the Tate
category does not interact well with the theory of perverse sheaves; our second main idea here is that this
can be fixed by reworking the theory in terms of parity sheaves invented by Juteau-Mautner-Williamson
[JMW14]. Here, we were inspired by work of Leslie-Lonergan [LL21], which used these tools to give a
geometric interpretation of the Frobenius contraction functor in modular representation theory. (The key
idea that parity sheaves play well with localization to the Tate category is also at the heart of recent
work of Riche-Williamson [RW22].) Ultimately, we are able to construct a ‘base change functor’ that
categorifies the base change homomorphism for spherical Hecke algebras, and which is suitable for
input into the global setup. The construction is completed in the joint appendix with Gus Lonergan.

To complete the proofs of the local results, we also need to exploit some new constructions with
local Hecke algebras – in particular, the base change homomorphism ℨTV for Bernstein centers. A key
insight in [TV16] is that the base change homomorphism for spherical Hecke algebras admits a more
‘geometric’ description when the field extension is cyclic of order p and the coefficients also have
characteristic p. We generalize this observation to the centers of higher depth Hecke algebras, and then
to the Bernstein center, by an analysis of Hecke algebras with respect to the subgroups coming from the
Moy-Prasad filtration at a special vertex of the Bruhat-Tits building of G.

1.4. Organization of the paper

The outline of this paper is as follows.
In §2, we define excursion algebras and recall their relation to Langlands parameters. We explain

functoriality from the perspective of excursion algebras.
In §3, we generalize the basic framework of sheaf-theoretic Smith theory from [Tre19, RW22], which

worked for topological spaces and finite type schemes respectively, to locally finite type schemes. This
is needed because our spaces of interest are not of finite type. More specifically, we introduce the notion
of Tate categories, the Smith functor Psm and its properties and Tate cohomology, and we explain the
relation to classical equivariant localization theorems for Z/𝑝Z-actions.

In §4, we recall the fundamentals of parity sheaves due to Juteau-Mautner-Williamson and the
analogous notion of ‘Tate-parity sheaves’ due to Leslie-Lonergan. We explain how to combine these
with the functor Psm to construct a base change functor for parity objects in the Satake category. This
functor plays the categorified role of the base change homomorphism for Hecke algebras.

In §5, we prove a collection of global results, including Theorem 1.6. First, we recall background
on moduli spaces of shtukas and Lafforgue’s global Langlands correspondence in terms of actions of
the excursion algebra on the cohomology of shtukas. Then we establish certain equivariant localization
isomorphisms for the Tate cohomology of shtukas in the setting of Z/𝑝Z-base change, which gives
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relations between excursion operators in the context of functoriality. These are used later in the local
applications, and Theorem 1.6 is also deduced as an application.

In §6, we prove our local results. We review the relevant aspects of the Genestier-Lafforgue corre-
spondence. After analyzing the Brauer homomorphism for Hecke algebras with respect to subgroups
arising from the Moy-Prasad filtration, we are able to construct the map ℨTV from Theorem 1.4, which
we then establish using the global theory and local-global compatibility. Finally, we deduce Theorem 1.1
and Theorem 1.2.

1.5. Notation

• (Coefficients) We let k be an algebraic closure of F𝑝 (considered with the discrete topology). In
general, we will consider geometric objects over fields of characteristic ≠ 𝑝 and étale sheaves over
p-adically complete coefficients.

• (𝜎-actions) Throughout the paper, 𝜎 denotes a generator of a group isomorphic to Z/𝑝Z. When we
say that a widget has a ‘𝜎-action’, what we mean is that the widget has an action of a cyclic group of
order p with chosen generator 𝜎.
Let 𝑁 := 1 + 𝜎 + . . . + 𝜎𝑝−1 ∈ Z[𝜎]. We will also denote by N the induced operation on any
Z[𝜎]-module.5
If A is a ring or module for Z[𝜎], then 𝐴𝜎 denotes the 𝜎-invariants in A.

• (Reductive groups) For us, reductive groups are connected by definition. The Langlands dual group
𝐺 is considered as a split reductive group over k. For our conventions on the L-group, see §2.1.For
any group, 1 denotes the trivial representation (with the group made clear by context).

• (Derived categories of sheaves) If Y is a locally finite type stack and Λ is a coefficient ring in which the
characteristic of Y is invertible, we let 𝐷𝑏

𝑐 (𝑌 ;Λ) denote the bounded constructible derived category
of étale sheaves over Λ; by this, we mean complexes whose restriction to any quasi-compact open
substack 𝑈 ⊂ 𝑌 lies in 𝐷𝑏

𝑐 (𝑈;Λ).
We shall also have occasion to consider larger categories of sheaves, where the constructibility
condition is weakened. We let 𝐷𝑏 (𝑌 ;Λ) denote the bounded derived category of étale sheaves over
Λ that are ind-constructible. In other words, it is the full subcategory of the (co-complete) category
𝐷 (𝑌 ;Λ), of ind-constructible étale sheaves over Λ, spanned by the bounded objects.
If 𝑆 = {𝑌𝜆} is a stratification of Y, then we denote by 𝐷𝑏

𝑆 (𝑌 ;Λ) the full subcategory of 𝐷𝑏 (𝑌 ;Λ)
consisting of complexes constructible with respect to the stratification S.

• (Equivariant derived categories) If a (pro-)algebraic group Σ acts on Y, then we denote by 𝐷𝑏
𝑐,Σ (𝑌 ;Λ)

or 𝐷𝑏
𝑐 (𝑋;Λ)𝐵Σ the Σ-equivariant bounded derived category of constructible sheaves with coefficients

in Λ. We denote by 𝐷𝑏
Σ (𝑌 ;Λ) or 𝐷𝑏 (𝑋;Λ)𝐵Σ the analogous categories with the constructibility

condition replaced by ind-constructibility, as above.
When Λ = 𝑘 , we may suppress it from the notation, writing instead 𝐷𝑏

𝑐 (𝑌 ) := 𝐷𝑏
𝑐 (𝑌 ; 𝑘), etc.

• Functors between derived categories (e.g., 𝑓!, 𝑓∗, 𝑓 !, 𝑓 ∗) will always denote the derived functors.

2. Functoriality and the excursion algebra

In this section, we formalize the abstract excursion algebra Exc(Γ, 𝐿𝐺), a device used to decompose a
space into pieces indexed by Langlands parameters. This notion appears implicitly in [Laf18], but there it
is the image6 of the abstract excursion algebra in a certain endomorphism algebra which is emphasized.

Since we work with non-split groups, we first clarify in §2.1 our conventions regarding L-groups.
This is a bit subtle, as one finds (at least) two natural versions of the L-group in the literature: the
‘algebraic L-group’ 𝐿𝐺alg, following Langlands, and the ‘geometric L-group’ 𝐿𝐺geom, derived from
the Geometric Satake equivalence. The difference between them is parallel to the difference between
L-algebraicity and C-algebraicity emphasized in [BG14].

5This is to be contrasted with the operation Nm, which will mean Nm(𝑎) = 𝑎 ∗ 𝜎 (𝑎) ∗ . . . ∗ 𝜎𝑝−1 (𝑎) in the context where
there is a monoidal operation ∗.

6This image is denoted B in [Laf18].
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We emphasize that the unadorned notation 𝐿𝐺 denotes the algebraic L-group, to be consistent with
[Laf18], although the geometric L-group is really what appears more naturally in our arguments.

We introduce two explicit presentations for the excursion algebra in §2.2 and §2.4. The first presen-
tation is more natural for making the connection to Langlands parameters, which we recall in 2.3. The
second presentation is more amenable to constructing actions of the excursion algebra, which makes it
more convenient for our purposes, and it is the only one that will be used in the sequel.

Finally, in §2.5, we explain how functoriality is interpreted in terms of excursion algebras.

2.1. Conventions on L-groups and Langlands parameters

For a reductive group G over a field F with separable closure F𝑠 , we regard its Langlands dual group
𝐺 as a split reductive group over k. The L-group is a certain semi-direct product 𝐿𝐺 = 𝐺 �Gal(F𝑠/F).
Actually, in the case where F is a local field, we shall instead work with the ‘Weil form’ 𝐺�Weil(F𝑠/F).
(This is just for consistency with [GL]; because we consider representations over k, in our case, it would
make no difference to work with the Galois form.)

2.1.1. Algebraic L-group
In fact, there are at least two conventions for the definition of the L-group. The one which is more
traditionally used in the literature is what we shall call the algebraic L-group, denoted 𝐿𝐺alg, defined
as in [TV16, §2.5]. The root datum Ψ(𝐺) of 𝐺F𝑠 determines a pinning for 𝐺, which, in turn, gives
a splitting Out(𝐺) → Aut(𝐺) and an identification Aut(Ψ(𝐺)) � Out(𝐺). The Gal(F𝑠/F)-action on
Ψ(𝐺) transports to an action actalg of Gal(F𝑠/F) on 𝐺, and we define 𝐿𝐺alg to be the semidirect product

𝐿𝐺alg := 𝐺 �actalg Gal(F𝑠/F).

Since the action actalg factors through a finite quotient, we may regard 𝐿𝐺alg as a pro-algebraic group
over k.

2.1.2. Geometric L-group
We now make a different construction of the L-group, using the Tannakian theory, following [RZ15,
Appendix A] and [Zhu17, §5.5]. We begin with the Geometric Satake equivalence,

P𝐿+𝐺F𝑠 (Gr𝐺,F𝑠 ; 𝑘) � Rep𝑘 (𝐺).

The Galois group Gal(F𝑠/F) acts on Gr𝐺,F𝑠 , inducing an action on the neutralized Tannakian category
(P𝐿+𝐺F𝑠 (Gr𝐺,F𝑠 ; 𝑘), 𝐻∗(−)︸�︷︷�︸

fiber functor

). By [RZ15, Lemma A.1], this, in turn, induces an action actgeom of

Gal(F𝑠/F) on 𝐺𝑘 . We define

𝐿𝐺geom := 𝐺𝑘 �actgeom Gal(F𝑠/F).

In the case at hand, we shall see that actgeom also factors through a finite quotient of Gal(F𝑠/F), so we
may also regard 𝐿𝐺geom as a pro-algebraic group.

2.1.3. Relation between the two L-groups
The relation between these two actions is as follows. We let 𝜌 be the half sum of positive coroots of
𝐺, and we denote by 𝜌 : G𝑚 → 𝐺ad the corresponding cocharacter. With cyc𝑝 : Gal(F𝑠/F) → F×𝑝
denoting the mod p cyclotomic character, let 𝜒 denote the composite

Gal(F𝑠/F)
cyc𝑝
−−−→ F×𝑝 ↩→ 𝑘×

𝜌
−→ 𝐺ad (𝑘).

This induces a homomorphism Ad𝜒 : Gal(F𝑠/F) → Aut(𝐺).
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Proposition 2.1. We have actgeom = actalg ◦Ad𝜒.

Proof. When 𝐺 is over Q𝑝 , this is [RZ15, Proposition 1.6]. More generally, it is established in [FS,
§VI.11] over any p-adic ring. �

Given a choice of lift �̃� : Gal(F𝑠/F) → 𝐺 (𝑘) of 𝜒, which could, for example, come from a square
root of the mod p cyclotomic character, we get an isomorphism 𝐿𝐺alg ∼−→ 𝐿𝐺geom by

(𝑔, 𝛾) ↦→ (𝑔�̃�(𝛾−1), 𝛾). (2.1)

By [Zhu17, Remark 5.5.8], a square root of the cyclotomic character exists whenever char(F) > 0.
(However, in general, it can happen that 𝐿𝐺alg and 𝐿𝐺geom are not isomorphic; for an example, see
[Zhu17, Example 5.5.9].)

At different points, we will want to consider both versions of L-groups. If we write 𝐿𝐺 without a
superscript, then by default we mean the algebraic L-group 𝐿𝐺alg.

2.1.4. Representation categories
For any Galois extension F′/F such that 𝐺F′ is split, the analogous construction to §2.1.1 gives a
‘finite form’ algebraic L-group 𝐺 �actalg Gal(F′/F). We define the category of (k-linear) algebraic
representations of 𝐿𝐺alg to be

Rep𝑘 (𝐿𝐺alg) := lim
−−→
F′

Rep𝑘 (𝐺 �actalg Gal(F′/F)).

Let Rep𝑘 (𝐿𝐺geom) := Rep𝑘 (𝐺)𝐵 Gal(F𝑠/F) ,geom denote the category of continuously Gal(F𝑠/F)-
equivariant objects in Rep𝑘 (𝐺) with respect to the geometric action. The Geometric Satake equivalence
induces by descent an equivalence

P𝐿+𝐺 (Gr𝐺; 𝑘) � Rep𝑘 (𝐺)𝐵Gal(F𝑠/F) ,geom, (2.2)

where the action of Gal(F𝑠/F) on Rep𝑘 (𝐺) on the RHS is via actgeom, and on the LHS, Gr𝐺 is
considered over F. By definition, on the right side we take are taking objects on which Gal(F𝑠/F) acts
continuously with its Krull topology. Since k is algebraic over F𝑝 , in this case, Rep𝑘 (𝐺)𝐵 Gal(F𝑠/F) ,geom

can be identified with lim
−−→F′/F

Rep𝑘 (𝐺)𝐵 Gal(F′/F) ,geom, where the limit runs over finite Galois extensions
F′/F over which the geometric action factors.

An isomorphism (2.1) gives an embedding Rep𝑘 (𝐿𝐺alg) ↩→ Rep𝑘 (𝐺)Gal(F𝑠/F) ,geom, which, as just
remarked, is an equivalence for our choice of k. See [RZ15, Proposition A.10] for a description of the
essential image in general.

2.1.5. L-parameters
Definition 2.2. Let Γ be a topological group and Γ be a quotient of Γ acting on 𝐺. An L-parameter
from Γ to 𝐺 (𝑘) �Γ is a 𝐺 (𝑘)-conjugacy class of continuous homomorphisms 𝜌 : Γ→ 𝐺 (𝑘) �Γ, which
has the property that the composite map Γ→ 𝐺 � Γ→ Γ is the given quotient Γ � Γ.

Equivalently, we may view 𝜌 as an element of the continuous cohomology group 𝐻1
cts(Γ, 𝐺 (𝑘)),

where the action of Γ on 𝐺 (𝑘) is the given one (via Γ→ Γ) in the semi-direct product.
We will consider L-parameters with 𝐺 (𝑘) � Γ being either 𝐿𝐺alg(𝑘) or 𝐿𝐺geom(𝑘), and Γ being

either Gal(𝐹𝑠/𝐹) for a global field F or Weil(𝐹𝑠
𝑣/𝐹𝑣 ) for a local field 𝐹𝑣 .

Note that the algebraic Γ-action on 𝐺 (𝑘) factors through a finite quotient Γ � Gal(F′/F). It is
clear that L-parameters into 𝐿𝐺alg(𝑘) are in bijection (under restriction) with L-parameters into 𝐺 (𝑘) �
Gal(F′/F) for any such F′; indeed, the set of all such L-parameters is identified with 𝐻1

cts(Γ, 𝐺 (𝑘)).
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We say that a homomorphism 𝜌 : Γ → 𝐿𝐺alg(𝑘) is semisimple7 if whenever it factors though a
parabolic 𝐿𝑃alg(𝑘) ⊂ 𝐿𝐺alg(𝑘), it also factors through a Levi 𝐿𝑀alg(𝑘) ⊂ 𝐿𝑃alg(𝑘) (see [Bor79, §3]
for the notion of parabolic and Levi subgroups of an L-group).

2.2. Presentation of the excursion algebra

Let Γ be a group, which is either Gal(𝐹𝑠/𝐹) for a global field F or Weil(𝐹𝑠/𝐹) for a local field F. Let
G be a reductive group over F and 𝐿𝐺alg the algebraic L-group as defined in §2.1.1.

We will define the excursion algebra Exc(Γ, 𝐿𝐺alg) to be the commutative algebra over k presented
by explicit generators and relations given below. (The topology on Γ will not be relevant for the definition
of Exc(Γ, 𝐿𝐺alg).) For a more conceptual perspective, see [Zhu, §2], wherein the excursion algebra is
denoted 𝑘 [RΓ,𝐿𝐺alg//𝐺].

2.2.1. Generators
We define O(𝐿𝐺

alg
𝑘 ) := lim

−−→𝐹 ′/𝐹
O(𝐺𝑘 � Gal(𝐹 ′/𝐹)), where the limit runs over finite extensions 𝐹 ′/𝐹

over which the Γ-action on 𝐺𝑘 factors.
Generators of Exc(Γ, 𝐿𝐺alg)will be denoted 𝑆𝐼 , 𝑓 , (𝛾𝑖)𝑖∈𝐼 , where the indexing set (𝐼, 𝑓 , (𝛾𝑖)𝑖∈𝐼 ) consists

of

(i) I is a finite (possibly empty) set,
(ii) 𝑓 ∈ O(𝐺𝑘\(

𝐿𝐺
alg
𝑘 )

𝐼 /𝐺𝑘 ) := O((𝐿𝐺
alg
𝑘 )

𝐼 )𝐺𝑘×𝐺𝑘 , where the quotient is for the actions of 𝐺𝑘 by
diagonal left and right translation, respectively, and

(iii) 𝛾𝑖 ∈ Γ for each 𝑖 ∈ 𝐼.

2.2.2. Relations
Next, we describe the relations. (Compare [Laf18, §10].)

(i) 𝑆∅, 𝑓 ,∗ = 𝑓 (1𝐺), an element of 𝑘 ⊂ Exc(Γ, 𝐿𝐺alg).
(ii) The map 𝑓 ↦→ 𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 is a k-algebra homomorphism in f ; that is,

𝑆𝐼 , 𝑓 + 𝑓 ′, (𝛾𝑖 )𝑖∈𝐼 = 𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 + 𝑆𝐼 , 𝑓 ′, (𝛾𝑖 )𝑖∈𝐼 ,

𝑆𝐼 , 𝑓 𝑓 ′, (𝛾𝑖 )𝑖∈𝐼 = 𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 · 𝑆𝐼 , 𝑓 ′, (𝛾𝑖 )𝑖∈𝐼 ,

and

𝑆𝐼 ,𝜆 𝑓 , (𝛾𝑖)𝑖∈𝐼 = 𝜆𝑆𝐼 , 𝑓 , (𝛾𝑖)𝑖∈𝐼 for all 𝜆 ∈ 𝑘.

(iii) For all maps of finite sets 𝜁 : 𝐼 → 𝐽, all 𝑓 ∈ O(𝐺𝑘\(
𝐿𝐺

alg
𝑘 )

𝐼 /𝐺𝑘 ), and all (𝛾 𝑗 ) 𝑗∈𝐽 ∈ Γ𝐽 , we have

𝑆𝐽 , 𝑓 𝜁 , (𝛾 𝑗 ) 𝑗∈𝐽 = 𝑆𝐼 , 𝑓 , (𝛾𝜁 (𝑖) )𝑖∈𝐼 ,

where 𝑓 𝜁 ∈ O(𝐺𝑘\(
𝐿𝐺

alg
𝑘 )

𝐽/𝐺𝑘 ) is defined by 𝑓 𝜁 ((𝑔 𝑗 ) 𝑗∈𝐽 ) := 𝑓 ((𝑔𝜁 (𝑖) )𝑖∈𝐼 ).
(iv) For all 𝑓 ∈ O(𝐺𝑘\(

𝐿𝐺
alg
𝑘 )

𝐼 /𝐺𝑘 ) and (𝛾𝑖)𝑖∈𝐼 , (𝛾′𝑖 )𝑖∈𝐼 , (𝛾
′′
𝑖 )𝑖∈𝐼 ∈ Γ

𝐼 , we have

𝑆𝐼�𝐼�𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼×(𝛾′𝑖)𝑖∈𝐼×(𝛾
′′
𝑖 )𝑖∈𝐼

= 𝑆𝐼 , 𝑓 , (𝛾𝑖 (𝛾′𝑖)−1𝛾′′𝑖 )𝑖∈𝐼
,

where �̃� ∈ O(𝐺𝑘\(
𝐿𝐺

alg
𝑘 )

𝐼�𝐼�𝐼 /𝐺𝑘 ) is defined by

�̃� ((𝑔𝑖)𝑖∈𝐼 × (𝑔
′
𝑖)𝑖∈𝐼 × (𝑔

′′
𝑖 )𝑖∈𝐼 ) = 𝑓 ((𝑔𝑖 (𝑔

′
𝑖)
−1𝑔′′𝑖 )𝑖∈𝐼 ).

7Also called ‘completely reducible’ in [BHKT19].
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(v) If f is inflated from a function on Γ𝐼 , then 𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 equals the scalar 𝑓 ((𝛾𝑖)𝑖∈𝐼 ). More generally,
if J is a subset of I and f is inflated from a function on (𝐺𝑘\(

𝐿𝐺
alg
𝑘 )

𝐽/𝐺𝑘 ) × Γ𝐼 \𝐽 , then we have

𝑆𝐼 , 𝑓 , (𝛾𝑖)𝑖∈𝐼 = 𝑆𝐽 , 𝑓 , (𝛾 𝑗 ) 𝑗∈𝐽
,

where 𝑓 ((𝑔 𝑗 ) 𝑗∈𝐽 ) := 𝑓 ((𝑔 𝑗 ) 𝑗∈𝐽 , (𝛾𝑖)𝑖∈𝐼\𝐽 ). (Compare [Laf18, p. 164].)

Definition 2.3. The excursion algebra Exc(Γ, 𝐿𝐺alg) is the k-algebra with generators and relations
specified as above.

2.3. Constructing Galois representations

The following result of Lafforgue (generalized to modular coefficients by Böckle-Harris-Khare-Thorne)
explains how to obtain Langlands parameters from characters of Exc(Γ, 𝐿𝐺alg).

Proposition 2.4 [BHKT19, Theorem 4.5], [Laf18, §13]. For any character 𝜈 : Exc(Γ, 𝐿𝐺alg) → 𝑘 ,
there is a semisimple L-parameter 𝜌𝜈 : Γ → 𝐿𝐺alg(𝑘) (for the discrete topology on Γ), unique up to
conjugation by 𝐺 (𝑘), which is characterized by the following condition:

For all 𝑛 ∈ N, 𝑓 ∈ O(𝐺𝑘\(
𝐿𝐺

alg
𝑘 )

𝑛+1/𝐺𝑘 ), and (𝛾0, . . . , 𝛾𝑛) ∈ Γ𝑛+1, we have

𝜈(𝑆{0,...,𝑛}, 𝑓 , (𝛾0 ,𝛾1 ,...,𝛾𝑛) ) = 𝑓 ((𝜌𝜈 (𝛾0𝛾𝑛), 𝜌𝜈 (𝛾1𝛾𝑛), . . . , 𝜌𝜈 (𝛾𝑛−1𝛾𝑛), 𝜌𝜈 (𝛾𝑛))). (2.3)

Remark 2.5. See also [FS, Corollary VIII.4.3] for more perspectives on, and generalizations of, this
statement.

Remark 2.6. In Proposition 2.4, the datum of 𝜌𝜈 up to conjugation is equivalent to that of a cohomology
class [𝜌𝜈] ∈ 𝐻1(Γ, 𝐺 (𝑘)), where Γ is given the discrete topology.

2.4. Another presentation for the excursion algebra

We will now describe a second presentation of Exc(Γ, 𝐿𝐺alg), following [Laf18, Lemma 0.31], which
is more useful for constructing actions of Exc(Γ, 𝐿𝐺alg) in practice.

2.4.1. Generators
We take a set of generators indexed by tuples of data of the form (𝐼, 𝑊, 𝑥, 𝜉, (𝛾𝑖)𝑖∈𝐼 ), where

(i) I is a finite set,
(ii) 𝑊 ∈ Rep𝑘 ((𝐿𝐺alg)𝐼 ) (cf. §2.1.4),

(iii) 𝑥 ∈ 𝑊 is a vector invariant under the diagonal 𝐺𝑘 -action,
(iv) 𝜉 ∈ 𝑊∗ is a functional invariant under the diagonal 𝐺𝑘 -action,
(v) 𝛾𝑖 ∈ Γ for each i.

The corresponding generator of Exc(Γ, 𝐿𝐺alg) will be denoted by 𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 ∈ Exc(Γ, 𝐿𝐺alg).

2.4.2. Relations
Next, we describe the relations.

(i) 𝑆∅,𝑥, 𝜉 ,∅ = 〈𝑥, 𝜉〉, an element of 𝑘 ⊂ Exc(Γ, 𝐿𝐺alg).
(ii) For any morphism of (𝐿𝐺

alg
𝑘 )

𝐼 -representations 𝑢 : 𝑊 → 𝑊 ′ and functional 𝜉 ′ ∈ (𝑊 ′)∗ invariant
under the diagonal 𝐺𝑘 -action, we have

𝑆𝐼 ,𝑊 ,𝑥,𝑢∗ ( 𝜉 ′) , (𝛾𝑖)𝑖∈𝐼 = 𝑆𝐼 ,𝑊 ′,𝑢 (𝑥) , 𝜉 ′, (𝛾𝑖 )𝑖∈𝐼 , (2.4)

where 𝑢∗ : (𝑊 ′)∗ → 𝑊∗ denotes the dual to u.
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(iii) For two tuples (𝐼1, 𝑊1, 𝑥1, 𝜉1, (𝛾1
𝑖 )𝑖∈𝐼1) and (𝐼2, 𝑊2, 𝑥2, 𝜉2, (𝛾2

𝑖 )𝑖∈𝐼2) as in §2.4.1, we have

𝑆𝐼1�𝐼2 ,𝑊1�𝑊2 ,𝑥1�𝑥2 , 𝜉1�𝜉2 , (𝛾
1
𝑖 )𝑖∈𝐼1×(𝛾

2
𝑖 )𝑖∈𝐼2

= 𝑆𝐼1 ,𝑊1 ,𝑥1 , 𝜉1 , (𝛾
1
𝑖 )𝑖∈𝐼1

◦ 𝑆𝐼2 ,𝑊2 ,𝑥2 , 𝜉2 , (𝛾
2
𝑖 )𝑖∈𝐼2

. (2.5)

Also,

𝑆𝐼1�𝐼2 ,𝑊1⊕𝑊2 , (𝑥1 ,𝑥2) , 𝜉1⊕𝜉2 , (𝛾
1
𝑖 )𝑖∈𝐼1×(𝛾

2
𝑖 )𝑖∈𝐼2

= 𝑆𝐼1 ,𝑊1 ,𝑥1 , 𝜉1 , (𝛾
1
𝑖 )𝑖∈𝐼1

+ 𝑆𝐼2 ,𝑊2 ,𝑥2 , 𝜉2 , (𝛾
2
𝑖 )𝑖∈𝐼2

. (2.6)

Furthermore, the assignment (𝐼, 𝑊, 𝑥, 𝜉, (𝛾𝑖)𝑖∈𝐼 ) ↦→ 𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ∈ Exc(Γ, 𝐿𝐺alg) is k-linear in
x and 𝜉.

(iv) Let 𝜁 : 𝐼 → 𝐽 be a map of finite sets. Suppose 𝑊 ∈ Rep((𝐿𝐺)𝐼 ), 𝑥 ∈ 𝑊Δ (𝐺) , 𝜉 : (𝑊∗)Δ (𝐺) , and
(𝛾 𝑗 ) 𝑗∈𝐽 ∈ Γ𝐽 . Letting 𝑊 𝜁 be the restriction of W under the functor Rep((𝐿𝐺)𝐼 ) → Rep((𝐿𝐺)𝐽 )
induced by 𝜁 , we have

𝑆𝐽 ,𝑊 𝜁 ,𝑥, 𝜉 , (𝛾 𝑗 ) 𝑗∈𝐽 = 𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝜁 (𝑖) )𝑖∈𝐼 . (2.7)

(v) Let 𝛿𝑊 : 1→ 𝑊 ⊗𝑊∗ and ev𝑊 : 𝑊∗ ⊗𝑊 → 1 be the natural counit and unit. Conflating x with a
𝐺-invariant map 1→ 𝑊 |Δ (𝐺) and similarly for 𝜉, we have

𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝑖 (𝛾
′
𝑖)
−1𝛾′′𝑖 )𝑖∈𝐼

= 𝑆𝐼�𝐼�𝐼 ,𝑊�𝑊 ∗�𝑊 ,𝛿𝑊 �𝑥, 𝜉�ev𝑊 , (𝛾𝑖 )𝑖∈𝐼×(𝛾
′
𝑖 )𝑖∈𝐼×(𝛾

′′
𝑖 )𝑖∈𝐼

. (2.8)

(vi) For 𝐽 ⊂ 𝐼, if W is inflated from a representation of (𝐿𝐺alg)𝐽 × Γ𝐼\𝐽 , then we have

𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 = 𝑆𝐽 ,𝑊 |
(𝐿𝐺alg )𝐽 , ( (1 𝑗 ) 𝑗∈𝐽 , (𝛾𝑖)𝑖∈𝐼\𝐽 ) ·𝑥, 𝜉 , (𝛾 𝑗 ) 𝑗∈𝐽 .

2.4.3. Relation between the presentations
The two presentations in §2.2 and §2.4 are related as follows. The generator 𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 corresponds
to 𝑆𝐼 , 𝑓𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 , where 𝑓𝑥, 𝜉 is the function on (𝐿𝐺𝑘 )

𝐼 given by (𝑔𝑖)𝑖∈𝐼 ↦→ 〈𝜉, (𝑔𝑖)𝑖∈𝐼 · 𝑥〉. The assump-
tions on 𝜉 and x imply that 𝑓𝑥, 𝜉 is invariant under the left and right diagonal 𝐺𝑘 -actions. The relations
in §2.4.2 imply that 𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 depends only on 𝑓𝑥, 𝜉 (and not on the choice of 𝑥, 𝜉) by [Laf18,
Lemme 10.6].

2.5. Functoriality for excursion algebras

A homomorphism of L-groups 𝜙 : 𝐿𝐻alg → 𝐿𝐺alg is admissible if it lies over the identity map on Γ
(i.e., the diagram below commutes).

𝐿𝐻alg 𝐿𝐺alg

Γ Γ.

𝜙

Id

Lemma 2.7. Let 𝜙 : 𝐿𝐻alg → 𝐿𝐺alg be an admissible homomorphism. Then there is a homomorphism
𝜙∗ : Exc(Γ, 𝐿𝐺alg) → Exc(Γ, 𝐿𝐻alg), which, in terms of the description of k-points of their correspond-
ing spectra given in Proposition 2.4, sends 𝜌 ∈ 𝐻1 (Γ, 𝐻 (𝑘)) to 𝜙 ◦ 𝜌 ∈ 𝐻1(Γ, 𝐺 (𝑘)).

Proof. The map 𝜙 induces Res𝜙 : Rep𝑘 (𝐿𝐺alg) → Rep𝑘 (𝐿𝐻alg). At the level of generators, the map
𝜙∗ sends

𝑆𝑉 ,𝑥, 𝜉 , {𝛾 }𝑖∈𝐼 ↦→ 𝑆Res𝜙 (𝑉 ) ,Res𝜙 (𝑥) ,Res𝜙 ( 𝜉 ) , {𝛾𝑖 }𝑖∈𝐼 .

We verify by inspection that this map sends relations to relations. To see that this indeed induces
composition with 𝜙 at the level of Langlands parameters, use (2.3). �
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Definition 2.8 (Base change). In the base change situation, where H is a reductive group over F and
𝐺 = Res𝐸/𝐹 (𝐻𝐸 ), the relevant morphism of L-groups 𝜙BC : 𝐿𝐻alg → 𝐿𝐺alg is defined by the formula
(ℎ, 𝛾) ↦→ (Δ (ℎ), 𝛾). In fact, this same formula also defines the corrresponding map of geometric
L-groups 𝜙

geom
BC : 𝐿𝐻geom → 𝐿𝐺geom, so 𝜙

geom
BC and 𝜙BC are compatible with (2.1) if we use the same

choice of square root of the cyclotomic character in the latter to define isomorphisms 𝐿𝐻alg � 𝐿𝐻geom

and 𝐿𝐺alg � 𝐿𝐺geom. We denote

𝜙∗BC : Exc(Γ, 𝐿𝐺alg) → Exc(Γ, 𝐿𝐻alg)

the induced map of excursion algebras.

3. Smith theory in locally finite type

Classical Smith theory concerns a type of equivariant localization that relates the mod p cohomology
of a topological space with the mod p cohomology of its fixed points under a Z/𝑝Z-action. Treumann
proposed in [Tre19] that this could be understood in terms of a ‘sheaf-theoretic Smith theory’ formalism,
which he developed at least in the context of complex algebraic varieties in the analytic topology. An
algebraic version of this theory was built in [RW22] for p-adic étale sheaves on finite type schemes (over
fields where p is invertible). We will need generalizations of this theory from finite type to locally finite
type. This is because we will want to apply the theory to the moduli spaces of shtukas, which are not of
finite type, but are locally of finite type.

Let us comment on some of the technical issues that arise in doing so. Because the cohomology
of locally finite type schemes is not necessarily finite-dimensional, already the basic formalism of
constructible sheaves and perfect complexes from [Tre19, RW22] does not apply. For example, we will
have to enlarge the notion of ‘Tate category’ to encompass the objects of interest.

We do not strive for the maximum possible generality, but our theory at least encompass all examples
of interest that will show up in this paper. In particular, we will use tricks to avoid discussing Smith
theory for stacks, which presents an interesting problem that could potentially refine our applications.
For steps that are very similar to the case of finite type schemes as treated already in [RW22], we will
only sketch the proofs.

3.1. The Tate category

Let Λ be a p-adic coefficient ring; we will be interested in the cases where Λ = 𝑘 or 𝑊 (𝑘). We will
denote by Λ[𝜎] the group ring of 〈𝜎〉 with coefficients in Λ. Our geometric objects will be over a field
of characteristic ≠ 𝑝, and we will consider Λ-adic sheaves.

Let Y be a separated, locally finite type scheme over a field. We let Perf (𝑌 ;Λ[𝜎]) ⊂ 𝐷𝑏
𝑐 (𝑌 ;Λ[𝜎])

be the full subcategory consisting of complexes whose stalks at all geometric points of Y are perfect
over Λ[𝜎].
Definition 3.1. We define Flat𝑏 (𝑌 ;Λ[𝜎]) ⊂ 𝐷𝑏 (𝑌 ;Λ[𝜎]) to be the full subcategory consisting of
bounded complexes whose stalks at all geometric points of Y are represented by bounded complexes of
flat (but not necessarily finite) Λ[𝜎]-modules.

The following Lemma will not be used essentially in the rest of the paper, but it may help to clarify
the nature of Flat𝑏 (𝑌 ; 𝑘 [𝜎]). We thank Jesper Grodal for pointing out a gap in the original argument
and also for suggesting its fix.
Lemma 3.2. The subcategory Flat𝑏 (𝑌 ; 𝑘 [𝜎]) ⊂ 𝐷𝑏 (𝑌 ; 𝑘 [𝜎]) coincides with the full subcategory of
objects which locally have finite tor-amplitude over 𝑘 [𝜎].
Proof. For any commutative ring A, a complex of A-modules has finite tor-amplitude if and only if it is
represented by a bounded complex of flat A-modules [Sta20, Tag 08G1]. This shows that any object of
𝐷𝑏 (𝑌 ; 𝑘 [𝜎]) with locally finite tor-amplitude over 𝑘 [𝜎] lies in Flat𝑏 (𝑌 ; 𝑘 [𝜎]).
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For the converse direction, note that a complex has tor-amplitude in [𝑎, 𝑏] if and only if all its stalks
at geometric points have tor-amplitude in [𝑎, 𝑏] by [Sta20, Tag 0DJJ]. Hence, it suffices to show that
if K ∈ 𝐷𝑏 (𝑌 ; 𝑘 [𝜎]) has finite tor-amplitude at all stalks, then its tor-amplitude is uniformly bounded.
The key observation is as follows: if K ∈ 𝐷𝑏 (𝑌 ; 𝑘 [𝜎]) is represented by a global complex concentrated
in degrees [𝑎, 𝑏] and all its stalks at geometric points have finite tor-amplitude, then, in fact, all of its
stalks at geometric points have tor-amplitude in [𝑎, 𝑏]. Given this observation, we may conclude by
using [Sta20, Tag 0DJJ].

Next, we prove the observation. It suffices to show that if K is a complex over 𝑘 [𝜎] supported in
degrees [𝑎, 𝑏] which has finite tor-amplitude, then K has tor-amplitude [𝑎, 𝑏]. Since k is Artinian, 𝑘 [𝜎]
is also Artinian. For a module over an Artinian local ring, the properties of being flat and projective
coincide [Sta20, Tag 051E]. Therefore, K also has finite projective dimension [Sta20, Tag 0A5M].
Furthermore, since 𝑘 [𝜎] has finitistic dimension zero, the projective amplitude of K lies in [𝑎, 𝑏].
Hence, K is represented by a complex of projective 𝑘 [𝜎]-modules supported in degrees [𝑎, 𝑏] and
therefore has tor-amplitude in [𝑎, 𝑏]. �

Definition 3.3. The (constructible) Tate category of Y (with respect toΛ) is the Verdier quotient category
𝐷𝑏

𝑐 (𝑌 ;Λ[𝜎])/Perf (𝑌 ;Λ[𝜎]).
This is the construction considered under the name ‘Tate category’ in [Tre19], at least when Y is a

complex-analytic variety. According to [Tre19, Remark 4.1], the category 𝐷𝑏
𝑐 (𝑌 ;Λ[𝜎])/Perf (𝑌 ;Λ[𝜎])

can be regarded as a derived category of perfect complexes over a certain ‘𝐸∞-ring spectrum’ TΛ. So
we will denote the corresponding Tate categories by Perf (𝑌 ; TΛ). For our purposes, TΛ can be thought
of as just a notational device.

We will require the following enlargement of the constructible Tate category. We define the (bounded
ind-constructible) Tate category of Y (with respect to Λ) to be the Verdier quotient category

Shv(𝑌 ; TΛ) := 𝐷𝑏 (𝑌 ;Λ[𝜎])/Flat𝑏 (𝑌 ;Λ[𝜎]).

We denote the tautological projection maps from 𝐷𝑏
𝑐 (𝑌 ;Λ[𝜎]) to Perf (𝑌 ; TΛ) and from 𝐷𝑏 (𝑌 ;Λ[𝜎])

to Shv(𝑌 ; TΛ) by

T
∗ : 𝐷𝑏 (𝑌 ;Λ[𝜎]) → Shv(𝑌 ; TΛ), and T

∗ : 𝐷𝑏
𝑐 (𝑌 ;Λ[𝜎]) → Perf (𝑌 ; TΛ).

Note that the fully faithful embedding 𝐷𝑏
𝑐 (𝑌 ;Λ[𝜎]) → 𝐷𝑏 (𝑌 ;Λ[𝜎]) carries Perf (𝑌 ;Λ[𝜎]) into

Flat𝑏 (𝑌 ;Λ[𝜎]) and so induces a functor

Perf (𝑌 ; TΛ) → Shv(𝑌 ; TΛ), (3.1)

which is conservative (e.g., because Perf (𝑌 ;Λ[𝜎]) ⊂ 𝐷𝑏
𝑐 (𝑌 ;Λ[𝜎]) can also be characterized as the

full subcategory of objects locally having finite tor-amplitude over Λ[𝜎], according to Lemma 3.2).

Example 3.4 [Tre19, Proposition 4.2]. The (bounded ind-constructible) Tate category over a point
(meaning the spectrum of a separably closed field) is 𝐷𝑏 (Λ[𝜎])/Flat𝑏 (Λ[𝜎]). In this category, the
shift-by-2 functor is isomorphic to the identity functor, as one sees by considering the nullhomotopic
complex

0→ 𝑉 → 𝑉 ⊗ Λ[𝜎]
1−𝜎
−−−→ 𝑉 ⊗ Λ[𝜎] → 𝑉 → 0,

whose middle two terms project to 0 in the Tate category.

3.2. The Smith operation

Let Y be a separated, locally finite type scheme with a 𝜎-action that is admissible in the sense of [SGA1,
Exposé 5, Définition 1.7]. By [RW22, Remark 2.2], this is automatic if Y is exhausted by quasi-projective
schemes over a field.
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There is an equivariant bounded derived category 𝐷𝑏
𝜎 (𝑌 ;Λ). We distinguish this from the equivariant

bounded constructible derived category 𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ), a full subcategory of 𝐷𝑏

𝜎 (𝑌 ;Λ) that will also be of
interest to us. Note that since 𝜎 acts trivially on the 𝜎-fixed subscheme 𝑌 𝜎 ⊂ 𝑌 , we have an equivalence
of derived categories

𝐷𝑏
𝜎 (𝑌

𝜎 ;Λ) � 𝐷𝑏 (𝑌 𝜎;Λ[𝜎]), and 𝐷𝑏
𝑐,𝜎 (𝑌

𝜎;Λ) � 𝐷𝑏
𝑐 (𝑌

𝜎 ;Λ[𝜎]). (3.2)

Then the ‘Smith operation’ (cf. [Tre19, Definition 4.2]) is the functor

Psm := T∗ ◦ 𝑖∗ : 𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ) → Perf (𝑌 𝜎 ; TΛ) (3.3)

defined as the composition of 𝑖∗ : 𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ) → 𝐷𝑏

𝑐,𝜎 (𝑌
𝜎 ;Λ)

(3.2)
� 𝐷𝑏

𝑐 (𝑌
𝜎;Λ[𝜎]) with the projection

T
∗ to Perf (𝑌 𝜎 ; TΛ).

We extend this definition to bounded ind-constructible Tate categories in the analogous manner,
defining

Psm := T∗ ◦ 𝑖∗ : 𝐷𝑏
𝜎 (𝑌 ;Λ) → Shv(𝑌 𝜎 ; TΛ). (3.4)

Remark 3.5. For F ∈ 𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ), there is potential confusion about whether ‘Psm(F)’ denotes the

result of applying (3.3) or (3.4). But there is a natural isomorphism between the functors

𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ) Psm

−−−→ Perf (𝑌 𝜎 ; TΛ)
(3.1)
−−−−→ Shv(𝑌 𝜎 ; TΛ)

and

𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ)

(3.1)
−−−−→ 𝐷𝑏

𝜎 (𝑌 ;Λ) Psm
−−−→ Shv(𝑌 𝜎; TΛ),

so the meaning is unambiguous once the ambient category is specified. When the distinction is important,
we will take care to specify the ambient category.

The following properties are used to prove that our extended version of Psm retains the good behavior
enjoyed by the constructible version.

Lemma 3.6. Retain the notation and assumptions above. Assume that the 𝜎-action on Y is free. Let
𝑞 : 𝑌 → 𝑌/𝜎 denote the quotient (which exists as a map of schemes by admissibility of the 𝜎-action
on Y). Then for any F ∈ 𝐷𝑏 (𝑌 ;Λ[𝜎]), we have 𝑞∗F ∈ Flat𝑏 (𝑌/𝜎;Λ[𝜎]) ⊂ 𝐷𝑏 (𝑌/𝜎;Λ[𝜎]).

Proof. The same argument as [RW22, Lemma 2.3] works here. To summarize, for any geometric point
𝑦 → 𝑌/𝜎, and 𝑥 → 𝑌 lifting it, we have

(𝑞∗F)𝑦 � F𝑥 ⊗Λ Λ[𝜎],

which is visibly in Flat𝑏 (𝑦;Λ[𝜎]). �

Lemma 3.7. Retain the notation and assumptions above. Let 𝑈 := 𝑌 \ 𝑌 𝜎 be the open complement of
the 𝜎-fixed locus of Y, and 𝑗 : 𝑈 ↩→ 𝑌 be its inclusion into Y. Then for any F ∈ 𝐷𝑏 (𝑈;Λ[𝜎]) and any
geometric point 𝑦 of 𝑌 𝜎 , the stalk (𝑅 𝑗∗F)𝑦 lies in Flat𝑏 (𝑦;Λ[𝜎]) ⊂ 𝐷𝑏 (𝑦;Λ[𝜎]).

Proof. A similar argument as in [RW22, Proposition 2.5] works here. Since the map 𝑞 : 𝑌 → 𝑌/𝜎 is
totally ramified at 𝑦, we have a 𝜎-equivariant identification (𝑅 𝑗∗F)𝑦 � (𝑞∗𝑅 𝑗∗F)𝑞 (𝑦) . Then by the
commutativity of the diagram
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𝑈 𝑌

𝑈/𝜎 𝑌/𝜎

𝑗

𝑞𝑈 𝑞

𝑗

we have (𝑞∗𝑅 𝑗∗F)𝑞 (𝑦) � (𝑅 𝑗∗𝑞𝑈∗F)𝑞 (𝑦) . Now Lemma 3.6 implies that 𝑞𝑈∗F has finite tor-amplitude,
and combining [Sta20, Tag 0F10] with [SGA4-3, Exposé XVII, Théorème 5.2.11] implies that 𝑅 𝑗∗
preserves finiteness of tor-amplitude, so their composition has locally finite tor-amplitude. �

The good properties of Psm come from the following Lemma, which was proved for finite type
schemes in [RW22, Lemma 3.5] (following [Tre19, Theorem 4.7] in the topological situation).

Lemma 3.8. Retain the notation and assumptions above. Let 𝑖 : 𝑌 𝜎 ↩→ 𝑌 . Then for any F ∈ 𝐷𝑏
𝜎 (𝑌 ;Λ),

the cone of 𝑖!F → 𝑖∗F belongs to Flat𝑏 (𝑌 𝜎;Λ[𝜎]).

Proof. Let 𝑗 : 𝑌 \ 𝑌 𝜎 ↩→ 𝑌 . Consider the exact triangle 𝑖∗𝑖
!F → F → 𝑗∗ 𝑗

∗F on Y. Applying 𝑖∗ to it
yields the exact triangle in 𝐷𝑏 (𝑌 𝜎 ;Λ[𝜎]):

𝑖!F → 𝑖∗F → 𝑖∗𝑅 𝑗∗ 𝑗
∗F .

By Lemma 3.7, 𝑖∗𝑅 𝑗∗ 𝑗
∗F ∈ Flat𝑏 (𝑌 𝜎;Λ[𝜎]). �

Lemma 3.9. Suppose 𝑓 : 𝑌 → 𝑆 is a locally finite type and separated 𝜎-equivariant morphism between
locally finite type schemes, of bounded dimension. Then 𝑅 𝑓! : 𝐷𝑏 (𝑌 ;Λ[𝜎]) → 𝐷𝑏 (𝑆;Λ[𝜎]) carries
Flat𝑏 (𝑌 ;Λ[𝜎]) to Flat𝑏 (𝑆;Λ[𝜎]).

Proof. We may write Y as a filtered colimit of open subschemes 𝑌𝛼 of finite type. Then for F ∈
𝐷𝑏 (𝑌 ;Λ[𝜎]), we have an identification of 𝑅 𝑓!F with the colimit over 𝑅 𝑓! (F |𝑌𝛼 ). Since filtered colimits
preserve flatness, we are reduced to the same statement in the finite type situation (where one can also
replace ‘Flat𝑏’ by Perf), which is obtained by combining [Sta20, Tag 0F10] and [SGA4-3, Exposé XVII,
Théorème 5.2.10]. �

Remark 3.10. Note that Lemma 3.9 would not have been true with ‘Flat𝑏’ replaced by ‘Perf’. This is
why we need to consider ind-constructible sheaves when not in a finite type situation.

Corollary 3.11. Suppose 𝑓 : 𝑌 → 𝑆 is a locally finite type and separated morphism between locally
finite type schemes, of bounded dimension. Suppose 𝜎 acts trivially on S and freely on Y, and f is
𝜎-equivariant. Then 𝑅 𝑓! : 𝐷𝑏 (𝑌 ;Λ[𝜎]) → 𝐷𝑏 (𝑆;Λ[𝜎]) lands in Flat𝑏 (𝑌 ;Λ[𝜎]).

Proof. By the hypotheses, we may factor f as the composition

𝑌
𝑞
−→ 𝑌/𝜎

𝑓
−→ 𝑆.

Then apply Lemma 3.6 to 𝑞! and Lemma 3.9 to 𝑓 !. �

3.3. Functors on Tate categories

Throughout this subsection, we let 𝑓 : 𝑌 → 𝑆 denote a 𝜎-equivariant locally finite type morphism of
locally finite type schemes with admissible 𝜎-action, of bounded dimension.

3.3.1. Pullback
Since 𝑓 ∗ : 𝐷𝑏

𝜎 (𝑆
𝜎; 𝑘) → 𝐷𝑏

𝜎 (𝑌
𝜎; 𝑘) preserves stalks, it preserves flat and perfect complexes and so

descends to the Tate category to induce 𝑓 ∗ : Shv(𝑆𝜎; TΛ) → Shv(𝑌 𝜎 ; TΛ) and 𝑓 ∗ : Perf (𝑆𝜎; TΛ) →
Perf (𝑌 𝜎 ; TΛ).
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3.3.2. Proper pushforward
By Lemma 3.9, 𝑅 𝑓! : 𝐷𝑏 (𝑌 𝜎 ;Λ[𝜎]) → 𝐷𝑏 (𝑆𝜎;Λ[𝜎]) descends to

𝑅 𝑓! : Shv(𝑌 𝜎 ; TΛ) → Shv(𝑆𝜎; TΛ).

Proposition 3.12. The following diagram commutes:

𝐷𝑏
𝜎 (𝑌 ;Λ) 𝐷𝑏

𝜎 (𝑆;Λ)

Shv(𝑌 𝜎 ; TΛ) Shv(𝑆𝜎; TΛ).
Psm

𝑅 𝑓!

Psm
𝑅 𝑓!

Proof. We may as well replace S by 𝑆𝜎 and thus assume that the 𝜎-action on S is trivial. Let
F ∈ 𝐷𝑏

𝜎 (𝑌 ;Λ). Denoting 𝑖 : 𝑌 𝜎 ↩→ 𝑌 and j the inclusion of the open complement, we have a dis-
tinguished triangle in 𝐷𝑏

𝜎 (𝑌 ;Λ):

𝑗! 𝑗∗F → F → 𝑖∗𝑖
∗F .

Abbreviate 𝑓 𝜎 := 𝑓 ◦ 𝑖 : 𝑌 𝜎 → 𝑆. By definition, 𝜎 acts freely on U, which implies that 𝑅 𝑓! ◦ ( 𝑗! 𝑗∗F) ∈
Flat𝑏 (𝑆;Λ[𝜎]) by Corollary 3.11. Hence, the cone of 𝑅 𝑓!F → 𝑅 𝑓 𝜎! (𝑖

∗F) lies in Flat𝑏 (𝑆;Λ[𝜎]) and
therefore becomes 0 in Shv(𝑆; TΛ). Hence, we have

T
∗(𝑅 𝑓!F) � T∗(𝑅 𝑓 𝜎! (𝑖

∗F)) � 𝑅 𝑓! Psm(F) ∈ Shv(𝑆; TΛ),

which exactly expresses the desired commutativity. �

3.4. Tate cohomology

For a Λ[𝜎]-module M, its Tate cohomology groups are

𝑇0 (𝑀) :=
𝑀𝜎

𝑁 · 𝑀
, 𝑇1 (𝑀) :=

ker(𝑁 : 𝑀 → 𝑀)

(1 − 𝜎) · 𝑀
.

(Recall that 𝑁 := 1 + 𝜎 + . . . + 𝜎𝑝−1.) We will generalize this to complexes and then sheaves.

3.4.1. Tate cohomology of complexes
The exact sequence of Λ[𝜎]-modules

0→ Λ→ Λ[𝜎]
1−𝜎
−−−→ Λ[𝜎] → Λ→ 0

induces a morphism

Λ→ Λ[2] ∈ 𝐷𝑏 (Λ[𝜎]). (3.5)

Given a bounded-below complex of Λ[𝜎]-modules 𝐶•, we define its Tate cohomology as

𝑇 𝑖 (𝐶•) = lim
−−→
𝑛→∞

Hom𝐷 (Λ[𝜎 ]) (Λ, 𝐶• [𝑖 + 2𝑛]),

where the transition maps are those induced by (3.5).
Evidently, 𝑇 𝑖 (𝐶•) is 2-periodic in i. It is clear that this construction descends to the derived category,

so we can view Tate cohomology as a collection of functors

𝑇 𝑖 : 𝐷𝑏 (Λ[𝜎]) → Mod/𝑇 0 (Λ) .
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Now we specialize to the case where Λ = 𝑘 . Note that by [Sta20, Tag 051E], a module over 𝑘 [𝜎] is flat
if and only if it is free. Since Tate cohomology of free 𝑘 [𝜎]-complexes vanishes (by inspection), this
construction further factors through the Tate category, inducing

𝑇 𝑖 : Shv(pt; T𝑘 ) → Vect/𝑘 .

Remark 3.13. If 𝐶• is a bounded 𝑘 [𝜎]-module, which will always be the case for us in practice,
then we may regard 𝐶• ∈ 𝐷 (pt; 𝑘 [𝜎]) and the argument of [LL21, Proposition 4.5.1] gives a natural
isomorphism

𝑇 𝑖 (𝐶•) � HomShv(pt;T𝑘 ) (𝑘,T∗𝐶• [𝑖]).

The following is obvious from the definition but important enough to record.

Lemma 3.14. Suppose 𝐶• ∈ 𝐷𝑏 (𝑘 [𝜎]) is inflated from 𝐷𝑏 (𝑘) (i.e., 𝜎 acts trivially on 𝐶•). Then
𝑇∗𝐶• � 𝐻∗(𝐶•) ⊗ 𝑇∗(𝑘), where k is equipped with the trivial 𝜎-action in the formation of 𝑇∗(𝑘).

3.4.2. Tate cohomology sheaves
If S has the trivial 𝜎-action, then Shv(𝑆; TΛ) is defined. Given F ∈ 𝐷𝑏 (𝑆;Λ[𝜎]), we define Tate
cohomology sheaves

𝑇 𝑖F := lim
−−→
𝑛→∞

H𝑜𝑚𝐷 (𝑆;Λ[𝜎 ]) (Λ,F [𝑖 + 2𝑛]),

where the transition maps are induced by the map Λ → Λ[2] ∈ 𝐷 (𝑆;Λ[𝜎]) pulled back from (3.5).
The 𝑇 𝑖F are étale sheaves of 𝑇0Λ-modules, where 𝑇0Λ is the 0th Tate cohomology of Λ viewed as a
trivial 𝜎-module.

For Λ = 𝑘 , we also have the description

𝑇 𝑖F � H𝑜𝑚Shv(𝑆;T𝑘 ) (𝑘,T∗F [𝑖])

on S, which is an étale sheaf of 𝑇0 (𝑘) = 𝑘-modules.

3.4.3. Tate cohomology for a morphism
For F ∈ 𝐷𝑏

𝜎 (𝑌 ; 𝑘), we have 𝑅 𝑓!F ∈ 𝐷𝑏
𝜎 (𝑆; 𝑘). If S has the trivial 𝜎-action, then we can form 𝑇 𝑖𝑅 𝑓!F ,

which we call the ‘relative Tate cohomology of F’.
If S is the spectrum of a separably closed field equipped with the trivial 𝜎-action, then we will

abbreviate 𝑇 𝑖 (𝑌 ;F) := 𝑇 𝑖 (𝑅 𝑓!F) and call it the ‘Tate cohomology of Y with coefficients in F’.

Remark 3.15. Note that if 𝜎 acts trivially on Y and on S, then the construction F ↦→ 𝑅 𝑓!F factors over
Shv(𝑌 ; T𝑘 ) by Lemma 3.9. In this situation, we will also regard 𝑇 𝑖𝑅 𝑓! as a functor on Shv(𝑌 ; T𝑘 ).

3.4.4. The long exact sequence for Tate cohomology
Given a distinguished triangle F ′ → F → F ′′ ∈ 𝐷𝑏

𝜎 (𝑌 ; 𝑘), we have a long exact sequence

. . . 𝑇−1𝑅 𝑓! (F ′′)

𝑇0𝑅 𝑓!(F ′) 𝑇0𝑅 𝑓!(F) 𝑇0𝑅 𝑓!(F ′′)

𝑇1𝑅 𝑓!(F ′) 𝑇1𝑅 𝑓!(F) 𝑇1𝑅 𝑓!(F ′′)

𝑇2𝑅 𝑓!(F ′) . . .
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3.4.5. Equivariant localization
We explain that Proposition 3.12 encompasses the classical equivariant localization theorems of ‘Smith
theory’ (e.g., [Qui71, Theorem 4.2]). Proposition 3.12 says that for F ∈ 𝐷𝑏

𝜎 (𝑌 ; 𝑘), we have

Psm(𝑅 𝑓!F) � (𝑅 𝑓 |𝑌 𝜎 )! Psm(F) ∈ Shv(𝑆𝜎; T𝑘 ).

In particular, if L is the spectrum of a separably closed with the trivial action of 𝜎, we get

T
∗𝑅Γ𝑐 (𝑌 ;F) � 𝑅Γ𝑐 (𝑌

𝜎; Psm(F)). (3.6)

4. Parity sheaves and the base change functor

We begin by indicating where this section is headed.
The Geometric Satake equivalence P𝐿+𝐺 (Gr𝐺; 𝑘) � Rep𝑘 (𝐺) provides the link between G and its

Langlands dual group. In the situation of functoriality, we have a map 𝐻 → 𝐺, and we would like to
describe the induced restriction operation Rep𝑘 (𝐺) → Rep𝑘 (𝐻) on the other side of the Geometric
Satake equivalence, as a geometric operation on perverse sheaves.

In the context of base change, it is even the case that there is an embedding Gr𝐻 ↩→ Gr𝐺 , and when
seeking to describe functoriality, it is natural to look to the Smith operation. (One motivation is that the
papers [Tre19, TV16] verify that the function-theoretic Smith operation is indeed related to functoriality
for Hecke algebras.) However, the Smith operation lands in a Tate category, and in Example 3.4 we saw
that in the Tate category, the shift-by-2 functor is isomorphic to the identity functor. This makes it seem
unlikely that one can capture the notion of ‘perverse sheaf’ in the Tate category.

Juteau-Mautner-Williamson invented the theory of parity sheaves, which have seen significance in
modular representation theory. Parity sheaves are cut out in the derived category by constraints on
the parity of cohomological degrees and can therefore make sense in a context where cohomological
degrees are only defined modulo 2. The notion of Tate-parity sheaves was introduced in [LL21] as an
analog of parity sheaves for the Tate category and was found to enjoy analogous properties.

After briefly reviewing the notions of parity and Tate-parity sheaves in §4.1 and §4.2, we will
establish that the Smith operation respects the parity property, at least under certain conditions satisfied
in our application of interest. Using ‘coefficient lifting’ properties of parity sheaves, this will allow us
to ultimately define a functor BC from parity sheaves on Gr𝐺 to parity sheaves on Gr𝐻 , which realizes
base change functoriality on the geometric side. We note that in this section, we will only need the
‘constructible’ version of Smith theory for schemes and not the generalizations developed in §3.

4.1. Parity sheaves

We begin with a quick review of the theory of parity sheaves. We will take coefficients in a ring Λ which
is a complete local PID (i.e., a field or complete DVR) – in our applications of interest will be either k
or O := 𝑊 (𝑘).

Let Y be a stratified variety over a separably closed field of characteristic ≠ 𝑝, with stratification
𝑆 = {𝑌𝜆}. For the theory of parity sheaves to work, we need to assume that the (induced) stratification
on Y is JMW, meaning

• for any two finite Λ-free local systems L,L′ on a stratum 𝑌𝜆, we have Ext𝑖 (L,L′) is free over Λ for
all i and vanishes when i is odd.

This holds for Kac-Moody flag varieties over separably closed fields and, in particular, for affine flag
varieties over separably closed fields [JMW14, §4.1].

Fix a pariversity † : 𝑆 → Z/2Z. In this paper, we will always take the dimension pariversity
†(𝑌𝜆) := dim𝑌𝜆 mod 2, so we will sometimes omit the pariversity from the discussion. Recall that
[JMW14] define even complexes (with respect to the pariversity †) to be those F ∈ 𝐷𝑏

𝑆 (𝑌 ;Λ) such that
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for all 𝑖𝜆 : 𝑌𝜆 ↩→ 𝑌 , for 𝑌𝜆 ∈ 𝑆, 𝑖∗𝜆F and 𝑖!
𝜆F have cohomology sheaves which are Λ-free and supported

in degrees congruent to †(𝑌𝜆) modulo 2, and odd complexes analogously. They define parity complexes
to be direct sums of even and odd complexes. The full subcategory of (S-constructible) parity complexes
(with coefficients in Λ) is denoted Parity𝑆 (𝑌 ;Λ).

Theorem 4.1 [JMW14, Theorem 2.12]. Let F be an indecomposable parity complex. Then

• F has irreducible support, which is therefore of the form 𝑌𝜆 for some 𝑌𝜆 ∈ 𝑆,
• 𝑖∗𝜆F is a shifted Λ-free local system L[𝑚] and
• Any indecomposable parity complex supported on 𝑌𝜆 and extending L[𝑚] is isomorphic to F .

A parity sheaf (with respect to †) is an indecomposable parity complex (with respect to †), with 𝑌𝜆
the dense stratum in its support and extending L[dim𝑌𝜆]. Given L[dim𝑌𝜆], it is not clear, in general,
that a parity sheaf extending it exists. If it does exist, then Theorem 4.1 guarantees its uniqueness, and
we denote it by E (𝜆,L). The existence is guaranteed for Gr𝐺 with the usual stratification by 𝐿+𝐺-orbits;
E (𝜆,L) can moreover be promoted to a 𝐿+𝐺-equivariant complex if p is not a torsion prime for G
[JMW16, Theorem 1.4]. If E (𝜆,L) exists for all 𝜆 and L, we will say that ‘all parity sheaves exist’.

4.2. Tate-parity sheaves

As we have seen, the cohomological grading in the Tate category is only well defined modulo 2, so it
does not seem to make sense to talk about perverse sheaves in the Tate category. However, elements
of the Tate category have Tate cohomology sheaves (§3.4.2), which are indexed by Z/2Z, so it could
make sense to talk about an analog of parity sheaves in the Tate category. As Leslie-Lonergan [LL21]
observed, for this to work, we must take coefficients in the integral version of the Tate category, meaning
Λ = O = 𝑊 (𝑘), because then we have that (say by [LL21, Proposition 4.6.1])

Ext∗Perf (TO) (T
∗(O),T∗(O)) =

⊕
𝑖∈Z

𝑘 [2𝑖] (4.1)

is supported in even degrees. This is necessary for the assumption of nonvanishing odd Exts in the
definition of the JMW stratification.

For a stratification S on Y, we define Perf𝑆 (𝑌 ; TO) ⊂ Perf (𝑌 ; TO) to be the full subcategory generated
by images of objects in 𝐷𝑏

𝑆 (𝑌 ;O[𝜎]). Letting Perf𝑆 (𝑌 ;O[𝜎]) ⊂ Perf (𝑌 ;O[𝜎]) be the full thick
subcategory of S-constructible objects, we have by [LL21, Corollary 4.5.2] that

𝐷𝑏
𝑆 (𝑌 ;O[𝜎])/Perf𝑆 (𝑌 ;O[𝜎]) ∼−→ Perf𝑆 (𝑌 ; TO).

Definition 4.2 [LL21, Definition 5.3.1]. Let F ∈ Perf𝑆 (𝑌 ; TO). Fix a pariversity † : 𝑆 → Z/2Z.

1. For ? ∈ {∗, !}, we say F is ?-Tate-even (with respect to †) if for each 𝑌𝜆 ∈ 𝑆, we have

𝑇†(𝑌𝜆)+1(𝑖?
𝜆F) = 0.

2. For ? ∈ {∗, !}, we say F is ?-Tate-odd (with respect to †) if F [1] is ?-Tate-even.
3. We sayF is Tate-even (resp. Tate-odd) ifF is both ∗-Tate even (resp. odd) and !-Tate even (resp. odd).
4. We say F is Tate-parity complex (with respect to †) if it is isomorphic within Perf𝑆 (𝑌 ; TO) to the

direct sum of a Tate-even complex and a Tate-odd complex.8

The full subcategory of (S-constructible) Tate-parity complexes (with coefficients in TO) is denoted
Parity𝑆 (𝑌 ; TO). If S arises from the orbits of a group G, then the corresponding stratification is denoted
with a subscript (𝐺).

8This is to be distinguished from the (upcoming) notion of Tate-parity sheaf, which is more restrictive.
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Parallel to Theorem 4.1, we have the following result in this context:

Proposition 4.3 [LL21, Theorem 5.5.6]. Let F be an indecomposable Tate-parity complex.

1. The support of F is of the form 𝑌𝜆 for a unique stratum 𝑌𝜆.
2. Suppose G and F are two indecomposable Tate-parity complexes such that supp(G) = supp(F).

Letting 𝑗𝜆 : 𝑌𝜆 ↩→ 𝑌 be the inclusion of the unique stratum open in this support, if 𝑗∗𝜆G � 𝑗∗𝜆F , then
G � F .

Proof. The same argument as in [JMW14, Theorem 2.12] works. �

We define 𝜖∗ : 𝐷𝑏
𝑐 (𝑌 ;O) → 𝐷𝑏

𝑐 (𝑌 ;O[𝜎]) for the inflation through the augmentation 𝜖 : O[𝜎] � O.
Recall that T∗ : 𝐷𝑏

𝑐 (𝑌 ;O[𝜎]) → Perf (𝑌 ; TO) denotes projection to the Tate category. We are interested
in Tate complexes that come from the composite functor

T
∗𝜖∗ : 𝐷𝑏

𝑆 (𝑌 ;O) 𝜖 ∗

−−→ 𝐷𝑏
𝑆 (𝑌 ;O[𝜎]) T

∗

−−→ Perf𝑆 (𝑌 ; TO).

Definition 4.4. A Tate-parity sheaf F ∈ Perf𝑆 (𝑌 ; TO) is an indecomposable Tate-parity complex with
the property that its restriction to the unique stratum 𝑌𝜆 which is dense in its support is of the form
T
∗𝜖∗L[dim𝑌𝜆] for an indecomposableO-free local system L on 𝑌𝜆. If such an F exists, then it is unique,

and we denote it by ET (𝜆,L).
If ET (𝜆,L) exists for all 𝑌𝜆 ∈ 𝑆 and all L, we will say that ‘all Tate-parity sheaves exist’ (for 𝑌, 𝑆).

4.3. Modular reduction

We now explain that the functor T∗ has good properties that one would expect from ‘base change
of coefficients’ functors for categories of sheaves in classical rings. We will suppress mention of the
pariversity †.

Proposition 4.5 [LL21, Proposition 5.6.3, Theorem 5.6.4]. (1) If F ∈ 𝐷𝑏
𝑆 (𝑋;O) is even/odd, then

T
∗𝜖∗F ∈ Perf𝑆 (𝑋; TO) is Tate-even/odd.

(2) If the parity sheaf E = E (𝜆,L) exists and satisfies Hom𝐷𝑏
𝑆
(𝑌 ;O) (E , E [𝑛]) = 0 for all 𝑛 < 0 (this

holds for example if E is perverse9), then ET (𝜆,L) exists, and we have

T
∗𝜖∗E (𝜆,L) � ET (𝜆,L).

Remark 4.6. The Proposition (and its proof) are analogous to the following results of parity sheaves
[JMW14, §2.5]. Let F denote the base change functor

F = 𝑘
𝐿
⊗O (−) : 𝐷𝑏

𝑆 (𝑌 ;O) → 𝐷𝑏
𝑆 (𝑌 ; 𝑘).

The functor F enjoys the following properties.

1. F ∈ 𝐷𝑏
𝑆 (𝑋;O) is a parity sheaf if and only if F(E) ∈ 𝐷𝑏

𝑆 (𝑋; 𝑘) is a parity sheaf.
2. If E (𝜆,L) exists, then E (𝜆, FL) exists, and we have

FE (𝜆,L) � E (𝜆, FL).

Proof of Proposition 4.5. We reproduce the proof from [LL21] because it brings up certain ideas that
will be needed later. The operation T∗𝜖∗ is compatible with formation of 𝑖∗𝜆 or 𝑖!

𝜆. Hence, to prove (1),
we reduce to examining 𝑇 𝑖𝜖∗L for a local system L of free O-modules, with the trivial 𝜎-action. This
reduces to the fact that the Tate cohomology of O is supported in even degrees, which is (4.1).

9In fact, this is both necessary and sufficient by [MR18, Lemma 6.6], which we thank Simon Riche for pointing out to us.
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For (2), we just need to check that T∗𝜖∗E (𝜆,L) is indecomposable. Since Parity𝑆 (𝑌 ; TO) is
Krull-Remak-Schmidt by [LL21, Proposition 5.5.2], it suffices to check that the endomorphism ring of
T
∗𝜖∗E (𝜆,L) is local. According to [LL21, Proposition 4.6.1], for F ,G ∈ 𝐷𝑏

𝑆 (𝑌 ;O), we have

HomPerf (𝑌 ;TO) (T
∗𝜖∗F ,T∗𝜖∗G) �

⊕
𝑖∈Z

Hom𝐷𝑏
𝑆
(𝑌 ;𝑘) (FF , FG [2𝑖]). (4.2)

We apply this to F = G = E (𝜆,L). Since E (𝜆,L) is parity, [JMW14, (2.13)] applies to show that

Hom𝐷𝑏
𝑆
(𝑌 ;𝑘) (FE (𝜆,L), FE (𝜆,L)) = F ⊗ Hom𝐷𝑏

𝑆
(𝑌 ;O) (E (𝜆,L), E (𝜆,L)).

By indecomposability of E (𝜆,L), the ring Hom𝐷𝑏
𝑆
(𝑌 ;O) (E (𝜆,L), E (𝜆,L)) is local, so F ⊗

Hom𝐷𝑏
𝑆
(𝑌 ;O) (E (𝜆,L), E (𝜆,L)) is also local. This shows that the subalgebra on the RHS of (4.2) indexed

by 𝑖 = 0 is local, and the assumption implies that the summands of (4.2) indexed by negative i vanish.
This implies the desired locality of the graded algebra (4.2). �

What we have seen can be summarized by the following slogan:
If all parity sheaves exist and have vanishing negative self-Exts, then all Tate-parity sheaves exist,

and T∗ ◦ 𝜖∗ induces a bijection between parity sheaves and Tate-parity sheaves.

4.4. The lifting functor

We will now define a functor lifting Tate-parity sheaves to parity sheaves. In fact, the preceding slogan
already tells us what to do about objects, so we just need to specify what happens on morphisms.

Definition 4.7. A normalized (Tate-)parity complex is a direct sum of (Tate-)parity sheaves with no
shifts. Hence, under our assumptions, an indecomposable (Tate)-parity complex is normalized if and
only if its restriction to the dense open stratum in its support 𝑌𝜆 is isomorphic to L[dim𝑌𝜆] (resp.
T
∗𝜖∗L[dim𝑌𝜆]) for an indecomposable local system L. We denote the full subcategory of normalized

(Tate)-parity complexes by Parity0
𝑆 (𝑌 ;O) ⊂ Parity𝑆 (𝑌 ;O) (resp. Parity0

𝑆 (𝑌 ; TO) ⊂ Parity𝑆 (𝑌 ; TO)) and
call them the categories of normalized (Tate)-parity sheaves.

Under the assumption that all parity sheaves exist and have vanishing negative self-Exts,
Proposition 4.5 implies that E (𝜆,L) ↦→ T∗𝜖∗E (𝜆,L) � ET (𝜆,L) induces a bijection between nor-
malized parity sheaves and normalized Tate-parity sheaves. We then have a ‘lifting functor’ [LL21,
Theorem 5.6.6]

𝐿 : Parity0
𝑆 (𝑌 ; TO) → Parity0

𝑆 (𝑌 ; 𝑘)

sending ET (𝜆,L) to E (𝜆,L ⊗O 𝑘) on objects and on morphisms inducing projection to the summand
indexed by 𝑖 = 0 under identification (4.2). It can be thought of as an ‘intermediate’ reduction between
O and k in the sense that the following diagram commutes:

Parity0
𝑆 (𝑌 ;O) Parity0

𝑆 (𝑌 ; TO)

Parity0
𝑆 (𝑌 ; 𝑘).

T
∗ 𝜖 ∗

F
𝐿 (4.3)

4.5. Parity sheaves on the affine Grassmannian and tilting modules

We now consider the preceding theory in the context of the affine Grassmannian Gr𝐺 over a separably
closed field F, with the stratification by 𝐿+𝐺-orbits. Since this is a special case of a Kac-Moody flag
variety, the stratification is JMW by [JMW14, §4.1].
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If p is a good prime for 𝐺, [MR18, Corollary 1.6] implies that all parity sheaves exist and that all
normalized parity sheaves are perverse. Therefore, the category of normalized parity sheaves corre-
sponds under the Geometric Satake equivalence to some subcategory of Rep𝑘 (𝐺), and it is natural to
ask what this is. The answer is given in terms of tilting modules for 𝐺 (recall that these are the objects of
Rep𝑘 (𝐺) having both a filtration by standard objects and a filtration by costandard objects). The tilting
property is preserved by direct sum and tensor products (the latter assertion is a nontrivial theorem).
Let Tilt𝑘 (𝐺) ⊂ Rep𝑘 (𝐺) denote the full subcategory of tilting modules.

Theorem 4.8 [MR18, Corollary 1.6]. If p is good for G, then the Geometric Satake equivalence restricts
to an equivalence10

Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) � Tilt𝑘 (𝐺).

Proof. The proof in [MR18] is written for the affine Grassmannian over the complex numbers but
adapts to our situation with some small modifications. First, one takes Gr𝐺 over F instead of over C
as in [MR18]. The proof of Theorem 4.8 follows formally as in [MR18, §6.5] from an equivalence of
categories between the category of Iwahori-equivariant parity sheaves with coefficients in k on Gr𝐺 and
the category of tilting objects in the heart of Bezrukavnikov’s exotic t-structure on �̌� ×G𝑚-equivariant
tilting objects on the Springer resolution Ñ . This equivalence is, in turn, proved by a Soergel bimodule
argument. The analysis of the ‘coherent side’ in [MR18, §4,5] is literally the same as in our situation.
The analysis of the ‘constructible side’ in [MR18, §3] applies verbatim to Gr𝐺 over F except at one point:
in [MR18, Proof of Lemma 3.6, p.22], the property that ‘the map O(𝔱∗/𝑊 × 𝔱∗/𝑊) → 𝐻∗𝐿+𝐺 (Gr𝐺;ℜ)
factors throughO(Δ)’ is proved using the ‘loop group presentation’ of the complex affine Grassmannian;
an alternate argument for this fact that works in arbitrary characteristic is provided in [Zhu17, Lemma
5.2.4]. �

Remark 4.9. A much shorter argument for Theorem 4.8, but with a slightly worse bound on p, is given
in [JMW16, Theorem 1.8].

We need a few facts about the representation theory of tilting modules. For our arithmetic applications,
the key point is that there are ‘enough’ tilting modules to generate the derived category of Rep𝑘 (𝐺), as
articulated by the statement below (which, in fact, applies to general highest weight categories).

Proposition 4.10 [Ric, Proposition 7.17]. The natural projection from the bounded homotopy category
𝐾𝑏 (Tilt𝑘 (𝐺)) to 𝐷𝑏 (Rep𝑘 (𝐺)) is an equivalence.

4.6. Base change functoriality for the Satake category

We now consider a specific geometric situation relevant to Langlands functoriality for p-cyclic base
change. Let F be a field of characteristic ≠ 𝑝. We will consider reductive groups and their affine
Grassmannians over F.

4.6.1. The base change setup
We now specialize the situation a bit further: H is any reductive group over F and 𝐺 = 𝐻 𝑝 . We let 𝜎
act on G by cyclic rotation, sending the ith factor to the (𝑖 + 1)st (mod p) factor. Then it is clear that the
stratification on Gr𝐺 by 𝐿+𝐺-orbits induces by restriction the stratification on Gr𝐻 by 𝐿+𝐻-orbits.

Evidently the ‘diagonal’ embedding 𝐻 ↩→ 𝐺 realizes H as the fixed points of G under the automor-
phism 𝜎. This map 𝐻 ↩→ 𝐺 also induces a diagonal map Gr𝐻 → Gr𝐺 .

10Strictly speaking, the cited references employ the trivial pariversity instead of the dimension pariversity. Since dimensions
of Schubert strata in Gr𝐺 have constant parity on connected components, the trivial pariversity and dimension pariversity lead to
the same notion of parity complexes in this case, so the only difference is in the notion of ‘normalization’. We follow [LL21] in
the use of the dimension pariversity so that perverse sheaves are †-even.
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Lemma 4.11. The diagonal map induces an isomorphism Gr𝐻 � Gr𝜎𝐺 as subfunctors of Gr𝐺 .

Proof. We have Gr𝐺 � (Gr𝐻 ) 𝑝 , with 𝜎 acting by cyclic rotation of the factors, from which the claim
is clear. �

Henceforth, we assume that p is odd and good for 𝐺 so that the results of §4.5 apply.
We aim to give a ‘geometric’ description of the corresponding functor under the Geometric Satake

equivalence, Parity𝐿+𝐺 (Gr𝐺; 𝑘) → Parity𝐿+𝐻 (Gr𝐻 ; 𝑘), in terms of Smith theory. (Of course, one could
give an ‘ad hoc’ description using that 𝐺 = 𝐻 𝑝 . The point is to define a functor that does not make
reference to this, which will then generalize well, using descent, to the situation where 𝐺 = ResE/F(𝐻)
for a nontrivial field extension E/F.)

Definition 4.12. Given F ∈ P𝐿+𝐺 (Gr𝐺;Λ), we define

Nm(F) := F ★ 𝜎F ★ . . . ★ 𝜎𝑝−1F ∈ P𝐿+𝐺�𝜎 (Gr𝐺;Λ),

equipped with the 𝜎-equivariant structure coming from the commutativity constraint for
(P𝐿+𝐺 (Gr𝐺;Λ),★):

𝜎 Nm(F) = 𝜎F ★ . . . ★ 𝜎𝑝−1F ★F ∼
−→ F ★ 𝜎F ★ . . . ★ 𝜎𝑝−1F = Nm(F). (4.4)

Using the realization functor P𝐿+𝐺�𝜎 (Gr𝐺;Λ) → 𝐷𝐿+𝐺�𝜎 (Gr𝐺;Λ), we view Nm(F) ∈
𝐷𝐿+𝐺�𝜎 (Gr𝐺;Λ) (so that we may apply the Smith functor, for example). Equipping a general object of
𝐷𝐿+𝐺 (Gr𝐺;Λ) with a 𝜎-equivariant structure is much more involved than just specifying isomorphisms
(4.4) (satisfying cocycle conditions), so we emphasize that we construct Nm(F) first as a 𝜎-equivariant
perverse sheaf and then apply the realization functor to get a 𝜎-equivariant object of 𝐷𝐿+𝐺 (Gr𝐺;Λ).

Remark 4.13. In our applications, we will assume that p is large enough so that all parity sheaves are
perverse. The properties of being 𝐿+𝐺-constructible and 𝐿+𝐺-equivariant are equivalent for perverse
sheaves on Gr𝐺 . Therefore, we will not need to worry about any extra complications coming from the
equivariance.

Lemma 4.14. Let 𝑖 : Gr𝐻 � Gr𝜎𝐺 ↩→ Gr𝐺 . ForF ∈ P𝐿+𝐺 (Gr𝐺;O), regard Nm(F) ∈ P𝑏
𝐿+𝐺�𝜎 (Gr𝐺;O)

as in Definition 4.12 above. Suppose that all the cohomology sheaves of F have O-free stalks and
costalks.

(i) The stalks of the cohomology sheaves of 𝑖∗ Nm(F) have an O[𝜎]-stable filtration with associated
graded a direct sum of either trivial or free O[𝜎]-modules.

(ii) The costalks of the cohomology sheaves of 𝑖! Nm(F) have anO[𝜎]-stable filtration with associated
graded a direct sum of either trivial or free O[𝜎]-modules.

Proof. If F has a finite 𝐿+𝐺-equivariant filtration whose associated graded satisfies the hypotheses of
the Lemma, then the statement of Lemma for F can be checked on the associated graded. Since Gr𝜆𝐺 is
a product of homogeneous spaces for (a finite type quotient of) 𝐿+𝐻, there is a finite 𝐿+𝐺-equivariant
filtration of F with associated graded of being a direct sum of sheaves of the form F1 � . . .�F𝑝 , where
each F𝑖 ∈ P𝐿+𝐻 (Gr𝐻 ;O). Hence, we reduce to the case where F is itself of this form. Then

Nm(F) ≈ (F1 ★F2 ★ . . . ★F𝑝) � (F2 ★ . . . ★F𝑝 ★F1) � . . . � (F𝑝 ★F1 ★ . . . ★F𝑝−1),

with 𝜎 acting by rotating the tensor factors and the 𝜎-equivariant structure coming from the commuta-
tivity constraint.

Write F ′ := F1 ★ F2 ★ . . . ★ F𝑝 ∈ P𝐿+𝐻 (Gr𝐻 ;O). Since i may be identified with the diagonal
embedding Gr𝐻 ↩→ Gr𝑝𝐻 , we have 𝑖∗(NmF) ≈ (F ′) ⊗𝑝, with 𝜎-equivariant structure given by cyclic
rotation of the tensor factors. In particular, the stalk of 𝑖∗(NmF) at 𝑥 ∈ Gr𝐻 is the tensor-induction of
the stalk of F ′𝑥 from O to O[𝜎]. Hence, it suffices to prove that any cohomology sheaf of such a tensor
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induction has an O[𝜎]-equivariant filtration by either trivial or free O[𝜎]-modules. This is verified by
explicit inspection: choosing a basis for H 𝑗 (F ′𝑥), the induced basis of H 𝑗 (F ′𝑥)⊗𝑝 is grouped into either
trivial or free orbits under the 𝜎-action.

The argument for (ii) is completely analogous (alternatively, we could deduce it simply by applying
Verdier duality to (i)). �

4.6.2. Smith theory for parity sheaves
We return momentarily to the general setup for Smith theory: Y is a variety over F with an admissible
𝜎-action and 𝑍 = 𝑌 𝜎 . We assume that F is separably closed and the stratification S on Y satisfies the
JMW condition.

Proposition 4.15 (Variant of [LL21, Theorem 6.1.1]). Assume that each stratum 𝑌𝜆 is smooth. Suppose
E ∈ 𝐷𝑏

𝑆,𝜎 (𝑌 ;O) is a parity complex satisfying the following condition:

• all ∗ and !-stalks of cohomology sheaves of E at fixed points 𝑦 ∈ 𝑌 have an O[𝜎]-stable filtration
with associated graded being a direct sum of trivial or free O[𝜎]-modules.

Then Psm(E) ∈ Perf𝑆 (𝑍; TO) is Tate-parity with respect to the induced stratification 𝑍𝜆 = 𝑌𝜆 ∩ 𝑍 and
the induced pariversity †𝑍 (𝜆) := †𝑌 (𝜆).

Proof. This theorem is closely related to [LL21, Theorem 6.1.1], but loc. cit. imposes the stronger
condition that the 𝜎-action on all stalks is trivial. This is satisfied in their application (to the loop-
rotation action), but not in ours, so we need to redo the argument in the requisite generality.

Let 𝑍 = 𝑌 𝜎 and take the induced stratification on Z. Let 𝑖 : 𝑍 → 𝑌 , 𝑖𝑌𝜆 : 𝑌𝜆 ↩→ 𝑌 , 𝑖𝑍𝜆 : 𝑍𝜆 ↩→ 𝑍 ,
𝑖𝜆 : 𝑍𝜆 ↩→ 𝑌𝜆. Without loss of generality, suppose E is an even complex on Y. We are given that (𝑖𝑌𝜆 )

?E
has O-free cohomology sheaves supported in degrees congruent to †𝑌 (𝜆) mod 2, where ? ∈ {∗, !}; we
want to show that (𝑖𝑍𝜆 )

? Psm(E) has Tate-cohomology sheaves supported in degrees congruent to †𝑍 (𝜆)
mod 2. Unraveling the definitions, we have

(𝑖𝑍𝜆 )
∗ Psm(E) = (𝑖𝑍𝜆 )∗T∗𝑖∗E � T∗(𝑖𝑍𝜆 )∗𝑖∗E � T∗(𝑖𝜆)∗(𝑖𝑌𝜆 )∗E .

Similarly, using Lemma 3.8, we have

(𝑖𝑍𝜆 )
! Psm(E) � T∗(𝑖𝜆)!(𝑖𝑌𝜆 )!E . (4.5)

By hypothesis, (𝑖𝑌𝜆 )
∗E has its cohomology sheaves supported in degrees congruent to †𝑌 (𝜆) (mod 2).

So the stalks of (𝑖𝜆)∗(𝑖𝑌𝜆 )
∗E are supported in degrees congruent to †𝑌 (𝜆) (mod 2), and we must verify

that their Tate cohomology groups are also supported in degrees of a single parity.
By assumption (*), all the stalks have an O[𝜎]-stable filtration with associated graded being a direct

sum of trivial or freeO[𝜎]-modules. For trivialO[𝜎]-modules, the odd Tate cohomology groups vanish
by (4.1), while for free O[𝜎]-modules, all the Tate cohomology groups vanish. Hence, all odd Tate
cohomology groups vanish by the long exact sequence for Tate cohomology (§3.4.4). This shows that
the Tate cohomology sheaves of (𝑖𝜆)∗(𝑖𝑌𝜆 )

∗E are supported in degrees congruent to †𝑌 (𝑌𝜆) (mod 2).
To show that (𝑖𝜆)!(𝑖𝑌𝜆 )

!E also has Tate cohomology sheaves supported in degrees congruent to †𝑌 (𝜆)
(mod 2), we make a similar analogous argument using (4.5) instead. This shows that T∗(𝑖𝜆)∗(𝑖𝑌𝜆 )

!E lies
in degrees congruent to †𝑌 (𝑌𝜆) (mod 2), and then we conclude by observing that (𝑖𝜆)∗(𝑖𝑌𝜆 )

!E differs
from (𝑖𝜆)!(𝑖𝑌𝜆 )

!E by an even shift (and twist) by the Gysin isomorphism, which applies because the
strata are assumed to be smooth (noting that the smoothness of 𝑍𝜆 follows from the smoothness of 𝑌𝜆
by [CGP15, Proposition A.8.11], so 𝑍𝜆 ↩→ 𝑌𝜆 is a regular embedding). �

For an O-linear abelian category C, with all Hom-spaces being free O-modules, we abbreviate

C ⊗O 𝑘 := C ⊗O−Mod (𝑘 −Mod).
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Lemma 4.16. Suppose that all the strata 𝑌𝜆 are simply connected and all parity sheaves E (𝜆,L) exist
for all 𝑌𝜆 ∈ 𝑆. Then we have that

Parity0
𝑆,𝜎 (𝑌 ;O) ⊗O 𝑘

∼
−→ Parity0

𝑆,𝜎 (𝑌 ; 𝑘).

Proof. To see that the functor is well defined, we note the following:
• The Hom-spaces of Parity0

𝑆,𝜎 (𝑌 ;O) are all free O-modules by [JMW14, Remark 2.7], so that the
domain is well defined.

• The functor lands in parity sheaves since the modular reduction of aO-parity sheaf is a k-parity sheaf
by Remark 4.6.

It is essentially surjective because every k-parity sheaf lifts to a O-parity sheaf under our assumption
that all parity sheaves exist and all strata are simply connected (which implies that all k-local systems
on strata lift to O since they are trivial). The fact that the functor is fully faithful follows from [JMW14,
(2.39)]. �

4.6.3. The base change functor
We return now to the base change setup of §4.6.1, with F separably closed. Let F ∈ Parity0

𝐿+𝐺 (Gr𝐺;O).
Then F ∈ P𝐿+𝐺 (Gr𝐺;O) is perverse since p is good for 𝐺 (this is a part of Theorem 4.8), and
Nm(F) ∈ Parity0

𝐿+𝐺�𝜎 (Gr𝐺;O) is a parity sheaf by [JMW16, Theorem 1.5]. Furthermore, the
𝜎-equivariant structure on Nm(F) satisfies the assumption (*) of Proposition 4.15 by Lemma 4.14.

The Schubert cells of Gr𝐺 are indexed by tuples 𝜆 := (𝜆1, . . . , 𝜆𝑝) ∈ 𝑋∗(𝐺)
+, with each 𝜆𝑖 ∈ 𝑋∗(𝐻)

+,
and we have {

Gr𝜆𝐺 ∩Gr𝐻 = Gr𝜆1
𝐻 𝜆 = (𝜆1, . . . , 𝜆1),

Gr𝜆𝐺 ∩Gr𝐻 = ∅ otherwise.

We claim that as long as 𝑝 > 2, the induced pariversity coincides with the dimension pariversity on
Gr𝐻 – that is, for 𝜆 = (𝜆1, . . . , 𝜆𝑝) ∈ 𝑋∗(𝐺)

+, we have

dim Gr𝜆1
𝐻 ≡ dim Gr𝜆𝐺 (mod 2).

This will imply the following:
1. We may apply Proposition 4.15 to deduce that Psm(Nm(F)) ∈ Parity(𝐿+𝐻 ) (Gr𝐻 ; TO) is Tate-parity

with respect to the dimension pariversity on Gr𝐻 .
2. Psm(Nm(F)) ∈ Parity0

(𝐿+𝐻 )
(Gr𝐻 ; TO) (i.e., is normalized).

To prove the claim, we may focus on the case where 𝜆1 = . . . = 𝜆𝑝 or else the statement is vac-
uous. By [Zhu17, Proposition 2.1.5], we have dim Gr𝜆𝐺 = 〈2𝜌𝐺 , 𝜆〉. So we just have to verify that
〈2𝜌𝐺 , (𝜆1, . . . , 𝜆1)〉 ≡ 〈2𝜌𝐻 , 𝜆1〉 (mod 2). Indeed, 𝜌𝐺 = (𝜌𝐻 , . . . , 𝜌𝐻 ), so 〈2𝜌𝐺 , (𝜆1, . . . , 𝜆1)〉 =
𝑝〈2𝜌𝐻 , 𝜆1〉, and p is odd.

Thanks to points (1) and (2) above, we can apply the lifting functor L to Psm(Nm(F)). By Lemma
4.16, the composite functor 𝐿 ◦ Psm ◦Nm factors uniquely through a functor Parity0

𝐿+𝐺 (Gr𝐺; 𝑘) →

Parity0
𝐿+𝐻 (Gr𝐻 ; 𝑘).

Construction 4.17 (Frobenius twist of categories). Let Frob be the absolute Frobenius of k. Given a
k-linear category C, there is another k-linear category C(𝑝) := C ⊗𝑘,Frob 𝑘 . Concretely, it is equivalent
to the category which has the same objects as C, and morphisms

HomC(𝑝) (𝑥, 𝑦) = HomC(𝑥, 𝑦) (𝑝) := HomC (𝑥, 𝑦) ⊗𝑘,Frob 𝑘.

The tautological map HomC(𝑥, 𝑦) → HomC(𝑥, 𝑦) (𝑝) is Frob-semilinear over k and induces an equiva-
lence FrobC : C

∼
−→ C(𝑝) , which is Frob-semilinear. The functor FrobC : C → C(𝑝) is characterized by
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the universal property that any Frob-semilinear functor 𝐹 : C→ D (meaning a functor between k-linear
categories that is Frob-semilinear over k on morphisms) factors uniquely through a k-linear functor
C(𝑝) → D.

C

C(𝑝) D

FrobC
𝐹

Now, given a presentation

𝐹0 : C � C0 ⊗F𝑝 𝑘 := C0 ⊗Vect/F𝑝 Vect/𝑘 (4.6)

for some F𝑝-linear category C0, then there is another k-linear equivalence C
∼
−→ C(𝑝) , which with

reference to (4.6) is the tensor product of IdC0 with the k-linear equivalence Vect(𝑝)
/𝑘
� Vect/𝑘 induced

by the k-linear isomorphism 𝑘 ⊗Frob,𝑘 𝑘 � 𝑘 . Therefore, (4.6) induces a Frob-semilinear equivalence
Frob𝐹0 : C

∼
−→ C.

Definition 4.18. We define

BC(𝑝) : Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) → Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

to be the functor unique filling in the commutative diagram

Parity0
𝐿+𝐺 (Gr𝐺;O) Parity0

(𝐿+𝐻 )
(Gr𝐻 ; TO)

Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘).

Psm ◦Nm

F 𝐿

BC(𝑝)

(4.7)

One more step is required to define what we call the base change functor BC. Note that BC(𝑝) is
Frob-semilinear over k; we wish to linearize it. It is evident from the definitions that the equivalence
𝐷 (Gr𝐺; 𝑘) � 𝐷 (Gr𝐺; F𝑝) ⊗F𝑝 𝑘 induces

𝐹0 : Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) � Parity0

𝐿+𝐺 (Gr𝐺; F𝑝) ⊗F𝑝 𝑘.

Let Frob𝑝 := Frob𝐹0 : Parity0
𝐿+𝐺 (Gr𝐺; 𝑘)

∼
−→ Parity0

𝐿+𝐺 (Gr𝐺; 𝑘) be the k-semilinear equivalence in-
duced by 𝐹0, as explained in Construction 4.17. We define

BC := BC(𝑝) ◦ Frob−1
𝑝 : Parity0

𝐿+𝐺 (Gr𝐺; 𝑘) → Parity0
𝐿+𝐻 (Gr𝐻 ; 𝑘).

Remark 4.19. The construction of BC was motivated by a similar functor ‘𝐿𝐿’ appearing in [LL21,
§6.2], which gives a partial geometric description of the Frobenius contraction functor on 𝐺. Another
motivation was the ‘normalized Brauer homomorphism’ of [TV16, §4.3], which our construction
categorifies.

Theorem 4.20. Let ResBC : Rep𝑘 (𝐺) → Rep𝑘 (𝐻) be a restriction along the diagonal embedding. We
also denote by ResBC the same functor restricted to the subcategories of tilting modules.11 The following
diagram commutes:

11Note that it is not obvious that ResBC preserves the tilting property, but this follows from the nontrivial theorem (building on
work of many authors – see the discussion around [JMW16, Theorem 1.2]) that tensor products of tilting modules are tilting.
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Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

Tilt𝑘 (𝐺) Tilt𝑘 (𝐻).

∼

BC

∼

ResBC

The proof is given in Appendix A.
The triangulated structure on 𝐷𝐿+𝐻 (Gr𝐻 ; 𝑘 [𝜎]) equips Perf𝐿+𝐻 (Gr𝐺; T𝑘 ) with the notion of cone

(namely, the image of a cone in 𝐷𝐿+𝐻 (Gr𝐻 ; 𝑘 [𝜎])). We say that a sequence A → B → C in
𝐷𝐿+𝐻 (Gr𝐻 ; T𝑘 ) is exact if the induced map Cone(A → B) → C in Perf𝐿+𝐻 (Gr𝐻 ; T𝑘 ) is an iso-
morphism.

Lemma 4.21. The composite functor

Rep𝑘 (𝐺)
Frob−1

𝑝
−−−−−→ Rep𝑘 (𝐺)

Sat
−−→ P𝐿+𝐺 (Gr𝐺; 𝑘)

Nm
−−→ P𝐿+𝐺�𝜎 (Gr𝐺; 𝑘)

Psm
−−−→ Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 )

is exact (i.e., sends exact sequences to exact sequences in the above sense).

The proof requires some notions from Appendix A and will be postponed to §A.6.

4.6.4. Equivariantization and Galois descent
Assuming Theorem 4.20, let us give a few variants related to descent to a ground field which is not
separably closed. Suppose H base changed from some subfield F0 ⊂ F, and 𝐺 = ResE0/F0 (𝐻E0) for
some Galois extension E0/F0 with Galois group Z/𝑝Z. Then 𝐺F ≈ (𝐻F)

𝑝 and Aut(F/F0) acts on
𝐻F, 𝐺F and therefore also on Gr𝐻,F, Gr𝐺,F.

Lemma 4.22 (Galois equivariance). In the situation above, the functor

BC : Parity0
𝐿+𝐺 (Gr𝐺,F; 𝑘) → Parity0

𝐿+𝐻 (Gr𝐻,F; 𝑘)

is equivariant with respect to the action of Aut(F/F0).

Proof. The constituent functors Nm, 𝑖∗, T∗ and L are all Aut(F/F0)-equivariant, as is Frob−1
𝑝 . It remains

only to see that the dashed arrow in (4.7) is Aut(F/F0)-equivariant. This follows because 𝐿 ◦ Psm ◦Nm
and F both have this property, and F is essentially surjective and full. �

We refer to [DGNO10] for the theory of ‘equivariantization’ and ‘de-equivariantization’ of cat-
egories. Given a group Γ acting on categories C, D and a Γ-equivariant functor 𝐹 : C → D, the
Γ-equivariantization of F is the functor 𝐹𝐵Γ : C𝐵Γ → D𝐵Γ. If C and D are derived categories of sheaves
and F is induced by geometric operations that are Γ-equivariant, then the equivariantization construc-
tion exists for equivariant derived categories. (We make this remark because if the Γ-equivariantization
of a derived category is not the same as the Γ-equivariant derived category; it is the latter that we want
to consider.)

Thanks to Lemma 4.22, the equivariantization of BC induces

BC𝐵 Aut(F/F0) : Parity0
𝐿+𝐺 (Gr𝐺,F; 𝑘)𝐵 Aut(F/F0) → Parity0

𝐿+𝐻 (Gr𝐻,F; 𝑘)𝐵 Aut(F/F0) .

We define Parity0
𝐿+𝐺 (Gr𝐺,F0 ; 𝑘) := Parity0

𝐿+𝐺 (Gr𝐺,F; 𝑘)𝐵 Aut(F/F0) and similarly for H (note that in
§4.1, parity sheaves were only defined for varieties over separably closed fields since the axioms of a
JMW stratification would not otherwise be satisfied). We define Tilt𝑘 (𝐿𝐺) to be the subcategory of
Rep𝑘 (𝐿𝐺) consisting of representations whose restriction to 𝐺 is tilting and Tilt𝑘 (𝐿𝐺geom) to be the
full subcategory of Rep𝑘 (𝐿𝐺geom) consisting of representations whose restriction to 𝐺 is tilting; then
Tilt𝑘 (𝐿𝐺geom) � Tilt𝑘 (𝐺)Aut(F/F0) ,geom, and similarly for 𝐿𝐻.

Then applying Aut(F/F0)-equivariantization to Theorem 4.20 yields:
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Corollary 4.23. The following diagram is commutative.

Parity0
𝐿+𝐺 (Gr𝐺,F0 ; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻,F0 ; 𝑘)

Tilt𝑘 (𝐿𝐺geom) Tilt𝑘 (𝐿𝐻geom)

∼

BC𝐵Aut(F/F0 )

∼

ResBC

4.6.5.
Let 𝐻/F0 and 𝐺/F0 be as before. The following compatibility statement will be needed later.

Lemma 4.24. The cube

Parity0
𝐿+𝐺�𝜎 (Gr𝐺; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

Parity0
𝐿+𝐺�𝜎 (Gr𝐺;O) Parity0

(𝐿+𝐻 )
(Gr𝐻 ; TO)

𝐷𝑏
𝑐,𝐿+𝐺�𝜎 (Gr𝐺; 𝑘) Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 )

𝐷𝑏
𝑐,𝐿+𝐺�𝜎 (Gr𝐺;O) Perf (𝐿+𝐻 ) (Gr𝐻 ; TO)

T
∗ 𝜖 ∗Psm

F 𝐿

Psm

Psm

F F

(4.8)

commutes, where L is lifting functor 𝐿 : Parity0
𝐿+𝐻 (Gr𝐻 ; TO) → Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘) from §4.4, and
the unlabeled arrow is defined as the one that makes the top face commute. (It exists by the universal
property of the categorical tensor product.)

Proof. The left face commutes by definition of F. It is obvious from the definition that the front face
commutes. The bottom face commutes by compatibility of Psm with tensoring coefficients. The top
face commutes by definition.

To see that the right face commutes, consider the diagram

Parity0
𝐿+𝐺 (Gr𝐺;O) Parity0

(𝐿+𝐻 )
(Gr𝐻 ; TO) Parity0

(𝐿+𝐻 )
(Gr𝐻 ; 𝑘)

𝐷𝑏
𝑐,𝐿+𝐻 (Gr𝐻 ;O) Perf (𝐿+𝐻 ) (Gr𝐻 ; TO) Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 ).

T
∗ 𝜖 ∗ 𝐿

T
∗ 𝜖 ∗

T
∗ 𝜖 ∗ F

(4.9)

The right square of (4.9) is the right square of the cube (4.8), which we want to show commutes. Since
the middle column is a Verdier quotient of the left column, it suffices to show that the outer square of
(4.9) commutes. Next, note that the composite of the upper horizontal arrows in (4.9) is the modular
reduction functor F by definition (4.3), so we can factor the outer square of (4.9) as the outer quadrilateral
in the diagram below.
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Parity0
𝐿+𝐺 (Gr𝐺;O) Parity0

𝐿+𝐺 (Gr𝐻 ; 𝑘)

𝐷𝑏
𝑐,𝐿+𝐻 (Gr𝐻 ;O) 𝐷𝑏

𝑐,𝐿+𝐻 (Gr𝐻 ; 𝑘)

Perf𝑏
(𝐿+𝐻 ) (Gr𝐻 ; T𝑘 )

F

F

T
∗ 𝜖 ∗

Obviously the commutativity of the outer quadilateral follows from the commutativity of the inner
rectangle, which is then immediate from the definition of F.

It remains to show that the back face commutes. Consider juxtaposing the top and back faces of cube
(4.8) to get

Parity0
𝐿+𝐺 (Gr𝐺;O) Parity0

(𝐿+𝐻 )
(Gr𝐻 ; TO)

Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

𝐷𝑏
𝑐,𝐿+𝐺 (Gr𝐺; 𝑘) Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 ).

F

Psm

𝐿

T
∗ 𝜖 ∗

Psm

(4.10)

We want to show that the lower square commutes. The composite vertical arrows on left and right
columns are both the modular reduction functorF fromO-coefficients to k coefficients, so the outer square
commutes. The dashed arrow is defined as the k-linearization of 𝐿◦Psm, noting that Parity0

𝐿+𝐺 (Gr𝐺; 𝑘) �
Parity0

𝐿+𝐺 (Gr𝐺 ;O) ⊗O 𝑘 . Therefore, the right-then-down (resp. down-then-right) composite functor in
the lower square is the k-linearization of the right-then-down (resp. down-then-right) composite functor
in the upper square, so the commutativity of the lower square follows from that of the upper square,
completing the proof. �

Remark 4.25. Let us try to make some vague remarks about the utility of Lemma 4.24. The unlabeled
arrow in the top face is a priori somewhat mysterious, but the Lemma says that after projecting to the
Tate category, it has a simple description in terms of Psm. Later, we will take Tate cohomology with
coefficients indexed by the type of parity sheaves constructed in this section. Note that Tate cohomology
factors through the projection of these sheaves to the Tate category. Therefore, the computation of Tate
cohomology is not so sensitive to the subtleties in the constructions of this section; the purpose of this
section has more to do with the indexing of coefficient sheaves, in terms of the discussion of §1.3.

5. On global base change

In this section, we will apply the preceding theory to moduli stacks of shtukas in the context of Lafforgue’s
construction of the global Langlands parametrization for function fields. In particular, we will prove
Theorem 1.6, among other results.

We briefly review the relevant parts of Lafforgue’s construction in §5.1 and §5.2. Then in §5.3,
we use a variant of Lafforgue’s ideas to construct and analyze an action of the excursion action on
Tate cohomology of moduli spaces of shtukas. In the situation of base change, equivariant localization
mediates between the Tate cohomology of shtukas for G and for H, allowing us to relate certain excursion
operators for the two groups. This is then used in §5.6 to establish the existence of base change for mod
p automorphic forms; this relation will also be the crucial input for our local results in the next section.
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5.1. Moduli of shtukas

We will use the theory of moduli stacks of shtukas, due to Drinfeld and generalized by Varshavsky. Here,
we very briefly recall the relevant definitions in order to set notation. More comprehensive references
include [Var04] and [Laf18].

5.1.1. Shtukas
Fix a smooth projective curve X over a finite field Fℓ of characteristic ≠ 𝑝. Let G be a smooth algebraic
group scheme over X. We assume that G is generically reductive. Let

◦

𝑋↩→ 𝑋 be the locus where G is
reductive. For each finite set I, the stack Sht𝐺,𝐼 has the following functor of points on Fℓ-schemes S:

Sht𝐺,𝐼 : 𝑆 ↦→

⎧⎪⎪⎨⎪⎪⎩
(𝑥𝑖)𝑖∈𝐼 ∈ 𝑋 𝐼 (𝑆)

E = étale 𝐺-torsor over 𝑋 × 𝑆

𝜑 : E |𝑋×𝑆−⋃𝑖∈𝐼 Γ𝑥𝑖

∼
−→ 𝜏E |𝑋×𝑆−⋃𝑖∈𝐼 Γ𝑥𝑖

⎫⎪⎪⎬⎪⎪⎭ ,

where 𝜏 is the Frobenius Frobℓ on the S factor in 𝑋 × 𝑆, and 𝜏E is the pullback of E under the map
1 × 𝜏 : 𝑋 × 𝑆 → 𝑋 × 𝑆.

Geometrically, Sht𝐺,𝐼 has a Schubert stratification whose strata are Deligne-Mumford stacks locally
of finite type. We regard it as an ind-(locally finite type) Deligne-Mumford stack.

There is a map

𝜋𝐼 : Sht𝐺,𝐼 → 𝑋 𝐼

projecting a tuple ({𝑥𝑖}𝑖∈𝐼 , E , 𝜑𝑖) to {𝑥𝑖}𝑖∈𝐼 . Let
◦

Sht𝐺,𝐼 := Sht𝐺,𝐼 ×𝑋 𝐼 (
◦

𝑋)𝐼 .

5.1.2. Hecke stack
The Hecke stack Hk𝐺,𝐼 classifies

Hk𝐺,𝐼 : 𝑆 ↦→

⎧⎪⎪⎨⎪⎪⎩
(𝑥𝑖)𝑖∈𝐼 ∈ 𝑋 𝐼 (𝑆)

E , E ′ = étale 𝐺-torsors over 𝑋 × 𝑆

𝜑 : E |𝑋×𝑆−⋃ Γ𝑥𝑖

∼
−→ E ′ |𝑋×𝑆−⋃ Γ𝑥𝑖

⎫⎪⎪⎬⎪⎪⎭ .

Recall that 𝐺 → 𝑋 is reductive over
◦

𝑋 . Let
◦

Hk𝐺,𝐼 := Hk𝐺,𝐼×𝑋 𝐼 (
◦

𝑋)𝐼 . The Geometric Satake equivalence

provides a functor Rep𝑘 ((𝐿𝐺)𝐼 ) → 𝐷 (
◦

Hk𝐺,𝐼 ; 𝑘), which we normalize as in [Laf18, Theorem 0.9].

5.1.3. Satake sheaves
There is a map Sht𝐺,𝐼 → Hk𝐺,𝐼 sending ({𝑥𝑖}𝑖∈𝐼 , E , 𝜑) to ({𝑥𝑖}𝑖∈𝐼 , E , 𝜏E , 𝜑). Composing with the
∗-pullback through Sht𝐺,𝐼 → Hk𝐺,𝐼 induces a functor

Satgeom : Rep𝑘 (𝐺 𝐼 )𝐵 Gal(𝐹 𝑠/𝐹 ) ,geom → 𝐷𝑏 (
◦

Sht𝐺,𝐼 ; 𝑘).

Finally, we may identify Rep𝑘 ((𝐿𝐺alg)𝐼 )
∼
−→ Rep𝑘 (𝐺 𝐼 )𝐵 Gal(𝐹 𝑠/𝐹 ) ,geom as in §2.1.4, giving a functor

(cf. [Laf18, Theorem 0.11])

Sat : Rep𝑘 ((𝐿𝐺alg)𝐼 ) → 𝐷𝑏 (
◦

Sht𝐺,𝐼 ; 𝑘).

The Schubert stratification is defined by the support of the sheaves in the image of Sat, with the closure
relations corresponding to the Bruhat order. (In particular, Sat lands in the derived category of sheaves
constructible with respect to the Schubert stratification on

◦

Sht𝐺,𝐼 .)
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5.1.4. Level structures
For 𝐷 ⊂ 𝑋 a closed finite subscheme, there are level covers Sht𝐺,𝐷,𝐼 → Sht𝐺,𝐼 |(𝑋\𝐷) 𝐼 which
parametrize the additional datum of a trivialization of E over 𝑆 × 𝐷 compatible with 𝜏 and 𝜑. Note that
by definition, the ‘legs’ {𝑥𝑖}𝑖∈𝐼 ∈ (𝑋 \ 𝐷) (𝑆)𝐼 avoid D.

5.1.5. Iterated shtukas
Let 𝐼1, . . . , 𝐼𝑟 be a partition of I. We define Sht(𝐼1 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 (sometimes called a moduli stack of iterated
shtukas) to be the stack

Sht(𝐼1 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 : 𝑆 ↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥𝑖)𝑖∈𝐼 ∈ (𝑋 − 𝐷)𝐼 (𝑆)
E0, . . . , E𝑟 = étale 𝐺-torsors over 𝑋 × 𝑆

𝜑 𝑗 : E 𝑗−1 |𝑋×𝑆−
⋃
𝑖∈𝐼 𝑗

Γ𝑥𝑖

∼
−→ E 𝑗 |𝑋×𝑆−

⋃
𝑖∈𝐼 𝑗

Γ𝑥𝑖
𝑗 = 1, . . . , 𝑟

𝜑 : E𝑟
∼
−→ 𝜏E0

𝜐 = level structure over 𝐷 × 𝑆

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Here, by ‘level structure’ we mean a trivialization of the restriction of each E𝑖 over 𝐷 × 𝑆, compatible
with the 𝜑 𝑗 and 𝜑. There is a map 𝜈 : Sht(𝐼1 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 → Sht𝐺,𝐷,𝐼 . A key property of this morphism is that
it is stratified small (with respect to the Schubert stratification), which is a consequence of the same
property of the convolution morphism for Beilinson-Drinfeld Grassmannians.

Define

◦

Sht𝐺,𝐷,𝐼= Sht𝐺,𝐷,𝐼 ×(𝑋\𝐷) 𝐼 (
◦

𝑋 \𝐷)𝐼

and

◦

Sht
(𝐼1 ,...,𝐼𝑟 )

𝐺,𝐷,𝐼 = Sht(𝐼1 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 × ×(𝑋\𝐷) 𝐼 (
◦

𝑋 \𝐷)𝐼 .

5.1.6. Partial Frobenius
There is a partial Frobenius 𝐹𝐼1 : Sht(𝐼1 ,𝐼2 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 → Sht(𝐼2 ,...,𝐼𝑟 ,𝐼1)𝐺,𝐷,𝐼 sending

𝑥𝑖 ↦→

{
𝜏𝑥𝑖 𝑖 ∈ 𝐼1

𝑥𝑖 otherwise

(E0, . . . , E𝑟 ) ↦→ (E1, . . . , E𝑟 , 𝜏E0)

(𝜑1, . . . , 𝜑𝑟 ) ↦→ (𝜑2, . . . , 𝜑𝑟 , 𝜏𝜑1).

It lies over the partial Frobenius Frob𝐼1 on 𝑋 𝐼 (applying Frobℓ to the coordinates indexed by 𝑖 ∈ 𝐼1), so
that the diagram below is commutative (and cartesian up to radiciel maps):

Sht(𝐼1 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 Sht(𝐼2 ,...,𝐼𝑟 ,𝐼1)𝐺,𝐷,𝐼

(𝑋 − 𝐷)𝐼 (𝑋 − 𝐷)𝐼 .

𝐹𝐼1

𝜋𝐼 𝜋𝐼

Frob𝐼1

(5.1)

5.1.7. Base change setup
We now consider the following ‘base change setup’. Let F be the function field of X and 𝐻𝐹 a reductive
group over F. We choose a parahoric extension of 𝐻𝐹 to a smooth affine group scheme H over X.

Let 𝐸/𝐹 be a cyclic extension of F having degree p, so E corresponds to the function field of a
smooth projective curve 𝑋 ′. Define 𝐺 := Res𝑋 ′/𝑋 (𝐻𝑋 ′ ), which is an algebraic group scheme over X
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with generic fiber 𝐺𝐹 � Res𝐸/𝐹 (𝐻𝐸 ). The group scheme 𝐺 → 𝑋 comes with an induced action of
〈𝜎〉 = Aut(𝑋 ′/𝑋).

5.2. Review of V. Lafforgue’s global Langlands correspondence

Write Γ := Weil(𝐹, 𝐹) = Weil(𝐹𝑠/𝐹). In [Laf18, §13], Lafforgue constructs an action of Exc(Γ, 𝐿𝐺alg)
on the space of cusp forms for G with coefficients in k. This has been improved by Cong Xue, who
extended the action to all compactly supported functions ([Xuea, §7] for split G and [Xueb, §6] for all G).

We summarize the construction of the excursion action, as we shall make use of some of its internal
aspects, and we also need to explain why it can be used to construct some excursion actions on Tate
cohomology.

5.2.1. Constructing actions of the excursion algebra
We will explain an abstract setup that gives rise to actions of the excursion algebra.

Definition 5.1. Let A be a (not necessarily commutative) ring. A family of functors
𝐻𝐼 : Rep𝑘 ((𝐿𝐺)𝐼 ) → Mod𝐴(Γ𝐼 ), where I runs over (possibly empty) finite sets, is admissible if it
satisfies the two conditions below.

1. (Compatibility with fusion) For all 𝜁 : 𝐼 → 𝐽, there is a natural isomorphism 𝜒𝜁 between the functors
𝐻𝐼 ◦ Res𝜁 and Res𝜁 ◦𝐻𝐽 in the diagram

Rep𝑘 ((𝐿𝐺)𝐼 ) Mod𝐴(Γ𝐼 )

Rep𝑘 ((𝐿𝐺)𝐽 ) Mod𝐴(Γ𝐽 ).

𝐻𝐼

𝜒𝜁
Res𝜁 Res𝜁

𝐻𝐽

(5.2)

2. (Compatibility with composition) For 𝐼 ′
𝜁 ′

−→ 𝐼
𝜁
−→ 𝐽, we have 𝜒𝜁 ◦𝜁 ′ = 𝜒𝜁 ◦ 𝜒𝜁 ′ .

Construction 5.2. Let 1 denote the trivial representation of 𝐿𝐺. Given an admissible family of functors
𝐻𝐼 : Rep𝑘 ((𝐿𝐺)𝐼 ) → Mod𝐴(Γ𝐼 ), we get an A-linear action of Exc(Γ, 𝐿𝐺) on 𝐻{0} (1) as follows.

For a tuple (𝐼, 𝑊, 𝑥, 𝜉, (𝛾𝑖)𝑖∈𝐼 ), we define an endomorphism, which gives the image of 𝑆𝐼 ,𝑊 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼

in End𝐴(𝐻{0} (1)), by the following composition:

𝐻{0} (1) 𝐻{0} (𝑊
𝜁 ) 𝐻𝐼 (𝑊) 𝐻𝐼 (𝑊) 𝐻{0} (𝑊

𝜁 ) 𝐻{0} (1).
𝐻{0} (𝑥)

∼

𝜒𝜁 (𝛾𝑖)𝑖∈𝐼
∼

𝜒−1
𝜁 𝐻{0} ( 𝜉 )

(Here, we again conflate the vector 𝑥 ∈ 𝑊Δ (𝐺) with a 𝐺-equivariant map 1 → 𝑊 |Δ (𝐺) .) From the
assumptions of admissibility, it is straightforward to check the relations in §2.4.2.

Remark 5.3. Note that it follows from admissibility that the A-module underlying 𝐻𝐼 (1) for any I is
identified with 𝐻∅ (1) by 𝜒∅→𝐼 . Proposition 2.4 then attaches a Galois representation to each generalized
eigenvector for the Exc(Γ, 𝐿𝐺)-action on 𝐻∅ (1). (Of course, such an eigenvector is not guaranteed to
exist a priori.)

5.2.2. Excursion action on the cohomology of shtukas
Let H𝐺 be the Hecke algebra acting on Sht𝐺,𝐷,𝐼 ; it is the tensor product of local Hecke algebras with
the level structure dictated by D. For any finite set I, we have a map

𝜋𝐼 : Sht𝐺,𝐷,𝐼 → (𝑋 − 𝐷)𝐼
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remembering the points of the curve indexed by I (which avoid D by definition). Let 𝜂𝐼 denote the
generic point of 𝑋 𝐼 and 𝜂𝐼 the spectrum of an algebraic closure, viewed as a geometric generic point
of 𝑋 𝐼 . When I is a singleton, we will just abbreviate these by 𝜂 and 𝜂.

We will define a family of functors indexed by finite sets I:

𝐻
𝑗
𝐼 : Rep𝑘 ((𝐿𝐺alg)𝐼 ) → ModH𝐺 (Γ

𝐼 ) (5.3)

sending 𝑉 ∈ Rep𝑘 ((𝐿𝐺alg)𝐼 ) to

𝐻
𝑗
𝑐 (Sht𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(𝑉)). (5.4)

Note that a priori 𝐻
𝑗
𝐼 (𝑉) has an action of 𝜋1 (𝜂

𝐼 , 𝜂𝐼 ), which maps12 to Γ𝐼 but neither injectively nor
surjectively.

5.2.3.
We explain why the action of 𝜋1 (𝜂

𝐼 , 𝜂𝐼 ) extends canonically to an action of Γ𝐼 . Assume I is nonempty,
since otherwise there is nothing to prove. The Satake functor of §5.1.3 generalizes to a functor

Sat(𝐼1 ,...,𝐼𝑟 ) : Rep𝑘 ((𝐿𝐺)𝐼 ) → 𝐷𝑏 (
◦

Sht
(𝐼1 ,...,𝐼𝑟 )

𝐺,𝐷,𝐼 ; 𝑘),

such that the map

𝜈 :
◦

Sht
(𝐼1 ,...,𝐼𝑟 )

𝐺,𝐷,𝐼 →
◦

Sht𝐺,𝐷,𝐼

has the property that 𝑅𝜈! Sat(𝐼1 ,...,𝐼𝑟 ) (𝑉) � Sat(𝑉). Furthermore, there are natural isomorphisms

𝐹∗𝐼1 Sat(𝐼1 ,𝐼2 ,...,𝐼𝑟 ) (𝑉) � Sat(𝐼2 ,...,𝐼𝑟 ,𝐼1) (𝑉),

where 𝐹𝐼1 is the partial Frobenius from §5.1.6.
Write 𝐼 = {1, . . . , 𝑛}. Thanks to the above properties and (5.1), the partial Frobenius maps on

Sht( {1},..., {𝑛})𝐺,𝐷,𝐼 then induce maps

Frob∗{1} 𝐻
𝑗
𝐼 (𝑉)

∼
−→ 𝐻

𝑗
𝐼 (𝑉).

That equips 𝐻
𝑗
𝐼 (𝑉) with the action of the larger group FWeil(𝜂𝐼 , 𝜂𝐼 ) that we now recall, summarizing

[Laf18, Remarque 8.18]. Let 𝐹 𝐼 denote the function field of 𝑋 𝐼 , so 𝜂𝐼 = Spec 𝐹 𝐼 , and 𝐹 𝐼 an algebraic
closure, so we may take 𝜂𝐼 = Spec 𝐹 𝐼 . Write (𝐹 𝐼 )perf for the perfect closure of 𝐹 𝐼 and Frob{𝑖 } for the
‘partial Frobenius’ automorphism of (𝐹 𝐼 )perf induced by Frobℓ on the ith factor. We define

FWeil(𝜂𝐼 , 𝜂𝐼 ) := {𝛾 ∈ AutF𝑞 (𝐹
𝐼 ) : ∃(𝑛𝑖)𝑖∈𝐼 ∈ Z𝐼 such that 𝛾 |(𝐹 𝐼 )perf =

∏
𝑖∈𝐼

(Frob{𝑖 })𝑛𝑖 }.

Writing 𝜋
geom
1 (𝜂𝐼 , 𝜂𝐼 ) := ker(𝜋1 (𝜂

𝐼 , 𝜂𝐼 )
deg
−−→ Ẑ), this fits into an extension

0→ 𝜋
geom
1 (𝜂𝐼 , 𝜂𝐼 ) → FWeil(𝜂𝐼 , 𝜂𝐼 ) → Z𝐼 → 0.

Fixing a specialization morphism 𝜂𝐼 � Δ (𝜂 {1}) induces a surjection

FWeil(𝜂𝐼 , 𝜂𝐼 ) �Weil(𝜂, 𝜂)𝐼 .

12The map is non-canonical: it depends on a choice of specialization as in [Laf18, Remark 8.18].
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A form of Drinfeld’s Lemma [Xuea, Lemma 7.4.2] is used to show that the action of FWeil(𝜂𝐼 , 𝜂𝐼 ) on
𝐻

𝑗
𝐼 (𝑉) factors through Weil(𝐹𝑠/𝐹)𝐼 .

Example 5.4. Let us unravel

𝐻0
{0} (1) = 𝐻0

𝑐 (Sht𝐺,𝐷, {1} |𝜂{1} ; Sat(1)). (5.5)

By Remark 5.3, the underlying Hecke module of 𝐻{0} (1) is isomorphic to 𝐻∅ (1). According to [Laf18,
Remarque 12.2], this is the space of compactly supported k-valued functions on the discrete groupoid

Bun𝐺,𝐷 (Fℓ) =
∐

𝛼∈ker1 (𝐹,𝐺)

(
𝐺𝛼 (𝐹)\𝐺𝛼 (A𝐹 )/

∏
𝑣

𝐾𝑣

)
, (5.6)

where 𝐺𝛼 is the pure inner form of G corresponding to 𝛼, 𝐾𝑣 = 𝐺 (O𝑣 ) for 𝑣 ∉ 𝐷, and 𝐾𝑣 =
ker(𝐺 (O𝑣 ) → 𝐺𝐷).

The excursion action preserves the decomposition (5.6) and so gives an action of Exc(Γ, 𝐿𝐺) on
each 𝐻0

𝑐 (Sht𝐺,𝐷,∅;1)𝛼 := 𝐶∞𝑐 (𝐺𝛼 (𝐹)\𝐺𝛼 (A𝐹 )/
∏

𝑣 𝐾𝑣 ; 𝑘).

The family of functors 𝐻
𝑗
𝐼 is admissible; this is an immediate consequence of the fact that

Sat is already compatible with composition and fusion. Hence, Construction 5.2 applies to de-
fine an action of Exc(Γ, 𝐿𝐺) on 𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ ); 𝑘). Elements of the image of Exc(Γ, 𝐿𝐺) in
End(𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘)) are called ‘excursion operators’.

5.2.4. Xue’s generalization
Lafforgue defined an Exc(Γ, 𝐿𝐺)-action on the finite-dimensional subspace of cuspidal functions
𝐶∞cusp (Bun𝐺,𝐷 (Fℓ); 𝑘) ⊂ 𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘). This decomposes 𝐶∞cusp (Bun𝐺,𝐷 (Fℓ); 𝑘) into a direct
sum of generalized eigenspaces under the action of Exc(Γ, 𝐿𝐺). Using Proposition 2.4, this decompo-
sition corresponds to a parametrization by Langlands parameters.

Thanks to Xue’s extension of the action to Exc(Γ, 𝐿𝐺) � 𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘), it is meaningful to
speak of Langlands parameters arising from 𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘). However, since the excursion action
does not stabilize any finite-dimensional subspaces of 𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘) unless they are contained
in the space of cusp forms, we must broaden what it means to have an L-parameter ‘come from’ an
automorphic function.
Definition 5.5. We say that an L-parameter 𝜌 ∈ 𝐻1 (Gal(𝐹𝑠/𝐹), 𝐺 (𝑘)) arises from𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘)
if it arises via Proposition 2.4 from the Exc(Γ, 𝐿𝐺)-action on some irreducible Hecke-subquotient of
𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘) – equivalently, if the corresponding maximal ideal 𝔪𝜌 ⊂ Exc(Γ, 𝐿𝐺) is in the
support of 𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘) as an Exc(Γ, 𝐿𝐺)-module. We say will be called automorphic if it arises
via Proposition 2.4 from 𝐶∞𝑐 (Bun𝐺,𝐷 (Fℓ); 𝑘) for some D – equivalently if the corresponding maximal
ideal 𝔪𝜌 ⊂ Exc(Γ, 𝐿𝐺) is in the support of 𝐶∞𝑐 (𝐺𝛼 (𝐹)\𝐺𝛼 (A𝐹 ); 𝑘) for some 𝛼.

5.3. Excursion action on the Tate cohomology of shtukas

For a category C with 𝜎-action, recall that we let C𝐵𝜎 denote the category of 𝜎-equivariant objects in
C. This comes equipped with a forgetful functor to C.

5.3.1. Tate cohomology of moduli of shtukas
If 𝜎 acts on G, it induces an action 𝑉 ↦→ 𝜎𝑉 on Rep(𝐿𝐺).

Given a 𝜎-equivariant representation 𝑉 ∈ Rep𝑘 ((𝐿𝐺alg)𝐼 )𝐵𝜎 , we can form
𝑅Γ𝑐 (Sht𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(𝑉)) as above. The 𝜎-equivariant structure on V equips this with a 𝜎-
equivariant structure; more formally, because Sat and 𝜋𝐼 : Sht𝐺,𝐷,𝐼 → (𝑋 \ 𝐷)𝐼 are 𝜎-equivariant,
𝑅Γ𝑐 (Sht𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(−)) lifts to a functor Rep𝑘 ((𝐿𝐺alg)𝐼 )𝐵𝜎 → 𝐷𝑏 ((𝑋 \ 𝐷)𝐼 ; 𝑘)𝐵𝜎 . Hence, we
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can form 𝑇 𝑗 (𝑅Γ𝑐 (Sht𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(𝑉))), the Tate cohomology (§3.4) of 𝑅Γ𝑐 (Sht𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(𝑉)).
To ease notation, we will abbreviate

𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) := 𝑇 𝑗 (𝑅Γ𝑐 (Sht𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(𝑉))). (5.7)

Let us explain in what category we regard (5.7). Since 𝑅Γ𝑐 (Sht𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(𝑉)) has commuting

actions of FWeil(𝜂𝐼 , 𝜂𝐼 ) and the Hecke algebra H𝐺 (the former commuting with the 𝜎-action), its
Tate cohomology has commuting actions of FWeil(𝜂𝐼 , 𝜂𝐼 ) and of 𝑇0 (H𝐺), where Tate cohomology
is formed with respect to the 𝜎-action. A priori we regard (5.7) as a 𝑇0 (H𝐺) [FWeil(𝜂𝐼 , 𝜂𝐼 )]-module.
However, in Appendix B, we will prove the following:

Proposition 5.6. For any 𝐺, 𝐷, 𝐼,𝑉 , the FWeil(𝜂𝐼 , 𝜂𝐼 )-action on 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) factors through
FWeil(𝜂𝐼 , 𝜂𝐼 ) �Weil(𝜂, 𝜂)𝐼 .

It will then be natural to regard (5.7) as a 𝑇0 (H𝐺) [Weil(𝜂, 𝜂)𝐼 ]-module.
Using Lemma 3.14, we deduce the following simple but important identity: if 𝜎 acts trivially on

Sht𝐻 and F , then

𝑇∗(Sht𝐻,𝐷,𝐼 ;F) � 𝐻∗𝑐 (Sht𝐻,𝐷,𝐼 |𝜂𝐼 ;F) ⊗ 𝑇∗(𝑘). (5.8)

5.3.2. Excursion action
Since 𝜎 acts on G, it acts on Exc(Γ, 𝐿𝐺alg) by transport of structure. Concretely, we have

𝜎 · 𝑆𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 = 𝑆𝜎 (𝑉 ) ,𝜎 (𝑥) ,𝜎 ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 . (5.9)

In general, given a 𝑘 [𝜎]-algebra A and an A-module M, there is a natural 𝑇0 (𝐴) = 𝐴𝜎/(𝑁 · 𝐴)-module
structure on 𝑇∗(𝑀). This equips 𝑇∗(Sht𝐺,𝐷,∅;1) with a natural Exc(Γ, 𝐿𝐺)𝜎-action. If all the data
(𝑉, 𝑥, 𝜉) are 𝜎-equivariant, then the action of 𝑆𝑉 ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 ∈ Exc(Γ, 𝐿𝐺)𝜎 can be described more
concretely as follows: it is given by composition

𝑇∗(Sht𝐺,𝐷,∅;1) 𝑇∗(Sht𝐺,𝐷,∅;𝑉) 𝑇∗(Sht𝐺,𝐷,∅;𝑉) 𝑇∗(Sht𝐺,𝐷,∅;1).𝑥 (𝛾𝑖 )𝑖∈𝐼 𝜉 (5.10)

Here, we used Proposition 5.6 to define the middle arrow.

5.4. Preparations for equivariant localization

5.4.1. Analysis of fixed points
We study the 𝜎-fixed points of Sht𝐺,𝐷,𝐼 in anticipation of applying the theory of §3 to it.

According to [Var04, Proposition 2.16] (stated there for split G, but valid for all G by the same
argument), Sht𝐺,𝐷,𝐼 is exhausted by quasi-compact open substacks Sht≤𝜇𝐺,𝐷,𝐼 as 𝜇 runs over dominant
coweights and the Harder-Narasimhan truncation Sht≤𝜇𝐺,𝐷,𝐼 is defined as in [Laf18, (1.3)]. The open
substack is determined by the Cartesian square

Sht≤𝜇𝐺,𝐷,𝐼 Sht𝐺,𝐷,𝐼

Bun≤𝜇𝐺 Bun𝐺 .

Furthermore, for fixed 𝜇, the Deligne-Mumford stack Sht≤𝜇𝐺,𝐷,𝐼 can be presented as a quotient of a quasi-
projective scheme by a finite group; for any closed point 𝑥0 ∈ 𝑋 , the quasi-projective scheme can be
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taken to be Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼
for sufficiently large n relative to 𝜇, and the group is then the automorphisms

of the level structure. The same applies for the variants Sht(𝐼1 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 .
We fix the following notation below. Let 𝜇 be a coweight of H and let 𝜇 be the induced coweight

of G. Then we have a Cartesian square

Bun≤𝜇𝐻 Bun𝐻

Bun≤𝜇𝐺 Bun𝐺 ,

which induces the Cartesian square

Sht(𝐼1 ,...,𝐼𝑟 ) ,≤𝜇𝐻,𝐷,𝐼 Sht(𝐼1 ,...,𝐼𝑟 )𝐻,𝐷,𝐼

Sht(𝐼1 ,...,𝐼𝑟 ) ,≤𝜇𝐺,𝐷,𝐼 Sht(𝐼1 ,...,𝐼𝑟 )𝐺,𝐷,𝐼 .

(5.11)

Lemma 5.7. If n is sufficiently large so that Sht(𝐼1 ,...,𝐼𝑟 ) ,≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
and Sht(𝐼1 ,...,𝐼𝑟 ) ,≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

are representable by
schemes, then the diagonal map 𝐻 → 𝐺 induces an isomorphism

Sht(𝐼1 ,...,𝐼𝑟 ) ,≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼

∼
−→ (Sht(𝐼1 ,...,𝐼𝑟 ) ,≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

)𝜎 .

Proof. For notational convenience, we just treat the case of non-iterated shtukas, Sht𝐺,𝐷,𝐼 ; the general
case is essentially the same but with cumbersome extra notation.

There is an obvious map in one direction, Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
→ (Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

)𝜎 . We will construct the
inverse.

Notate the S-points of Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼
as the set {({𝑥𝑖}𝑖∈𝐼 , E , 𝜑, 𝜐)}. For any S, there is an equivalence

of categories between Res𝑋 ′/𝑋 (𝐻)-torsors on 𝑋𝑆 and H-torsors on 𝑋 ′𝑆 , which we denote E ↦→ E ′. The
datum of a 𝜎-fixed point of Bun𝐺,𝐷 translates under the above equivalence to the datum of an H-torsor
E ′ on 𝑋 ′𝑆 together with an isomorphism ℎ : E ′ ∼−→ 𝜎∗E ′. We claim that, since the point ({𝑥𝑖}𝑖∈𝐼 , E , 𝜑, 𝜐)
has no nontrivial automorphisms, such an isomorphism automatically satisfies the cocycle condition
and hence is equivalent to a descent datum from E ′ to an H-torsor over 𝑋𝑆 . Furthermore, the map 𝜑 and
level structure 𝜐 will similarly descend uniquely.

Let Nm(ℎ) := (𝜎𝑝−1ℎ) ◦ . . . ◦ (𝜎ℎ) ◦ ℎ : E ′ ∼−→ E ′. The claim amounts to checking that Nm(ℎ) is
the identity automorphism of E ′. By definition, it corresponds to some automorphism of E compatible
with 𝜑 and the level structure 𝜐. But by assumption, this datum had no nontrivial automorphisms, so
Nm(ℎ) can only be the identity automorphism.

This constructs a map Sht𝐻,𝐷+𝑛𝑥0 ,𝐼 ← (Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼
)𝜎 which is manifestly a one-sided inverse; we

conclude by using (5.11) to see that it lands in Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
. �

5.4.2. Cohomology at infinite level
We will use Lemma 5.7 to apply Smith theory. However, the excursion action does not stabilize the piece
of cohomology coming from bounding the HN polygon, so we need to let 𝜇 and n both go ‘off to infinity’.

Definition 5.8. Fix a closed point 𝑥0 ∈ 𝑋 and consider the system of Deligne-Mumford stacks
{Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼

} as n and 𝜇 vary. For 𝑉 ∈ Rep((𝐿𝐻alg)𝐼 ), we define

𝑅Γ𝑐 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 |𝜂𝐼 ; Sat(𝑉)) = lim
−−→
𝑛,𝜇

𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
|
𝜂𝐼

; Sat(𝑉)),
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where the maps in the 𝜇 variable are the covariant maps induced by open embeddings, while the maps
in the n variable are the contravariant maps induced by pullback. Note that the colimit is filtered because
both indexing posets are filtered.

Remark 5.9. As explained above, for any fixed 𝜇, and all sufficiently large n depending on 𝜇,
Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼

is representable by a scheme. Hence, the subposet of indices (𝑛, 𝜇) for which Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
is representable by a scheme is cofinal, so 𝑅Γ𝑐 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 |𝜂𝐼 ; Sat(𝑉)) is naturally isomorphic to the
colimit taken along this subposet.
Definition 5.10. Fix a closed point 𝑥0 ∈ 𝑋 and 𝑉 ∈ Rep𝑘 ((𝐿𝐻alg)𝐼 )𝐵𝜎 . We define

𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ;𝑉) := 𝑇 𝑗 (𝑅Γ𝑐 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 |𝜂𝐼 ; Sat(𝑉))).

We note that 𝑅Γ𝑐 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 |𝜂𝐼 ; Sat(𝑉)) is bounded, since the dimension of the support of Sat(𝑉)
on each Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼

|
𝜂𝐼

is uniformly bounded for all 𝑛, 𝜇.

Furthermore, note that for any cofinal subposet of HN polygons 𝜇 for H, the induced HN polygons
𝜇 form a cofinal poset for G. We make the analogous definitions 𝑅Γ𝑐 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 |𝜂𝐼 ; Sat(𝑉)) and
𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ;𝑉) for G.

5.5. Equivariant localization for excursion operators

We define Nm: Rep𝑘 ((𝐿𝐺)𝐼 ) → Rep𝑘 ((𝐿𝐺)𝐼 )𝐵𝜎 to be the functor taking a representation V to
𝑉 ⊗𝑘

𝜎𝑉 ⊗𝑘 . . . ⊗𝑘
𝜎𝑝−1

𝑉 , with the 𝜎-equivariant structure

𝜎 Nm(𝑉) = 𝜎𝑉 ⊗𝑘
𝜎2

𝑉 ⊗𝑘 . . . ⊗𝑘
𝜎𝑝−1

𝑉 ⊗𝑘 𝑉
∼
−→ 𝑉 ⊗𝑘

𝜎𝑉 ⊗𝑘 . . . ⊗𝑘
𝜎𝑝−1

𝑉 = Nm(𝑉)

given by the commutativity constraint for tensor products. It corresponds under Geometric Satake to
Definition 4.12. Given ℎ : 𝑉 → 𝑉 ′ ∈ Rep𝑘 ((𝐿𝐺)𝐼 ), we set

Nm(ℎ) := ℎ ⊗ 𝜎ℎ ⊗ . . . ⊗ 𝜎𝑝−1
ℎ : Nm(𝑉) → Nm(𝑉 ′).

Note that Nm is not an additive functor, nor is it even k-linear. We linearize it by defining Nm(𝑝−1) :=
Nm ◦Frob−1

𝑝 , where (as in §4.6.3) Frob−1
𝑝 is the identity on objects, and on morphisms, it is (−)⊗𝑘,Frob−1

𝑝
𝑘 .

Then Nm(𝑝−1) : Rep𝑘 ((𝐿𝐺)𝐼 ) → Rep𝑘 ((𝐿𝐺)𝐼 )𝐵𝜎 is k-linear, although still not additive.
For 𝑉 ∈ Rep𝑘 ((𝐿𝐺)𝐼 ), we denote by 𝑁 ·𝑉 the 𝜎-equivariant representation 𝑉 ⊕ 𝜎𝑉 ⊕ . . . ⊕ 𝜎𝑝−1

𝑉 ,
with 𝜎-equivariant structure

𝜎 (𝑁 · 𝑉) = 𝜎𝑉 ⊕ 𝜎2
𝑉 ⊕ . . . ⊕ 𝜎𝑝−1

𝑉 ⊕ 𝑉
∼
−→ 𝑉 ⊕ 𝜎𝑉 ⊕ . . . ⊕ 𝜎𝑝−1

𝑉 = (𝑁 · 𝑉)

given by the commutativity constraint for direct sums. For ℎ : 𝑉 → 𝑉 ′ ∈ Rep𝑘 ((𝐿𝐺)𝐼 ), we denote by
𝑁 · ℎ : 𝑁 · 𝑉 → 𝑁 · 𝑉 ′ the 𝜎-equivariant map ℎ ⊕ 𝜎ℎ ⊕ . . . ⊕ 𝜎𝑝−1

ℎ. Let Δ 𝑝 : 1 → 1⊕𝑝 denote the
diagonal map and ∇𝑝 : 1⊕𝑝 → 1 denote the sum map.

Our goal in this subsection is to prove the theorem below.
Theorem 5.11. Fixed a closed point 𝑥0 on X and let D be any closed finite subscheme of X.

(i) For each 𝑗 ∈ {0, 1}, with respect to the isomorphism

𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) � 𝐻
𝑗
𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1)

induced by Lemma 5.7, the action of 𝑆
𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

∈ Exc(Γ, 𝐿𝐺)𝜎

on 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) is identified with the action of 𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 ∈ Exc(Γ, 𝐿𝐻) on
𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,∅;1) = 𝐻0

𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1).
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(ii) For each 𝑗 ∈ {0, 1}, the action of 𝑆𝐼 ,𝑁 ·𝑉 , (𝑁 ·𝑥)◦Δ 𝑝 ,∇𝑝◦(𝑁 ·𝜉 ) , (𝛾𝑖)𝑖∈𝐼 ∈ Exc(Γ, 𝐿𝐺)𝜎 on
𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) is 0.

This will be established in several steps. The heart of the matter is the following equivariant local-
ization isomorphism.

Proposition 5.12. Fixed a closed point 𝑥0 on X and let D be any closed finite subscheme of X. Let G
be a reductive group over F. We equip Rep𝑘 (𝐺 𝐼 ) with the 𝜋1 (𝜂, 𝜂)𝐼 -action coming from the geometric
action of 𝜋1 (𝜂, 𝜂) on 𝐺 (§2.1.2).

(i) For each 𝑗 ∈ {0, 1}, there is a natural isomorphism of 𝜋1 (𝜂
𝐼 , 𝜂𝐼 )-equivariant functors

Rep𝑘 (𝐺 𝐼 ) → Vect/𝑘 ,

𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝
−1) (𝑉)) � 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC (𝑉)), 𝑉 ∈ Rep𝑘 (𝐺 𝐼 ). (5.12)

(ii) For each 𝑗 ∈ {0, 1}, there is a natural isomorphism of functors Rep𝑘 ((𝐿𝐺)𝐼 ) → Mod𝑘 (Weil(𝜂, 𝜂)𝐼 ),

𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝
−1) (𝑉)) � 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC(𝑉)), 𝑉 ∈ Rep𝑘 ((𝐿𝐺)𝐼 ), (5.13)

which is compatible with fusion and composition.

Proof. (i) We will first construct a natural isomorphism of 𝜋1 (𝜂
𝐼 , 𝜂𝐼 )-equivariant functors Tilt𝑘 (𝐺 𝐼 ) →

Shv(𝜂𝐼 ; T𝑘 ),

T
∗𝑅Γ𝑐 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝

−1) (𝑉)) � T∗𝜖∗𝑅Γ𝑐 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC(𝑉)), 𝑉 ∈ Tilt𝑘 (𝐺 𝐼 ). (5.14)

By Lemma 4.24 (specifically, the commutativity of the back face), the diagram

Tilt𝑘 (𝐺) Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) Parity0

𝐿+𝐺�𝜎 (Gr𝐺; 𝑘) Parity0
𝐿+𝐻 (Gr𝐻 ; 𝑘)

𝐷𝑏
𝐿+𝐺�𝜎,𝑐 (Gr𝐺 ; 𝑘) Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 )

Sat Nm

T
∗ 𝜖 ∗

Psm

commutes. The composite functor that follows along the left and then bottom is Psm ◦Nm ◦Sat, while
Theorem 4.20 identifies the composite functor that follows along the top and right with T∗𝜖∗ ResBC(𝑝) .
We therefore have a 𝜋1 (𝜂

𝐼 , 𝜂𝐼 )-equivariant natural isomorphism between these two composite functors.
(The only non-tautological aspect of the equivariance is handled in Lemma 4.22.) Linearizing this
natural isomorphism, we get a 𝜋1 (𝜂

𝐼 , 𝜂𝐼 )-equivariant natural isomorphism of functors Tilt𝑘 (𝐺 𝐼 ) →

Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 ),

Psm ◦Nm ◦Sat𝐺 ◦Frob−1
𝑝 � Sat𝐻 ◦ResBC . (5.15)

For any coweight 𝜇 for H, inducing the coweight 𝜇 for G, and n sufficiently large so that
Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

and Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
are schemes, Lemma 5.7 identifies the 𝜎-fixed points of Sht𝐺,𝐷+∞𝑥0 ,𝐼

with Sht𝐻,𝐷+∞𝑥0 ,𝐼 . Therefore, we may apply (3.6) to obtain an isomorphism in Shv(𝜂𝐼 ; T𝑘 ),

T
∗𝑅Γ𝑐 (Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

; Nm(𝑝
−1) (𝑉)) := T∗𝑅Γ𝑐 (Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

; Sat(Nm(𝑝
−1) (𝑉)))

� 𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
; Psm(Nm(Sat(Frob−1

𝑝 𝑉)))), (5.16)

https://doi.org/10.1017/fmp.2023.32 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.32


40 T. Feng

which is natural in 𝑉 ∈ Tilt𝑘 (𝐺 𝐼 ) and 𝜋1 (𝜂
𝐼 , 𝜂𝐼 )-equivariant. The commutative diagram

Sht𝐻,𝐼 Hk𝐻,𝐼

Sht𝐺,𝐼 Hk𝐺,𝐼

induces a natural isomorphism between the two restriction functors 𝐷𝑏
𝑐 (Hk𝐺,𝐼 |𝜂𝐼 ; 𝑘) →

𝐷𝑏
𝑐 (Sht𝐻,𝐼 |𝜂𝐼 ; 𝑘), one by ∗-pullback through the right then top maps and the other by ∗-pullback

through the bottom then left maps. Furthermore, the pullbacks are 𝜋1 (𝜂
𝐼 , 𝜂𝐼 )-equivariant, as is the

natural isomorphism between them. The same discussion applies with any level structure and HN trun-
cation. Therefore, there is no risk of confusion in the expression Psm(Nm(Sat(𝑉)) whether we first
regard Nm(Sat(𝑉)) as a sheaf on Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

and then apply Psm or first apply Psm and then pull back
to Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼

; the two are naturally identified. Now, (5.15) induces an isomorphism in Shv(𝜂𝐼 ; T𝑘 ),

𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
; Psm(Nm(Sat(Frob−1

𝑝 𝑉)))) � T∗𝜖∗𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
; Sat(ResBC (𝑉))), (5.17)

which is natural in 𝑉 ∈ Tilt𝑘 (𝐺 𝐼 ) and 𝜋1 (𝜂
𝐼 , 𝜂𝐼 )-equivariant.

We conclude (5.14) by taking the colimit of these isomorphisms (5.16) and (5.17) along such n and 𝜇,
using that they form a cofinal poset by Remark 5.9.

Next we bootstrap from Tilt𝑘 (𝐺 𝐼 ) to Rep𝑘 (𝐺 𝐼 ). For this, we use Proposition 4.10, which allows for
any 𝑉 ∈ Rep𝑘 (𝐺 𝐼 ) to produce a resolution of V by a complex 𝑉• = (. . . → 𝑉−1 → 𝑉0 → . . .) of
tilting modules which is well defined up to homotopy. Then Lemma 4.21 gives a natural isomorphism
in Perf (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼

; T𝑘 ),

Psm(Sat(Nm(𝑝
−1) 𝑉•)) = (. . .→ Psm(Sat(Nm(𝑝

−1) 𝑉−1)) → Psm(Sat(Nm(𝑝
−1) 𝑉0)) → . . .).

So using the earlier observations and (3.6), we have 𝜋1 (𝜂
𝐼 , 𝜂𝐼 )-equivariant natural isomorphisms in

Shv(𝜂𝐼 ; T𝑘 ),

T
∗𝑅Γ𝑐 (Sht≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼

; Nm(𝑝
−1) 𝑉) � 𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼

; Psm Nm(𝑝
−1) (𝑉))

� 𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
; Psm Nm(𝑝

−1) (𝑉•)).

Then using (5.14), we have

𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
; Psm Nm(𝑝

−1) (𝑉•)) � T∗𝜖∗𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
; ResBC(𝑉

•))

� T∗𝜖∗𝑅Γ𝑐 (Sht≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
; ResBC(𝑉)).

Now take the jth Tate cohomology group to obtain (5.12).
(ii) Since FWeil(𝜂𝐼 , 𝜂𝐼 ) � Weil(𝜂, 𝜂)𝐼 , it suffices to show a natural isomorphism as

FWeil(𝜂𝐼 , 𝜂𝐼 )-modules. Then, since the FWeil(𝜂𝐼 , 𝜂𝐼 )-actions on 𝑇∗(Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝−1) (𝑉)) and
on𝑇∗ (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC (𝑉)) are determined by their respective 𝜋1 (𝜂

𝐼 , 𝜂𝐼 )-actions plus partial Frobe-
nius morphisms, we can and will focus on these two equivariance structures separately.

Applying (−)𝐵𝜋1 (𝜂
𝐼 ,𝜂𝐼 ) (see the references on equivariantization in §4.6.4) to the natural isomor-

phism in (i) gives a natural isomorphism

𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝
−1) (𝑉)) � 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC (𝑉))

of functors 𝑉 ∈ Rep𝑘 ((𝐿𝐺)𝐼 ) → Mod𝑘 (𝜋1 (𝜂
𝐼 , 𝜂𝐼 )).
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Finally, we check the compatibility with partial Frobenius. We want to show that the diagram

𝐹∗
{1}𝑇

𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝−1) (𝑉)) 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝−1) (𝑉))

𝐹∗
{1}𝑇

𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC (𝑉)) 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC(𝑉))

∼

∼ ∼

∼

(5.18)

commutes, where the vertical isomorphisms (as 𝜋1 (𝜂
𝐼 , 𝜂𝐼 )-modules) have just been established. By

Lemma 5.7, there is a cofinal system of 𝑛, 𝜇, 𝜇′ such that applying 𝜎-fixed points to the diagram

𝐹{1} : Sht( {1}, {2},..., {𝑟 }) ,≤𝜇𝐺,𝐷+𝑛𝑥0 ,𝐼
→ Sht( {2},..., {𝑟 }, {1}) ,≤𝜇

′

𝐺,𝐷+𝑛𝑥0 ,𝐼

yields the diagram

𝐹{1} : Sht( {1}, {2},..., {𝑟 }) ,≤𝜇𝐻,𝐷+𝑛𝑥0 ,𝐼
→ Sht( {2},..., {𝑟 }, {1}) ,≤𝜇

′

𝐻,𝐷+𝑛𝑥0 ,𝐼
.

(The need for 𝜇′ arises because 𝐹{1} does not preserve HN polygons.) This implies that the natural
isomorphims (5.16) and (5.17) are compatible with the maps 𝐹∗

{1}. Taking the (filtered) colimit along
such 𝑛, 𝜇, 𝜇′ completes the proof. �

Proof of Theorem 5.11. (i) Proposition 5.12(ii) gives a chain of compatible identifications:

𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ;1) 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝−1) (𝑉)) 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Nm(𝑝−1) (𝑉)) 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ;1)

𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ;1) 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC (𝑉)) 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; ResBC(𝑉)) 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ;1).

Nm(𝑝−1 ) (𝑥)

∼ ∼

(𝛾𝑖 )𝑖∈𝐼

∼

Nm(𝑝−1 ) ( 𝜉 )

∼

𝑥 (𝛾𝑖 )𝑖∈𝐼 𝜉

The operator 𝑆
𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

on 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ;1) is obtained by tracing
along the upper row, while the operator 𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 on 𝑇 𝑗 (Sht𝐻 ;1) is obtained by tracing
along the lower row. Hence, they coincide under the vertical identifications.

(ii) By Lemma 5.7 and (3.6), we have a chain of compatible identifications:

𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ;1) 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; 𝑁 · 𝑉) 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; 𝑁 · 𝑉) 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ;1)

𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ;1) 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; Psm(𝑁 · 𝑉)) 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; Psm(𝑁 · 𝑉)) 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ;1).

(𝑁 ·𝑥)◦Δ 𝑝

∼ ∼

(𝛾𝑖)𝑖∈𝐼

∼

∇𝑝◦(𝑁 ·𝜉 )

∼

(𝑁 ·𝑥)◦Δ 𝑝 (𝛾𝑖)𝑖∈𝐼 ∇𝑝◦(𝑁 ·𝜉 )

The operator 𝑆𝐼 ,𝑁 ·𝑉 , (𝑁 ·𝑥)◦Δ 𝑝 ,∇𝑝◦(𝑁 ·𝜉 ) , (𝛾𝑖)𝑖∈𝐼 on 𝑇 𝑗 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ;1) is obtained by tracing along the
upper row. But the stalks and costalks of 𝑁 · Sat(𝑉) |Gr𝐻 are all complexes of induced 𝑘 [𝜎]-modules,
and, in fact, they are perfect complexes over 𝑘 [𝜎]. Hence, Psm(𝑁 · 𝑉) is equivalent to 0 in the Tate
category of Sht𝐻,𝐷,𝐼 for all D, so 𝑇 𝑗 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; Psm(𝑁 ·𝑉)) = 0. Therefore, the endomorphism in
question factors through the zero map and hence is itself zero. �

5.6. Applications to base change for automorphic forms

In §5.2, we described Lafforgue’s action of Exc(Γ, 𝐿𝐺) on 𝐻∅ (1). By (5.6), we have

𝐻∅ (1) =
⊕

𝛼∈ker1 (𝐹,𝐺)

𝐶∞𝑐 (𝐺𝛼 (𝐹)\𝐺𝛼 (A𝐹 )/
∏
𝑣

𝐾𝑣 ; 𝑘).
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Here, ker1(𝐹, 𝐺) := ker(𝐻1(𝐹, 𝐺) →
∏

𝑣 𝐻1(𝐹𝑣 , 𝐺)) is the isomorphism class of the generic fiber of
the G-torsor. More generally, this defines a decomposition

Sht𝐺,𝐷,𝐼 =
∐

𝛼∈ker1 (𝐹,𝐺)

(Sht𝐺,𝐷,𝐼 )𝛼 (5.19)

according to the isomorphism class of the generic fiber of E .
In the base change situation, the ‘diagonal embedding’ map 𝜙 : 𝐻 → 𝐺 induces a map

𝜙∗ : ker1(𝐹, 𝐻) → ker1 (𝐹, 𝐺) compatible with the map Bun𝐻,𝐷 (Fℓ ) → Bun𝐺,𝐷 (Fℓ). Theorem 1.6 is
evidently implied by the theorem below, whose proof occupies this subsection.

Theorem 5.13. Fix any closed point 𝑥0 ∈ 𝑋 and any closed finite subscheme on X. Let [𝜌] ∈
𝐻1 (Γ, 𝐻 (𝑘)) be an L-parameter arising from the action of Exc(Γ, 𝐿𝐻) on 𝐻0

𝑐 (Sht𝐻,𝐷+∞𝑥0 ,𝐼 ; Sat(1))𝛼
in the sense of §5.2.4. Then the image of [𝜌] in 𝐻1(Γ, 𝐺 (𝑘)) arises in the action of Exc(Γ, 𝐿𝐺) on
𝐻0
𝑐 (Sht𝐺,𝐷+∞𝑥0 ,𝐼 ; Sat(1))𝜙 (𝛼) in the sense of §5.2.4.

We establish some preliminaries in preparation for the proof.

Definition 5.14 (The Tate diagonal). For a commutative algebra A in characteristic p with 𝜎-action, we
denote by 𝑁 · 𝐴 the subset consisting of elements of the form (1 + 𝜎 + . . . + 𝜎𝑝−1)𝑎 for 𝑎 ∈ 𝐴. One
easily checks that 𝑁 · 𝐴 is an ideal in 𝐴𝜎 .

We denote by Nm: 𝐴→ 𝐴𝜎 the set map sending 𝑎 ↦→ 𝑎 ·𝜎(𝑎) · . . . ·𝜎𝑝−1(𝑎). It is multiplicative but
not additive. It is an exercise to verify that the composition of Nm with the quotient 𝐴𝜎 � 𝐴𝜎/𝑁 · 𝐴
is an algebra homomorphism, which we call the Tate diagonal homomorphism Δ 𝑝 : 𝐴→ 𝑇0 (𝐴).

Lemma 5.15. Let A be a commutative ring over F𝑝 with a 𝜎-action. Let 𝜅 be any perfect field over
F𝑝 . Let 𝐴′ ⊂ 𝐴𝜎 be a subring containing Nm(𝐴) and 𝑁 · 𝐴. (Since 𝑁 · 𝐴 is an ideal in 𝐴𝜎 , it is also
an ideal in any such 𝐴′.) Any character 𝜒 : 𝐴′ → 𝜅 factoring through 𝐴′/𝑁 · 𝐴 extends uniquely to a
character �̃� : 𝐴→ 𝜅, which is explicitly given by

�̃�(𝑎) = 𝜒(Nm(𝑎))1/𝑝 . (5.20)

Proof. The same proof as that of [TV16, §3.4] works, but since our situation is a little more general,
we reproduce it. One easily checks that the given formula (5.20) defines a valid extension (it is a ring
homomorphism since 𝜅 is in characteristic p, and it clearly extends 𝜒).

Next, we check that it is the unique extension. Note that 𝜎 acts on characters 𝐴 → 𝜅 by pre-
composition; we denote this action by �̃� ↦→ 𝜎 · �̃� := �̃� ◦ 𝜎−1. Clearly, (5.20) is the unique 𝜎-fixed
extension, so we will show that any extension �̃�′ must be 𝜎-fixed. Indeed, since any extension �̃�′ is
trivial on 𝑁 · 𝐴 by the assumption that 𝜒 factors through 𝐴′/𝑁 · 𝐴, we have

𝑝−1∑
𝑖=0

𝜎𝑖 · �̃�′ = 0.

By linear independence of characters [Sta20, Tag 0CKK], we must have 𝜎𝑖 · �̃�′ = �̃�′ for all i (i.e., �̃�′ is
𝜎-fixed). �

Lemma 5.16. Inside Exc(Γ, 𝐿𝐺), we have

Nm(𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ) = 𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

and

𝑁 · 𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 = 𝑆𝐼 ,𝑁 ·𝑉 , (𝑁 ·𝑥)◦Δ 𝑝 ,∇𝑝◦(𝑁 ·𝜉 ) , (𝛾𝑖)𝑖∈𝐼 .
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Proof. The first equality follows from repeated application of the relations (2.7), (2.5) and the explicit
description of the 𝜎-action in (5.9). The second equality follows from repeated application of relations
(2.7), (2.6) and the explicit description of the 𝜎-action in (5.9). �

Construction 5.17 (Frobenius twist of algebras). This discussion is parallel to Construction 4.17. Let
Frob be the absolute Frobenius of k. Given a k-algebra A, we denote by 𝐴(𝑝) := 𝐴⊗𝑘,Frob 𝑘 its Frobenius
twist. The map 𝐴 → 𝐴(𝑝) sending 𝑎 ↦→ 𝑎 ⊗ 1 is a k-semilinear isomorphism. It is characterized by
the universal property that any Frob-semilinear homomorphism 𝑓 : 𝐴 → 𝐵 (i.e., 𝑓 (𝜆𝑎) = 𝜆𝑝 𝑓 (𝑎) for
𝜆 ∈ 𝑘) factors uniquely through a k-linear homomorphism

𝐴

𝐴(𝑝) 𝐵.

𝑓

If A is equipped with an F𝑝-structure 𝜑0 : 𝐴 � 𝐴0 ⊗F𝑝 𝑘 , then there is a k-linear isomorphism
𝐴 � 𝐴(𝑝) characterized by the property that it sends 𝐴0 to 𝐴0⊗1 via Id ⊗1. We denote by Frob𝜑0 : 𝐴

∼
−→ 𝐴

the Frob-semilinear isomorphism which is the identity on 𝐴0; it is the composition of the k-linear
isomorphism 𝐴(𝑝) � 𝐴 above and the Frob-semilinear isomorphism 𝐴

∼
−→ 𝐴(𝑝) above. The k-linear

homomorphism 𝐴 → 𝐵 obtained by precomposing f with the inverse of Frob𝜑0 will be called the
linearization of f (with respect to 𝜑0).

Example 5.18. Note that Exc(Γ, 𝐿𝐺) has an F𝑝-structure coming from the fact that 𝐿𝐺 is defined
over F𝑝 .

Definition 5.19. Let Exc(Γ, 𝐿𝐺)′ ⊂ Exc(Γ, 𝐿𝐺) be the k-subalgebra generated by 𝑁 · Exc(Γ, 𝐿𝐺) and
all elements of the form Nm(𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ) = 𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 (the equality by Lemma
5.16).

Proof of Theorem 5.13. A trivial case of Proposition 5.12 gives an isomorphism

𝑇0 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) � 𝐻0
𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1). (5.21)

The right side has an action of Exc(Γ, 𝐿𝐻) through the quotient map Exc(Γ, 𝐿𝐻) � Exc(Γ, 𝐿𝐻), and
the left side has an action of Exc(Γ, 𝐿𝐺)𝜎 through the map Exc(Γ, 𝐿𝐺)𝜎 → Exc(Γ, 𝐿𝐺). Theorem
5.11 says that the isomorphism (5.21) is equivariant for the action of the subalgebra Exc(Γ, 𝐿𝐺)′ ⊂
Exc(Γ, 𝐿𝐺)𝜎 , which acts on the right side via the map

𝑆
𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

→ 𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 .

The L-parameter [𝜌] ∈ 𝐻1(Γ, 𝐻 (𝑘)) corresponds to a character 𝜒𝜌 : Exc(Γ, 𝐿𝐻) → 𝑘 under
Proposition 2.4. Therefore, 𝜒𝜌 induces a character 𝜒′𝜌 : Exc(Γ, 𝐿𝐺)′ → 𝑘 sending

𝑆
𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

↦→ 𝜒𝜌 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ),

𝑁 · 𝑆 ↦→ 0 for any 𝑆 ∈ Exc(Γ, 𝐿𝐺).

Let 𝔪′𝜌 = ker(𝜒′𝜌) ⊂ Exc(Γ, 𝐿𝐺)′ be the corresponding maximal ideal. The assumption that 𝜒′𝜌 arises in
the action of Exc(Γ, 𝐿𝐺)′ on 𝐻0

𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1)𝛼 means that 𝐻0
𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1)𝛼 is supported at

𝔪′𝜌. For any F𝑝-module 𝑀0, there is semilinear action of Aut(𝑘) on 𝑀 := 𝑀0 ⊗F𝑝 𝑘 through the second
factor. This applies, in particular, to Exc(Γ, 𝐿𝐺)′ and 𝐻0

𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1)𝛼 since they are defined over
F𝑝 ⊂ 𝑘 . Since the action of Exc(Γ, 𝐿𝐺)′ on 𝐻0

𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1)𝛼 is also defined over F𝑝 , the image of
𝔪′𝜌 under the automorphism of Exc(Γ, 𝐿𝐺)′ induced by Frob𝑝 ∈ Aut(𝑘) also appears in the support of
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𝐻0
𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1)𝛼. We denote this maximal ideal by 𝔫′𝜌; its associated character 𝜂𝜌 is characterized

by the property that 𝜂𝜌 kills 𝑁 · 𝑆 for any 𝑆 ∈ Exc(Γ, 𝐿𝐺), and for (𝑉, 𝑥, 𝜉) defined over F𝑝 it sends

𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 ↦→ 𝜒𝜌 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 )
𝑝

(we omitted Frobenius twists because they have no effect on maps defined over F𝑝).
At the start of the proof, we identified 𝐻0

𝑐 (Sht𝐻,𝐷+∞𝑥0 ,∅;1)𝛼 with 𝑇0 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) as modules
over Exc(Γ, 𝐿𝐺)′. The latter is a subquotient of 𝐻0

𝑐 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) viewed as a Exc(Γ, 𝐿𝐺)′-module
via the composition Exc(Γ, 𝐿𝐺)′ ↩→ Exc(Γ, 𝐿𝐺). Since 𝐻0

𝑐 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) is supported at 𝔫′𝜌 ⊂
Exc(Γ, 𝐿𝐺)′, it is also supported at some maximal ideal 𝔫𝜌 of Exc(Γ, 𝐿𝐺) lying over 𝔫′𝜌. Lemma 5.15
implies that there is a unique maximal ideal of Exc(Γ, 𝐿𝐺) lying over 𝔫′𝜌, which by Lemma 5.16
corresponds to the character sending

𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 ↦→𝜂𝜌 (𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 )
1/𝑝 = 𝜒𝜌 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ).

This is precisely 𝜒𝜌 ◦ 𝜙∗BC, so its kernel is 𝔫𝜌. We conclude that 𝐻0
𝑐 (Sht𝐺,𝐷+∞𝑥0 ,∅;1) must be supported

at ker(𝜒𝜌 ◦ 𝜙∗BC) ⊂ Exc(Γ, 𝐿𝐺), as desired. �

6. On local base change

In this section, we will prove the main local results mentioned in the introduction. We begin by reviewing
the relevant aspects of the Genestier-Lafforgue correspondence in §6.1. Its key property is local-global
compatibility, which will allow us to leverage the global results proved in the preceding section.

After that, we embark on the construction of the map ℨTV from Theorem 1.4. Its definition does
not require any geometry and works equally well over local fields of characteristic zero (and residue
characteristic different from p), but requires some technical preliminaries on Hecke algebras, which
we establish in §6.2. Then we review the Brauer homomorphism in §6.3, which is needed to finally
construct ℨTV and prove Theorem 1.4. We then use it (and intermediate results established along the
way) to prove Theorem 1.2 in §6.5 and Theorem 1.1 in §6.6.

6.1. Review of the Genestier-Lafforgue correspondence

Let 𝐹𝑣 be a local function field with ring of integers O𝑣 and residue characteristic ℓ ≠ 𝑝. Let 𝑊𝑣 be the
Weil group of 𝐹𝑣 . Let G be a reductive group over 𝐹𝑣 and denote 𝐺𝑣 := 𝐺 (𝐹𝑣 ). In [GL, Théorèm 8.1],
Genestier-Lafforgue construct a map{

irreducible admissible representations
𝜋 of 𝐺𝑣 over 𝑘

}
/∼ −→

{
semi-simple 𝐿-parameters

𝜌𝜋 : 𝑊𝑣 →
𝐿𝐺 (𝑘)

}
/∼,

which is characterized by local-global compatibility with Lafforgue’s Global Langlands correspondence.
We briefly summarize the aspects of the Genestier-Lafforgue correspondence that we will need.

6.1.1. The Bernstein center
We begin by recalling the formalism of the Bernstein center [Ber84]. Let 𝐾 ⊂ 𝐺𝑣 be an open compact
subgroup with prime-to-p order. The Hecke algebra of G with respect to K with coefficients inΛ is

H(𝐺, 𝐾;Λ) := 𝐶𝑐 (𝐾\𝐺𝑣/𝐾;Λ),

the compactly supported functions on 𝐾\𝐺𝑣/𝐾 valued in Λ. This forms an algebra under convolution,
normalized so that the indicator function 1𝐾 is the unit. We let ℨ(𝐺, 𝐾;Λ) := 𝑍 (H(𝐺, 𝐾;Λ)) be the
center of H(𝐺, 𝐾;Λ).
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If 𝐾 ⊂ 𝐾 ′ have prime-to-p pro-order (e.g., this will be true as long as they are sufficiently small),
then convolution with 1𝐾 ′ gives a homomorphism ℨ(𝐺, 𝐾;Λ) → ℨ(𝐺, 𝐾 ′;Λ). The Bernstein center
of G (with coefficients inΛ) is

ℨ(𝐺;Λ) := lim
←−−
𝐾

ℨ(𝐺, 𝐾;Λ),

where the transition maps to ℨ(𝐺, 𝐾;Λ) are as above, and the inverse limit is taken over K with prime-
to-p pro-order.

If Λ = 𝑘 , we abbreviate H(𝐺, 𝐾) := H(𝐺, 𝐾; 𝑘), ℨ(𝐺, 𝐾) := ℨ(𝐺, 𝐾; 𝑘), and ℨ(𝐺) := ℨ(𝐺; 𝑘).
The ring ℨ(𝐺) has another interpretation as the ring of endomorphisms of the identity functor

of the category of smooth k-representations of 𝐺𝑣 . Explicitly, smoothness of Π implies that Π =⋃
open compact 𝐾 ⊂𝐺𝑣 Π

𝐾 , and ℨ(𝐺, 𝐾) acts on Π𝐾 as an H(𝐺, 𝐾)-module; this assembles into action of
ℨ(𝐺) on Π. In particular, any irreducible admissible representation Π of 𝐺𝑣 over k induces a character
of ℨ(𝐺).

6.1.2. Action of the excursion algebra
The main result of [GL] is the construction of a homomorphism

𝑍𝐺 : Exc(𝑊𝑣 , 𝐿𝐺) → ℨ(𝐺). (6.1)

Let 𝑥 ∈ B(𝐺/𝐹𝑣 ) be a point of the Bruhat-Tits building of G and use it to extend G to a parahoric
group scheme over O𝑣 . (Some reminders on Bruhat-Tits theory will appear in §6.2.2.) For 𝑟 ≥ 0, let
𝐾𝑟 := 𝐺 (𝐹𝑣 )𝑥,𝑟 ; this is an open compact subgroup of 𝐹𝑣 . We write 𝑍𝐺,𝑟 : Exc(𝑊𝑣 , 𝐿𝐺) → ℨ(𝐺, 𝐾𝑟 )

for the composition of 𝑍𝐺 with the tautological projection to H(𝐺, 𝐾𝑟 ).
We will shortly give a characterization of (6.1). First, let us indicate how (6.1) defines the corre-

spondence Π ↦→ 𝜌Π . An irreducible admissible Π induces a character of ℨ(𝐺), as discussed above.
Composing with 𝑍𝐺 then gives a character of Exc(𝑊𝑣 , 𝐿𝐺), which by Proposition 2.4 gives a semisim-
ple Langlands parameter 𝜌Π ∈ 𝐻1 (𝑊𝑣 , 𝐺 (𝑘)).

6.1.3. Local-global compatibility
Choose a smooth projective curve X over Fℓ and a point 𝑣 ∈ 𝑋 so that 𝑋𝑣 = Spec O𝑣 , and G extends
to a reductive group over the generic point of X. Then choose a further extension of G to a parahoric
group scheme over all of X, such that 𝐺/O𝑣 is the parahoric group scheme corresponding to the chosen
point 𝑥 ∈ B(𝐺/𝐹𝑣 ).

Choose an embedding of the local Weil group 𝑊𝑣 into the global Weil group of X, which we denote
Weil(𝜂, 𝜂). The map (6.1) is characterized by local-global compatibility with the global excursion action.
The idea is that for (𝛾𝑖)𝑖∈𝐼 ⊂ 𝑊 𝐼

𝑣 ⊂ Weil(𝜂, 𝜂)𝐼 , the action of the the excursion operator 𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 on
𝐻0
𝑐 (Sht𝐺,𝐷,∅;1) is local at v (i.e., it acts through a Hecke operator for 𝐺𝑣 ). Moreover, it commutes with

other Hecke operators because all excursion operators commute with all Hecke operators; hence, it must
actually be in the center of the relevant Hecke algebra. This idea is affirmed by the Proposition below.

Proposition 6.1 (Genestier-Lafforgue Proposition 1.3). Let 𝑟 ≥ 0 be an integer and 𝐷 := 𝑟𝑣 + 𝐷𝑣 a
closed finite subscheme of X, with 𝐷𝑣 supported away from v. For (𝛾𝑖)𝑖∈𝐼 ⊂ 𝑊 𝐼

𝑣 , the operator 𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼
acts on 𝐻0

𝑐 (Sht𝐺,𝐷,∅;1) as convolution by 𝑍𝐺,𝑟 (𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 ) ∈ ℨ(𝐺, 𝐾𝑟 ).

Remark 6.2. By [GL, Lemme 1.4], for large enough (depending on r) 𝐷𝑣 the action of 𝑍𝐺,𝑟 (𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 )
on 𝐻0

𝑐 (Sht𝐺,𝐷,∅;1) is faithful. Therefore, Proposition 6.1 certainly characterizes the map (6.1). What
is not clear is that the resulting 𝑍𝐺,𝑟 (𝑆𝐼 , 𝑓 , (𝛾𝑖 )𝑖∈𝐼 ) is independent of choices (of the global curve, or
the integral model of the affine group scheme). In [GL], this is established by giving a purely local
construction of (6.1) in terms of ‘restricted shtukas’, but for our purposes, it will be enough to accept
Proposition 6.1 as a black box.
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6.2. Preliminary results on Hecke algebras

We next establish some technical lemmas which aid to study the properties of the Brauer homomorphism.
The only result that will be needed in later subsections is Corollary 6.4.

6.2.1. Assumptions
In this subsection, we allow 𝐹𝑣 to be any local field (including one of characteristic zero) of residue
characteristic ℓ ≠ 𝑝. Let 𝐸𝑣/𝐹𝑣 be a finite Galois assumption such that Gal(𝐸𝑣/𝐹𝑣 ) has order coprime
to ℓ. We let H be any (connected) reductive group over 𝐹𝑣 and 𝐺 := Res𝐸𝑣/𝐹𝑣 (𝐻𝐸𝑣 ). We abbreviate
𝐻𝑣 = 𝐻 (𝐹𝑣 ) and 𝐺𝑣 = 𝐺 (𝐹𝑣 ) = 𝐻 (𝐸𝑣 ).

6.2.2. Reminders on Bruhat-Tits theory
First, we recall some relevant facts from Bruhat-Tits theory, originally developed in [BT72] but explained
in the form used below in [KP23].

Let B(𝐻/𝐹𝑣 ) be the Bruhat-Tits building of 𝐻/𝐹𝑣 and 𝑥 ∈ B(𝐻/𝐹𝑣 ). Associated to x, there is the
parahoric group 𝐻 (𝐹𝑣 )

0
𝑥 := 𝐻 (𝐹𝑣 )𝑥,0, along with its decreasing filtration 𝐻 (𝐹𝑣 )𝑥,𝑟 for 𝑟 ≥ 0. The

subgroup 𝐻 (𝐹𝑣 )𝑥,0+ :=
⋃

𝑠>0 𝐻 (𝐹𝑣 )𝑥,𝑠 is pro-ℓ.
We record some descent properties: if 𝐸𝑣/𝐹𝑣 is unramified, then 𝐻 (𝐸𝑣 )

Gal(𝐸𝑣/𝐹𝑣 )
𝑥,𝑟 = 𝐻 (𝐹𝑣 )𝑥,𝑟 , and

if 𝐸𝑣/𝐹𝑣 is tamely ramified, then 𝐻 (𝐸𝑣 )
Gal(𝐸𝑣/𝐹𝑣 )
𝑥,𝑟 ⊃ 𝐻 (𝐹𝑣 )𝑥,𝑟 as explained in [KP23, §12].

We shall make use of the Cartan decomposition. We follow the description in [KP23, §5.2]. Let S
be a maximal 𝐹𝑣 -split torus of H, and 𝑍 = 𝑍𝐻 (𝑆). Referring to [KP23, (5.2.1)] for undefined notation,
we have a subset

Z := {𝑧 ∈ 𝑍 (𝐹𝑣 ) : 𝛼(𝜔𝑍 (𝑧)) ≥ 0 for all 𝛼 ∈ Φ+} ⊂ 𝑍 (𝐹𝑣 ). (6.2)

According to [KP23, Theorem 5.2.1], for a special vertex x in the apartment of S, we have

1. 𝐻 (𝐹𝑣 ) = 𝐻 (𝐹𝑣 )𝑥,0 · Z · 𝐻 (𝐹𝑣 )𝑥,0, and
2. for 𝑧, 𝑧′ ∈ Z , 𝐻 (𝐹𝑣 )𝑥,0 𝑧 𝐻 (𝐹𝑣 )𝑥,0 = 𝐻 (𝐹𝑣 )

0
𝑥 𝑧′ 𝐻 (𝐹𝑣 )

0
𝑥 if and only if 𝑧′(𝑧−1) ∈ 𝑍 (𝐹𝑣 )

0,

where for a Levi subgroup 𝑀 ⊂ 𝐺, the subgroup 𝑀 (𝐹𝑣 )
0 ⊂ 𝑀 (𝐹𝑣 ) is the kernel of the Kottwitz

homomorphism 𝜅𝑀 : 𝑀 (𝐹𝑣 ) → 𝜋1 (𝑀)
Gal(�̆�𝑣/𝐹𝑣 )
𝐼 ; it may be defined alternatively as in [KP23, Definition

2.6.23]. We have 𝑍 (𝐹𝑣 )
0 ⊂ 𝐻 (𝐹𝑣 )𝑥,0.

6.2.3. Maps of double coset spaces
Following the notation of §6.2.1, let 𝑆𝐺 be a maximal 𝐹𝑣 -split torus of G and define 𝑍𝐸 := 𝑍𝐺 (𝑆𝐺),
and Z𝐸 ⊂ 𝑍𝐸 (𝐹𝑣 ) as in (6.2). Let 𝑆𝐹 be a maximal 𝐹𝑣 -split torus of H contained in 𝑆𝐺 , 𝑍𝐹 = 𝑍𝐻 (𝑆𝐻 ),
and Z𝐹 ⊂ 𝑍𝐹 (𝐹𝑣 ) as in (6.2). Let 𝑥 ∈ B(𝐺/𝐹𝑣 ) be a special vertex in the apartment of 𝑆𝐺 . We will
abbreviate 𝐾𝑟 := 𝐺 (𝐹𝑣 )𝑥,𝑟 and 𝑈𝑟 = 𝐾Gal(𝐸𝑣/𝐹𝑣 )

𝑟 ⊃ 𝐻 (𝐹𝑣 )𝑥,𝑟 . The goal of this subsection is to prove
the following.

Proposition 6.3. If 𝑟 ≥ 0, then the map 𝑈𝑟\𝐻𝑣/𝑈𝑟 → 𝐾𝑟\𝐺𝑣/𝐾𝑟 is injective.

Proof. We first handle the case 𝑟 = 0, which will seen to be a consequence of Cartan decomposition.
Since 𝑈0 ⊃ 𝐻 (𝐹𝑣 )𝑥,0, the Cartan decomposition implies that double cosets 𝑈0\𝐺𝑣/𝑈0 are represented
by 𝑧 ∈ Z𝐹 . If 𝑧1, 𝑧2 ∈ Z𝐹 are such that 𝐾0𝑧1𝐾0 = 𝐾0𝑧2𝐾0, then 𝑧2𝑧−1

1 ∈ 𝑍𝐸 (𝐹𝑣 )
0 ⊂ 𝐾0. At the same

time, clearly 𝑧2𝑧−1
1 ∈ 𝐻 (𝐹𝑣 ), so we conclude that 𝑧2𝑧−1

1 ∈ 𝐾0 ∩𝐻𝑣 = 𝑈0. Therefore, 𝑈0𝑧1𝑈0 = 𝑈0𝑧2𝑈0,
and the case 𝑟 = 0 is concluded.

Now suppose 𝑟 > 0. Let 𝑎, 𝑏 ∈ 𝑈𝑟\𝐻𝑣 be two elements whose images in 𝐾𝑟\𝐺𝑣 lie in the same orbit
for the right translation of 𝐾𝑟 . In other words, 𝑎 = 𝑏𝑘 for some 𝑘 ∈ 𝐾𝑟 . Since 𝑎, 𝑏 are fixed by 𝜎, this
implies that

𝑎 = 𝑏𝜎(𝑘),
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and therefore, 𝜎(𝑘)𝑘−1 ∈ Stab𝐾𝑟 (𝑏) =: 𝐾𝑏
𝑟 . Note that Gal(𝐸𝑟/𝐹𝑟 ) is of order prime-to-ℓ, while 𝐾𝑟 is

pro-ℓ thanks to the assumption 𝑟 > 0, so then 𝐻1 (Gal(𝐸𝑟/𝐹𝑟 ); 𝐾𝑏
𝑟 ) = 0. This means that there exists

𝑦 ∈ 𝐾𝑏
𝑟 such that 𝜎(𝑘)𝑘−1 = 𝜎(𝑦)𝑦−1. Then 𝑦−1𝑘 is fixed by 𝜎, so 𝑦−1𝑘 ∈ 𝐻𝑣 ∩ 𝐾𝑟 = 𝑈𝑟 . But then

𝑎 = 𝑏𝑘 = (𝑏𝑦−1)𝑘 = 𝑏(𝑦−1𝑘),

which shows that a and b lie in the same orbit for the right translation of 𝑈𝑟 on 𝑈𝑟\𝐻𝑣 . �

In the following Corollary, we let Gal(𝐸𝑣/𝐹𝑣 ) act on 𝐺𝑣 = 𝐻 (𝐸𝑣 ) by the natural Galois action,
which induces an action on H(𝐺, 𝐾𝑟 ;Λ).

Corollary 6.4. Suppose 𝑟 ≥ 0. Then the restriction map H(𝐺, 𝐾𝑟 ;Λ)Gal(𝐸𝑣/𝐹𝑣 ) → H(𝐻, 𝑈𝑟 ;Λ) is
surjective.

6.3. The Brauer homomorphism

We introduce the notion of the Brauer homomorphism from [TV16], whose utility for our purpose is to
capture the relationship between Π and its Tate cohomology from the perspective of Hecke algebras.

6.3.1. Assumptions
In this subsection, we allow 𝐹𝑣 to be any local field (including one of characteristic zero) of residue
characteristic ℓ ≠ 𝑝. We assume that Gal(𝐸𝑣/𝐹𝑣 ) is cyclic of order p, and we let 𝜎 ∈ Gal(𝐸𝑣/𝐹𝑣 ) be a
generator. We let H be any (connected) reductive group over 𝐹𝑣 and 𝐺 := Res𝐸𝑣/𝐹𝑣 (𝐻𝐸𝑣 ). Subgroups
𝐾𝑟 ⊂ 𝐺𝑣 , 𝑈𝑟 ⊂ 𝐻𝑣 are defined as in §6.2.3.

6.3.2. The (un-normalized) Brauer homomorphism
Let 𝐾 ⊂ 𝐺𝑣 be an open compact subgroup and let 𝑈 := 𝐾𝜎 ⊂ 𝐻𝑣 . We say that 𝐾 ⊂ 𝐺𝑣 is a plain
subgroup if (𝐺𝑣/𝐾)

𝜎 = 𝐻𝑣/𝑈.
We can view H(𝐺, 𝐾) as the ring of 𝐺𝑣 -invariant (for the diagonal action) functions on (𝐺𝑣/𝐾) ×

(𝐺𝑣/𝐾) under convolution.

Lemma 6.5. If 𝐾 ⊂ 𝐺𝑣 is a plain subgroup, then the restriction map

H(𝐺, 𝐾)𝜎 = Fun𝐺𝑣 ,𝑐 ((𝐺𝑣/𝐾) × (𝐺𝑣/𝐾), 𝑘)𝜎 (6.3)
restrict
−−−−−→ Fun𝐻𝑣 ,𝑐 ((𝐻𝑣/𝑈) × (𝐻𝑣/𝑈), 𝑘) = H(𝐻𝑣 , 𝑈)

is an algebra homomorphism.

Proof. What we must verify is that for 𝑥, 𝑧 ∈ 𝐻𝑣/𝑈 and 𝑓 , 𝑔 ∈ H(𝐺, 𝐾)𝜎 we have∑
𝑦∈𝐺𝑣/𝐾

𝑓 (𝑥, 𝑦)𝑔(𝑦, 𝑧) =
∑

𝑦∈𝐻𝑣/𝑈

𝑓 (𝑥, 𝑦)𝑔(𝑦, 𝑧). (6.4)

Since f and g are 𝜎-invariant, we have

𝑓 (𝑥, 𝑦) = 𝑓 (𝜎𝑥, 𝜎𝑦) = 𝑓 (𝑥, 𝜎𝑦) and 𝑔(𝑦, 𝑧) = 𝑔(𝜎𝑦, 𝜎𝑧) = 𝑔(𝜎𝑦, 𝑧).

If 𝑦 ∉ 𝐻𝑣/𝑈, then the plain-ness assumption implies that y is not fixed by 𝜎. Therefore, the contribution
from the orbit of 𝜎 on y to (6.4) is a multiple of p, which is 0 in k. �

The map of Lemma 6.5 was introduced in [TV16, §4] and called the (un-normalized) Brauer
homomorphism. We denote it

Br : H(𝐺, 𝐾)𝜎 → H(𝐻, 𝑈).
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Lemma 6.6. If 𝐾 ⊂ 𝐺 (𝐹𝑣 )𝑥,0+ for any 𝑥 ∈ B(𝐺/𝐹𝑣 ), then K is plain.

Proof. By the long exact sequence for group cohomology, the plain-ness of 𝐾 ⊂ 𝐺𝑣 is equivalent to
condition that the map on non-abelian cohomology 𝐻1(〈𝜎〉; 𝐾) → 𝐻1 (〈𝜎〉; 𝐺𝑣 ) has trivial fiber over
the trivial class. But since 𝐺 (𝐹𝑣 )𝑥,0+ is pro-ℓ, all its subgroups are acyclic for 𝐻1 (〈𝜎〉,−) as 𝜎 has
order p. Therefore, 𝐻1(〈𝜎〉, 𝐾) vanishes for all such 𝐾 ⊂ 𝐺 (𝐹𝑣 )𝑥,0+. �

Lemma 6.7 (Relation to the Brauer homomorphism). Assume 𝐾 ⊂ 𝐺𝑣 is plain. Suppose Π is a 𝜎-
fixed representation of 𝐺𝑣 . Then the map of Tate cohomology groups 𝑇∗(Π𝐾 ) → 𝑇∗(Π) lands in the
U-invariants, and for any ℎ ∈ H(𝐺, 𝐾)𝜎 , we have the commutative diagram below.

𝑇∗(Π𝐾 ) 𝑇∗(Π)𝑈

𝑇∗(Π𝐾 ) 𝑇∗(Π)𝑈

𝑇 0ℎ Br(ℎ)

(Here, 𝑇0ℎ is the element of 𝑇0 (H(𝐺, 𝐾)) represented by h.)

Proof. This is [TV16, §6.2]; it follows from a direct computation similar to the proof of Lemma 6.5. �

6.3.3. Treumann-Venkatesh homomorphism
If we take 𝐾 = 𝐾𝑟 as in Corollary 6.4, then the Brauer homomorphism Br: H(𝐺, 𝐾𝑟 )

𝜎 → H(𝐻, 𝑈𝑟 )

is a surjective algebra homomorphism and hence induces a map on centers

𝑍 (Br) : 𝑍 (H(𝐺, 𝐾𝑟 )
𝜎) → ℨ(𝐻, 𝑈𝑟 ). (6.5)

It is evident from the definition that 𝑍 (Br) through the quotient 𝑍 (H(𝐺, 𝐾𝑟 )
𝜎)/𝑁 · ℨ(𝐺, 𝐾𝑟 ).

Since ℨ(𝐺, 𝐾𝑟 ) is commutative, it has a Tate diagonal homomorphism (Definition 5.14)
ℨ(𝐺, 𝐾𝑟 )

Δ 𝑝
−−→ 𝑇0 (ℨ(𝐺, 𝐾𝑟 )). Since 𝑍 (H(𝐺, 𝐾𝑟 ))

𝜎 ⊂ 𝑍 (H(𝐺, 𝐾𝑟 )
𝜎), we may compose with 𝑍 (Br)

to obtain a map

ℨ(𝐺, 𝐾𝑟 )
Δ 𝑝
−−→ 𝑇0 (ℨ(𝐺, 𝐾𝑟 ))

𝑍 (Br)
−−−−→ ℨ(𝐻, 𝑈𝑟 ). (6.6)

Note, however, that it is not k-linear since Δ 𝑝 is Frob-semilinear over k. Then there is a (unique)
homomorphism 𝑍 ′ fitting into the commutative diagram

ℨ(𝐺, 𝐾𝑟 )

ℨ(𝐺, 𝐾𝑟 )
(𝑝) ℨ(𝐻, 𝑈𝑟 ).

∼
𝑍 (Br)◦Δ 𝑝

𝑍 ′

(6.7)

We have ℨ(𝐺, 𝐾𝑟 ) � ℨ(𝐺, 𝐾𝑟 ; F𝑝) ⊗F𝑝 𝑘 , which as explained in Construction 5.17 induces a k-linear
isomorphism

ℨ(𝐺, 𝐾𝑟 )
(𝑝) � ℨ(𝐺, 𝐾𝑟 ). (6.8)

Definition 6.8. We define Treumann-Venkatesh homomorphism ℨTV,𝑟 to be the homomorphism
ℨ(𝐺, 𝐾𝑟 ) → ℨ(𝐻, 𝑈𝑟 ) obtained by linearization of 𝑍 ′ in the sense of Construction 5.17 with respect
to the F𝑝 structure (6.8).

Remark 6.9. Definition 6.8 is not considered in [TV16], but it is inspired by the definition of the
normalized Brauer homomorphism in [TV16, §4.3].
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6.4. The base change homomorphism for Bernstein centers

For now, assumptions are as in §6.3.1. Suppose 𝐾𝑟 has prime-to-p pro-order. For 𝑠 > 𝑟 , so that 𝐾𝑠 ⊂ 𝐾𝑟 ,
we have a map 𝑒𝑠→𝑟

𝐺 : ℨ(𝐺, 𝐾𝑠) → ℨ(𝐺, 𝐾𝑟 ) given by convolution with 1𝐾𝑟 . (Technically, 𝑒𝑠→𝑟
𝐺 also

depends on the point 𝑥 ∈ B(𝐺/𝐹𝑣 ) used to define the 𝐾𝑟 , but we suppress this from our notation.)
Similarly, we have 𝑒𝑠→𝑟

𝐻 : ℨ(𝐻, 𝑈𝑠) → ℨ(𝐻, 𝑈𝑟 ) given by convolution with 1𝑈𝑟 .

Lemma 6.10. The diagram

ℨ(𝐺, 𝐾𝑠) ℨ(𝐻, 𝑈𝑠)

ℨ(𝐺, 𝐾𝑟 ) ℨ(𝐻, 𝑈𝑟 )

ℨTV,𝑠

𝑒𝑠→𝑟
𝐺 𝑒𝑠→𝑟𝐻

ℨTV,𝑟

commutes.

Proof. This follows by direct computation, using Lemma 6.5 and Lemma 6.7. �

Definition 6.11 (Base change homomorphism for Bernstein centers). We define the map ℨTV : ℨ(𝐺) →
ℨ(𝐻) as

lim
←−−
𝑟

ℨTV,𝑟 : lim
←−−
𝑟

ℨ(𝐺, 𝐾𝑟 ) → lim
←−−
𝑟

ℨ(𝐻, 𝑈𝑟 ).

Definition 6.11 is well defined over local fields of any residue characteristic ℓ ≠ 𝑝, but in this paper
we will only prove properties of it for local function fields. Hence, for the rest of the paper, we assume
that𝐹𝑣 is a local field of positive characteristic. The rest of this subsection shall be devoted to the
proof of Theorem 1.4.

6.4.1.
The maps

Exc(𝑊𝑣 , 𝐿𝐺)
𝑍𝐺,𝑟
−−−−→ ℨ(𝐺, 𝐾𝑟 ) → EndH𝐺 (𝐻

0
𝑐 (Sht𝐺,𝐷,∅;1))

induce upon applying Tate cohomology,

𝑇0 Exc(𝑊𝑣 , 𝐿𝐺)
𝑇 0𝑍𝐺,𝑟
−−−−−−→ 𝑇0ℨ(𝐺, 𝐾𝑟 ) → End𝑇 0H𝐺

(𝑇0 (𝐻0
𝑐 (Sht𝐺,𝐷,∅;1))).

Fix a closed point 𝑥0 on X distinct from v. For each integer r, we will impose level structure along
𝐷 := 𝑟𝑣+∞𝑥0, interpreted as in §5.4.2. By Remark 6.2, the mapℨ(𝐺, 𝐾𝑟 ) → EndH𝐺 (𝐻

0
𝑐 (Sht𝐺,𝐷,∅;1))

is injective.

6.4.2.
Theorem 5.11 implies that under the identification 𝑇0 (Sht𝐺,𝐷,∅;1) � 𝑇0 (Sht𝐻,𝐷,∅;1), we have

���
the action of

𝑆
𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

on 𝑇0 (Sht𝐺,𝐷,∅;1)

��� =

(
the action of 𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼

on 𝑇0 (Sht𝐻,𝐷,∅;1)

)
.

6.4.3.
For any set S, we let 𝑘 [𝑆] denote the k-vector space of k-valued functions on S.

Now suppose 𝑆 is a set with an action of 𝐺𝑣 � 〈𝜎〉, on which an open compact subgroup 𝐾 ⊂ 𝐺𝑣

acts freely. Then for 𝑆 := 𝑆/𝐾 , there is a natural action of H(𝐺, 𝐾) on 𝑘 [𝑆] since we may view
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H(𝐺, 𝐾) = Hom𝐺𝑣 (𝑘 [𝐺𝑣/𝐾], 𝑘 [𝐺𝑣/𝐾]) and 𝑘 [𝑆] = Hom𝐺𝑣 (𝑘 [𝐺𝑣/𝐾], 𝑘 [𝑆]). This induces an
action of 𝑇0 (H(𝐺, 𝐾)) on 𝑇0 (𝑘 [𝑆]) � 𝑘 [𝑆𝜎] and then by inflation an action of H(𝐺, 𝐾)𝜎 on 𝑘 [𝑆𝜎].

By the same mechanism, for 𝑈 := 𝐾𝜎 , there is an induced action of H(𝐻, 𝑈) on 𝑘 [𝑆𝜎/𝐾𝜎] =
𝑘 [𝑆𝜎/𝑈]. We define 𝑍𝐻,𝑟 : Exc(𝑊𝑣 , 𝐿𝐻) → ℨ(𝐻, 𝑈𝑟 ) similarly to 𝑍𝐺,𝑟 .

Lemma 6.12. Assume 𝐾 ⊂ 𝐺𝑣 is a plain subgroup. Then 𝑘 [𝑆𝜎/𝑈] is a H(𝐺, 𝐾)𝜎-direct summand of
𝑘 [𝑆𝜎], and for all ℎ ∈ H(𝐺, 𝐾)𝜎 , we have(

the action of ℎ on 𝑘 [𝑆𝜎/𝑈]
)
=

(
the action of Br(ℎ) ∈ H(𝐻, 𝑈) on 𝑘 [𝑆𝜎/𝑈]

)
.

Proof. See [TV16, equation (4.2.2)]. �

From §6.4.1, we have the diagram

𝑇0 Exc(𝑊𝑣 , 𝐿𝐺) 𝑇0ℨ(𝐺, 𝐾𝑟 ) End𝑇 0H𝐺
(𝑇0 (Sht𝐺,𝐷,∅;1))

Exc(𝑊𝑣 , 𝐿𝐻) ℨ(𝐻, 𝑈𝑟 ) EndH𝐻 (𝑇
0 (Sht𝐻,𝐷,∅;1)).

𝑍𝐺,𝑟

𝑍 (Br)

𝑍𝐻,𝑟

(6.9)

Here, the right vertical map is the identity map on endomorphisms with respect to the identification
𝑇0 (Sht𝐺,𝐷,∅;1) � 𝑇0 (Sht𝐻,𝐷,∅;1). Note that the surjectivity statement of Corollary 6.4, plus Lemma
6.5 and Lemma 6.7 giving compatibility of the respective actions with the Brauer homomorphism, are
what guarantees that an endomorphism commuting with the 𝑇0 (H𝐺)-action also commutes with the
H𝐻 -action.

Corollary 6.13. For all 𝑟 ≥ 1, the action of 𝑧 ∈ 𝑇0ℨ(𝐺, 𝐾𝑟 ) on 𝑇0 (Sht𝐺,𝐷,∅;1) in (6.9) agrees
with the action of 𝑍 (Br) (𝑧) on 𝑇0 (Sht𝐻,𝐷,∅;1) in (6.9) under the identification 𝑇0 (Sht𝐺,𝐷,∅;1) �
𝑇0 (Sht𝐻,𝐷,∅;1) from §3.4.5. In other words, the square in diagram (6.9) commutes.

Proof. Apply Lemma 6.12 with 𝑆 := Sht𝐺,𝐷,∅ and 𝑆 := Sht𝐺,∞𝑣+∞𝑥0 ,∅ := lim
←−− 𝑗≥0

Sht𝐺, (𝑟+ 𝑗)𝑣+ 𝑗 𝑥0 ,∅.
Then 𝑘 [𝑆] is identified with the functions on Sht𝐺,𝑟 𝑣+∞𝑥0 ,∅, and Lemma 5.7 plus §3.4.5 identify
𝑘 [𝑆𝜎/𝐾𝜎] with the functions on Sht𝐻,𝑟 𝑣+∞𝑥0 ,∅.

As compactly supported functions are dual to functions, the assertions for compactly supported
functions then follow by duality. �

Corollary 6.14. For all 𝑟 ≥ 1, for all {𝑉, 𝑥, 𝜉, (𝛾𝑖)𝑖∈𝐼 } as in §2.4, Br sends

𝑍𝐺,𝑟 (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼
) ∈ ℨ(𝐺, 𝐾𝑟 ) ⊂ H(𝐺, 𝐾𝑟 )

Br
−−→ 𝑍𝐻,𝑟 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ) ∈ ℨ(𝐻, 𝑈𝑟 ) ⊂ H(𝐻, 𝑈𝑟 ).

Proof. The equality from §6.4.2 shows that

���������

the image of
𝑆
𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼︸�����������������������������������������������︷︷�����������������������������������������������︸

∈𝑇 0 Exc(𝑊𝑣 ,𝐿𝐺)

in EndH𝐻 (𝑇
0 (Sht𝐻,𝑟 𝑣+∞𝑥0 ,∅;1))
via (6.9)

���������
=

��������

the image of
𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼︸��������������������︷︷��������������������︸

∈Exc(𝑊𝑣 ,𝐿𝐻 )

in EndH𝐻 (𝑇
0 (Sht𝐻,𝑟 𝑣+∞𝑥0 ,∅;1))
via (6.9)

��������
. (6.10)

At the same time, Corollary 6.13 shows that the left-hand side of (6.10) agrees with the image of
Br(𝑍𝐺,𝑟 (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

)) via (6.9) for all 𝑟 ≥ 1. We conclude using that the
map ℨ(𝐻, 𝑈𝑟 ) ↩→ EndH𝐻 (𝑇

∗(Sht𝐻,𝐷,∅;1)) in (6.9) is injective, which follows from Remark 6.2. �
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6.4.4.
Recall that in Definition 2.8 we have defined a map 𝜙BC : 𝐿𝐻 → 𝐿𝐺 over k.

Corollary 6.15. The following diagram commutes:

Exc(𝑊𝑣 , 𝐿𝐺) Exc(𝑊𝑣 , 𝐿𝐻)

ℨ(𝐺) ℨ(𝐻).

𝜙∗BC

𝑍𝐺 𝑍𝐻

ℨTV

(6.11)

Proof. The commutativity of the diagram

Exc(𝑊𝑣 , 𝐿𝐺) 𝑇0 Exc(𝑊𝑣 , 𝐿𝐺)

ℨ(𝐺) 𝑇0ℨ(𝐺)

Δ 𝑝

𝑍𝐺 𝑇 0 (𝑍𝐺 )

Δ 𝑝

implies that 𝑍 (Br) ◦ Δ 𝑝 ◦ 𝑍𝐺 = 𝑍 (Br) ◦ 𝑇0 (𝑍𝐺) ◦ Δ 𝑝 . By definition, ℨTV ◦ 𝑍𝐺 is the linearization of
𝑍 (Br) ◦ Δ 𝑝 ◦ 𝑍𝐺 , so it is also the linearization of 𝑍 (Br) ◦ 𝑇0 (𝑍𝐺) ◦ Δ 𝑝 .

By Lemma 5.16, the Tate diagonal Δ 𝑝 : Exc(𝑊𝑣 , 𝐿𝐺) → 𝑇0 (Exc(𝑊𝑣 , 𝐿𝐺)) sends

𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼

Δ 𝑝
−−→ 𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 . (6.12)

Its linearization therefore sends

𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ↦→ 𝑆
𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

since this is a k-algebra homomorphism that agrees with (6.12) when (𝑉, 𝑥, 𝜉) are defined over F𝑝 .
Applying Corollary 6.14 with 𝑟 →∞, we have

𝑍 (Br) ◦ 𝑍𝐺 (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼
) = 𝑍𝐻 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 )

= 𝑍𝐻 (𝜙
∗
BC(𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 )).

Therefore, the linearization of 𝑍 (Br) ◦ 𝑇0 (𝑍𝐺) ◦ Δ 𝑝 agrees with 𝑍𝐻 ◦ 𝜙∗BC. �

Completion of the proof of Theorem 1.4. Let 𝜋 be an irreducible representation of 𝐻𝑣 and 𝜒𝜋 : ℨ(𝐻) →
𝑘 the induced character. By the definition of the Genestier-Lafforgue parametrization, 𝜌𝜋 corresponds
to 𝜒𝜋 ◦ 𝑍𝐻 via Proposition 2.4. Then (6.11) implies that 𝜒𝜋 ◦ℨTV ◦ 𝑍𝐺 = 𝜒𝜋 ◦ 𝑍𝐻 ◦ 𝜙∗BC is associated
to the L-parameter 𝜙BC ◦ 𝜌𝜋 .

6.5. The Treumann-Venkatesh Conjecture

In this subsection, we will prove Theorem 1.2. We begin by formulating the Treumann-Venkatesh
Conjecture precisely in this setting. (The original phrasing of [TV16] is in terms of a hypothetical Local
Langlands correspondence which was not defined at the time for general groups.)

6.5.1. Assumptions
In this subsection, the assumptions are as in §6.3, and we furthermore assume 𝐹𝑣 is a local function
field. We note, however, that the formulation of all the statements in §6.11 makes sense for any local
field 𝐹𝑣 of residue field ℓ ≠ 𝑝, with a suitable replacement for the Genestier-Lafforgue correspondence
and that all our arguments in this subsection apply if those statements are true for 𝐹𝑣 .
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6.5.2. Formulation of the Conjecture
Let Π be an irreducible admissible representation of 𝐺𝑣 over k. Let Π𝜎 be the representation of 𝐺𝑣

obtained by composingΠ with 𝜎 : 𝐺𝑣 → 𝐺𝑣 . We say thatΠ is 𝜎-fixed ifΠ ≈ Π𝜎 as 𝐺𝑣 -representations.

Lemma 6.16 [TV16, Proposition 6.1]. If Π is 𝜎-fixed, then the 𝐺𝑣 -action on Π extends uniquely to an
action of 𝐺𝑣 � 〈𝜎〉.

Using Lemma 6.16, we can form the Tate cohomology groups 𝑇0 (Π) and 𝑇1 (Π) with respect to the
𝜎-action, which are then representations of 𝐻𝑣 . Treumann-Venkatesh conjecture that they are, in fact,
admissible representations of 𝐻𝑣 , but we do not prove or use this.

Definition 6.17 (Linkage). An irreducible admissible representation 𝜋 of 𝐻𝑣 is linked with an irreducible
admissible representation Π of 𝐺𝑣 if 𝜋 (𝑝) appears in 𝑇0 (Π) or 𝑇1 (Π), where 𝜋 (𝑝) is the Frobenius twist

𝜋 (𝑝) := 𝜋 ⊗𝑘,Frob 𝑘.

Conjecture 6.18 [TV16, Conjecture 6.3]. If 𝜋 is linked to Π, then 𝜋 base changes to Π.

Example 6.19. The need for the Frobenius twist can be seen in a simple example. Suppose 𝐺 = 𝐻 𝑝

and 𝜎 acts by cyclic permutation. Then 𝐺𝜎 is the diagonal copy of H. In this case, a representation 𝜋
of 𝐻𝑣 should transfer to 𝜋�𝑝 of 𝐺𝑣 . And indeed,

𝑇0 (𝜋�𝑝) =
ker(1 − 𝜎 | 𝜋�𝑝)

𝑁 · 𝜋�𝑝
� 𝜋 (𝑝) .

Remark 6.20. Conjecture 6.18 is highly nontrivial even for groups such as GL𝑛 where the full Local
Langlands correspondence – hence, in particular, the existence of cyclic base change – is already known.
In fact, the main result of [Ron16] is a special case of the conjecture for depth-zero supercuspidal
representations of GL𝑛 compactly induced from cuspidal Deligne-Lusztig representations. Despite the
very explicit nature of the Local Langlands Correspondence for such representations, the proof in loc.
cit. involves rather hefty calculations, which were not amenable to generalization.

Our proof of Conjecture 6.18 (when p is odd and good for 𝐺) is conceptual and applies to all
representations without using any explicit models such as models for supercuspidal representations
as compact inductions. Furthermore, the unramified and tamely ramified base change are handled
completely differently in [Ron16], whereas our proof will be completely uniform in the field extension,
the reductive group and the irreducible representation.

Theorem 6.21. Assume p is an odd good prime for 𝐺. Let Π be an irreducible admissible representation
of 𝐺𝑣 and let

𝜒Π (𝑝) : Exc(𝑊𝑣 , 𝐿𝐺) → 𝑘

be the associated character of Π (𝑝) . Form 𝑇∗(Π) := 𝑇∗(〈𝜎〉,Π), viewed as a smooth 𝐻𝑣 -representation.
Then for any irreducible character 𝜒 : Exc(𝑊𝑣 , 𝐿𝐻) → 𝑘 appearing in the action on 𝑇∗(Π) via
𝑍𝐻 : Exc(𝑊𝑣 , 𝐿𝐻) → ℨ(𝐻), the composite character

Exc(𝑊𝑣 , 𝐿𝐺)
𝜙∗BC
−−−→ Exc(𝑊𝑣 , 𝐿𝐻)

𝜒
−→ 𝑘

agrees with 𝜒Π (𝑝) .

It is clear that Theorem 6.21 implies Theorem 1.2.

Proof. Let Π be a representation of 𝐺𝑣 . Then ℨ(𝐺) acts 𝐺𝑣 -equivariantly on Π, inducing an 𝐻𝑣 -
equivariant action of ℨ(𝐺)𝜎 on 𝑇∗(Π). In particular, as 𝑍𝐺 maps Exc(𝑊𝑣 , 𝐿𝐺)𝜎 ⊂ Exc(𝑊𝑣 , 𝐿𝐺) into
ℨ(𝐺)𝜎 , we get an 𝐻𝑣 -equivariant action of Exc(𝑊𝑣 , 𝐿𝐺)𝜎 on 𝑇∗(Π).
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By Lemma 6.6, 𝐾𝑟 is plain as soon as 𝑟 ≥ 1. Taking the (filtered) colimit over r in Lemma 6.7 with
𝐾 = 𝐾𝑟 , we find that for all 𝑆 ∈ Exc(𝑊𝑣 , 𝐿𝐺)𝜎 , we have(

the action on 𝑇∗(Π) of
𝑍𝐺 (𝑆)

)
=

(
the action on 𝑇∗(Π) of

Br(𝑍𝐺 (𝑆))

)
.

In other words, the diagram below commutes:

ℨ(𝐺)𝜎 End𝐻𝑣 (𝑇∗Π)

ℨ(𝐻) End𝐻𝑣 (𝑇∗Π).

𝑍 (Br) ∼ (6.13)

At the same time, taking the inverse limit over r in Corollary 6.14 yields that

Br(𝑍𝐺 (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼
)) = 𝑍𝐻 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ) (6.14)

for all 𝑉 ∈ Rep𝑘 ((𝐿𝐺)𝐼 ).
Combining (6.13) and (6.14) shows that(

the action on 𝑇∗(Π) of
𝑍𝐺 (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼

)

)
=

(
the action on 𝑇∗(Π) of

𝑍𝐻 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 )

)
(6.15)

for all 𝑉 ∈ Rep𝑘 ((𝐿𝐺)𝐼 ).
From now on, assume Π is an irreducible (smooth) representation of 𝐺𝑣 . Then End𝐺𝑣 (Π) � 𝑘 (by

Schur’s Lemma applied to the Hecke action on the invariants of Π for every compact open subgroup of
𝐺𝑣 ). The L-parameter attached to Π corresponds under Proposition 2.4 to the character

𝜒Π : Exc(𝑊𝑣 , 𝐿𝐺) � Exc(𝑊𝑣 , 𝐿𝐺)
𝑍𝐺
−−→ ℨ(𝐺) → End𝐺𝑣 (Π) � 𝑘.

This induces

𝑇0 𝜒Π : 𝑇0 Exc(𝑊𝑣 , 𝐿𝐺) → 𝑇0 Exc(𝑊𝑣 , 𝐿𝐺)
𝑇 0𝑍𝐺
−−−−−→ 𝑇0ℨ(𝐺) → 𝑇0 End𝐺𝑣 (Π) � 𝑘.

The action of 𝑇0 Exc(𝑊𝑣 , 𝐿𝐺) on 𝑇∗(Π) is through 𝑇0 𝜒Π composed with the natural map
𝜄 : 𝑇0 End𝐺𝑣 (Π) → End𝐻𝑣 (𝑇∗Π).

We also consider the homomorphism

𝜒𝑇 ∗Π : Exc(𝑊𝑣 , 𝐿𝐻)
𝑍𝐻
−−→ ℨ(𝐻) → End𝐻𝑣 (𝑇

∗Π).

Then (6.15) implies that for all 𝑉 ∈ Rep𝑘 ((𝐿𝐺)𝐼 ), we have

𝜄 ◦ 𝑇0 𝜒Π (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼
) = 𝜒𝑇 ∗Π (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ). (6.16)

Note that the fact that the right-hand side of (6.16) lies in k is already non-obvious. In particular, (6.16)
implies that for any irreducible subquotient 𝜋 of 𝑇∗Π, we have

𝜒𝜋 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ) = 𝜒𝑇 ∗Π (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 )

= (𝑇0 𝜒Π) (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼
)

= 𝜒Π (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼
). (6.17)
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The character 𝜒Π (𝑝) giving the k-linearized action of Exc(𝑊𝑣 , 𝐿𝐺) on Π (𝑝) := Π ⊗𝑘,Frob𝑝 𝑘 satisfies

𝜒Π (𝑝) (𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 ) = 𝜒Π (𝑆𝐼 ,Nm(𝑝−1 ) (𝑉 ) ,Nm(𝑝−1 ) (𝑥) ,Nm(𝑝−1 ) ( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼
) 𝑝 . (6.18)

Definition 6.22. Similarly to Definition 5.19, let Exc(𝑊𝑣 , 𝐿𝐺)′ ⊂ Exc(𝑊𝑣 , 𝐿𝐺) be the
k-subalgebra generated by 𝑁 · Exc(𝑊𝑣 , 𝐿𝐺) and all elements of the form Nm(𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 )

= 𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 .

Then the combination of (6.17) and (6.18) tells us that the action of Exc(𝑊𝑣 , 𝐿𝐺)′ on Π (𝑝) via
Exc(𝑊𝑣 , 𝐿𝐺)′ → Exc(𝑊𝑣 , 𝐿𝐺)

𝑍𝐺
−−→ ℨ(𝐺) is given by the character 𝜒′

Π (𝑝)
that sends

𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 ↦→ 𝜒𝜋 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 )
𝑝 . (6.19)

and (using Theorem 5.11(ii)) 𝑁 · 𝑆 ↦→ 0 for any 𝑆 ∈ Exc(Γ, 𝐿𝐺). By Lemma 5.15, the unique extension
of this character to Exc(𝑊𝑣 , 𝐿𝐺) is (using Lemma 5.16)

𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ↦→ 𝜒′
Π (𝑝)
(𝑆𝐼 ,Nm(𝑉 ) ,Nm(𝑥) ,Nm( 𝜉 ) , (𝛾𝑖)𝑖∈𝐼 )

1/𝑝

[(6.19) =⇒ ] = 𝜒𝜋 (𝑆𝐼 ,ResBC (𝑉 ) ,𝑥, 𝜉 , (𝛾𝑖)𝑖∈𝐼 )

= 𝜒𝜋 ◦ 𝜙∗BC(𝑆𝐼 ,𝑉 ,𝑥, 𝜉 , (𝛾𝑖 )𝑖∈𝐼 ).

At the same time, since 𝜒Π (𝑝) is tautologically an extension of 𝜒′
Π (𝑝)

to Exc(𝑊𝑣 , 𝐿𝐺), it must be the case
that 𝜒Π (𝑝) = 𝜒𝜋 ◦ 𝜙∗BC as characters of Exc(𝑊𝑣 , 𝐿𝐺) for any irreducible subquotient 𝜋 of 𝑇∗(Π). �

6.6. Local mod p cyclic base change

In this subsection, we will prove Theorem 1.1. Assumptions are as in §6.5. We note, however, that the
formulation of all the statements in §6.11 makes sense for any local field 𝐹𝑣 of residue field ℓ ≠ 𝑝, with
a suitable replacement for the Genestier-Lafforgue correspondence, and that all our arguments in this
subsection apply if those statements are true for 𝐹𝑣 .

6.6.1. Formulation of local base change
We begin by formulating a precise notion of local base change.

Definition 6.23. Let 𝜋 be an irreducible admissible representation of 𝐻𝑣 over k, and Π be an irre-
ducible admissible representation of 𝐺𝑣 over k. We say that 𝜋 base changes toΠ if 𝜌Π � 𝜙BC ◦ 𝜌𝜋 ∈

𝐻1 (𝑊𝑣 , 𝐺 (𝑘)).

This definition is an approximation to the notion of base change for L-packets. An L-packet for 𝐻𝑣

should be said to base change to an L-packet for 𝐺𝑣 if the corresponding L-parameters are related by
𝜙BC. A more refined version of Definition 6.23 would declare 𝜋 to base change to Π if the L-packet
of 𝜋 base changes to the L-packet of Π, but we lack a definition of L-packets for general groups and
representations; therefore, we use the fibers of the Genestier-Lafforgue correspondence as a substitute
for L-packets.

6.6.2. Finiteness conditions on Hecke algebras
We will use the following recent result of Dat-Helm-Kurinczuk-Moss. We are keeping the running
assumption that p differs from the residue characteristic of 𝐹𝑣 .

Theorem 6.24 [DHKM]. For every 𝑥 ∈ B(𝐺/𝐹𝑣 ) and every 𝑟 ≥ 0, and 𝐾𝑟 := 𝐺 (𝐹𝑣 )𝑥,𝑟 , the Hecke
algebra H(𝐺, 𝐾𝑟 ) is finite over its center ℨ(𝐺, 𝐾𝑟 ), which is itself a finitely generated algebra over k.

Remark 6.25. The paper [DHKM] proves a much stronger result, where coefficients are allowed to be
an arbitrary Z𝑝-algebra. The analogous result with coefficients in a characteristic zero field is an old
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result of Bernstein. The case where p is banal for G was known to experts to follow in a similar manner
from work of Vignéras, although it is not explicitly written down in the literature.

6.6.3. Existence of local base change
Fix 𝑥 ∈ B(𝐻/𝐹𝑣 ) and let 𝐾𝑟 := 𝐺 (𝐹𝑣 )𝑥,𝑟 and 𝑈𝑟 := 𝐾𝜎

𝑟 . We prove the following theorem, which, in
particular, implies Theorem 1.1.
Theorem 6.26. Suppose p is an odd good prime for 𝐺. Let 𝜋 be an irreducible representation of 𝐻𝑣 over
k, having nonzero 𝑈𝑟 -fixed vectors, with L-parameter 𝜌𝜋 ∈ 𝐻1(𝑊𝑣 , 𝐻 (𝑘)). Then there is an irreducible
representation Π of 𝐺𝑣 over k, having nonzero 𝐾𝑟 -fixed vectors, such that 𝜌Π � 𝜙BC ◦ 𝜌𝜋 .
Proof. If 𝑟 = 0, then the result is classical, so we assume 𝑟 > 0. Then 𝑈𝑟 , 𝐾𝑟 have prime-to-p
pro-order, so the theory of the Bernstein center applies. Recall that the functor Π ↦→ Π𝐾𝑟 induces a
bijection between irreducible admissible 𝐺𝑣 -representations with nonzero 𝐾𝑟 -invariants and irreducible
H(𝐺𝑣 , 𝐾𝑟 )-modules. It therefore suffices to construct an irreducible representation ofH(𝐺𝑣 , 𝐾𝑟 ) whose
induced character of Exc(𝑊𝑣 , 𝐿𝐺) is 𝜒𝜋 ◦ 𝜙∗BC, where 𝜒𝜋 : Exc(𝑊𝑣 , 𝐿𝐻) → 𝑘 is the character of
Exc(𝑊𝑣 , 𝐿𝐻) corresponding to 𝜋.

By hypothesis, we have a nonzero algebra homomorphism H(𝐻, 𝑈𝑟 ) → End(𝜋𝑈𝑟 ), which has the
property that the composite homomorphism

Exc(𝑊𝑣 , 𝐿𝐻)
𝑍𝐻,𝑟
−−−−→ ℨ(𝐻, 𝑈𝑟 ) → H(𝐻, 𝑈𝑟 ) → End𝑘 (𝜋𝑈𝑟 )

has kernel the maximal ideal 𝔪𝜋 = ker(𝜒𝜋) ⊂ Exc(𝑊𝑣 , 𝐿𝐻). The Brauer homomorphism
Br : H(𝐺, 𝐾𝑟 )

𝜎 → H(𝐻, 𝑈𝑟 ) fits into a commutative diagram13

Exc(𝑊𝑣 , 𝐿𝐻) ℨ(𝐻, 𝑈𝑟 ) H(𝐻, 𝑈𝑟 ) End𝑘 (𝜋𝑈𝑟 )

Exc(𝑊𝑣 , 𝐿𝐺)′ ℨ(𝐺, 𝐾𝑟 )
𝜎 H(𝐺, 𝐾𝑟 )

𝜎

Exc(𝑊𝑣 , 𝐿𝐺) ℨ(𝐺, 𝐾𝑟 ) H(𝐺, 𝐾𝑟 ),

𝑍𝐻,𝑟

𝑍𝐺,𝑟

Br

𝑍𝐺,𝑟

where Exc(𝑊𝑣 , 𝐿𝐺)′ ⊂ Exc(𝑊𝑣 , 𝐿𝐺)𝜎 is as in Definition 6.22. Let 𝔪′𝜋 ⊂ Exc(𝑊𝑣 , 𝐿𝐺)′ be the kernel
of the map Exc(𝑊𝑣 , 𝐿𝐺)′ → End𝑘 (𝜋𝑈𝑟 ) obtained by tracing through the diagram above. We claim that
𝔪′𝜋 is a maximal ideal. First of all, we observe that the map Exc(𝑊𝑣 , 𝐿𝐺)′ → End𝑘 (𝜋𝑈𝑟 ) lands in the
subring of scalars 𝑘 ⊂ End𝑘 (𝜋𝑈𝑟 ), since by Corollary 6.14 the action of Exc(𝑊𝑣 , 𝐿𝐺)′ on End𝑘 (𝜋𝑈𝑟 )
factors through the action of Exc(𝑊𝑣 , 𝐿𝐻), which is through 𝜒𝜋 . On the other hand, since all maps in the
diagram are maps of k-algebras, Exc(𝑊𝑣 , 𝐿𝐺)′must surject onto the full ring of scalars 𝑘 ⊂ End𝑘 (𝜋𝑈𝑟 ).

Note that Br : H(𝐺, 𝐾𝑟 )
𝜎 → H(𝐻, 𝑈𝑟 ) vanishes on 𝑁 ·H(𝐺, 𝐾𝑟 ) ⊂ H(𝐺, 𝐾𝑟 )

𝜎 . By the commu-
tativity of the bottom part of the diagram, the composition from Exc(𝑊𝑣 , 𝐿𝐺)′ to H(𝐻, 𝑈𝑟 ) therefore
vanishes on 𝑁 · Exc(𝑊𝑣 , 𝐿𝐺) ⊂ Exc(𝑊𝑣 , 𝐿𝐺)′. Therefore, we may apply Lemma 5.15 to see that the
homomorphism 𝜒′𝜋 : Exc(𝑊𝑣 , 𝐿𝐺)′ → 𝑘 corresponding to 𝔪′𝜋 has a unique extension to a character
Exc(𝑊𝑣 , 𝐿𝐺) → 𝑘 . Since Corollary 6.14 shows that 𝜒𝜋 ◦ 𝜙∗BC is such an extension, its kernel must be
the unique maximal ideal of Exc(𝑊𝑣 , 𝐿𝐺) lying over 𝔪′𝜋 .

The preceding paragraph implies that the localization of H(𝐺, 𝐾𝑟 )
𝜎 at 𝔪′𝜋 is nonzero since the

character 𝜒′𝜋 factors through this localization. Since the action of Exc(𝑊𝑣 , 𝐿𝐺)′ on H(𝐺, 𝐾𝑟 )
𝜎 factors

through the action of ℨ(𝐺, 𝐾𝑟 )
𝜎 , there exists a maximal ideal 𝔫𝜋 of ℨ(𝐺, 𝐾𝑟 ) lying over 𝔪′𝜋 at

which H(𝐺, 𝐾𝑟 ) is supported. Since the pullback of 𝔫𝜋 to Exc(𝑊𝑣 , 𝐿𝐺) contains 𝔪′𝜋 , it must equal
ker(𝜒𝜋 ◦ 𝜙∗BC) by the preceding paragraph.

13Since we are not assuming here that x is a special vertex, we cannot invoke Corollary 6.4 to say that Br is surjective, so it may
not induce a map of centers.
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By Theorem 6.24 and the Artin-Tate Lemma, ℨ(𝐺, 𝐾𝑟 ) is finite over ℨ(𝐺, 𝐾𝑟 )
𝜎 , and then H(𝐺, 𝐾𝑟 )

is finite over ℨ(𝐺, 𝐾𝑟 )
𝜎 . So Nakayama’s Lemma implies that the left H(𝐺, 𝐾𝑟 )-module quotient

H(𝐺, 𝐾𝑟 )/H(𝐺, 𝐾𝑟 )𝔫𝜋 is finite-dimensional and nonzero. By design, the only maximal ideal in its
support over Exc(𝑊𝑣 , 𝐿𝐺) is ker(𝜒𝜋 ◦ 𝜙∗BC), so there is an irreducible H(𝐺, 𝐾𝑟 )-subquotient Ξ of
H(𝐺, 𝐾𝑟 )/H(𝐺, 𝐾𝑟 )𝔫𝜋 on which Exc(𝑊𝑣 , 𝐿𝐺) acts through 𝜒𝜋 ◦ 𝜙∗BC, as was to be showed. �

Remark 6.27 (Depth estimates). For applications, it is useful to have control of the depth of the base
change. The proof of Theorem 6.26 implies an estimate on the depth, which we now spell out. Recall
from [MP96] that the depth of an irreducible representation Π of 𝐺𝑣 is the minimal r such that for
some 𝑥 ∈ B(𝐺/𝐹𝑣 ), Π𝐺 (𝐹𝑣 )𝑥,𝑟+ ≠ 0. Let us emphasize that the definition of the Moy-Prasad filtration
{𝐺 (𝐹𝑣 )𝑥,𝑟 } is normalized so that 𝐹×𝑣 has value group Z.

Let 𝜋 be an irreducible representation of H of depth r and let 𝑥 ∈ B(𝐻/𝐹𝑣 ) such that 𝜋𝐻 (𝐹𝑣 )𝑥,𝑟+ ≠ 0.
First, assume that 𝐸𝑣/𝐹𝑣 is unramified. ThenB(𝐻/𝐹𝑣 ) = B(𝐺/𝐹𝑣 )

Gal(𝐸𝑣/𝐹𝑣 ) , and we have 𝐻 (𝐹𝑣 )𝑥,𝑟+ =
𝐺 (𝐹𝑣 )

Gal(𝐸𝑣/𝐹𝑣 )
𝑥,𝑟+ [KP23, §9]. The proof of Theorem 6.26 shows that there exists a local base change Π

of 𝜋 such that Π𝐺 (𝐹𝑣 )𝑥,𝑟+ ≠ 0, so that depth(Π) ≤ depth(𝜋). (The proof does not use Corollary 6.4 or
the Treumann-Venkatesh homomorphism.)

Next, suppose 𝐸𝑣/𝐹𝑣 is tamely ramified. By [Pra20], we still have B(𝐻/𝐹𝑣 ) = B(𝐺/𝐹𝑣 )
Gal(𝐸𝑣/𝐹𝑣 ) ,

and by [KP23, Proposition 12.9.2], we have (𝐺 (𝐹𝑣 )𝑥,𝑟+ )
Gal(𝐸𝑣/𝐹𝑣 ) = 𝐻 (𝐹𝑣 )𝑥,𝑟+ for all 𝑟 ≥ 0. Hence,

in this case, the proof of Theorem 6.26 shows that there exists a local base change Π of 𝜋 such that
Π𝐺 (𝐹𝑣 )𝑥,𝑟+ ≠ 0, so that depth(Π) ≤ depth(𝜋). Let us caution, however, that if we regard 𝑥 ∈ B(𝐻/𝐸𝑣 )

instead of B(𝐺/𝐹𝑣 ) and Π as a representation of 𝐻 (𝐸𝑣 ) instead of 𝐺 (𝐹𝑣 ), then it is natural to define
the Moy-Prasad filtration 𝐻 (𝐸𝑣 )𝑥,𝑟 so that 𝐸×𝑣 has value group Z, for which 𝐻 (𝐸𝑣 )𝑥,𝑝𝑟 = 𝐺 (𝐹𝑣 )𝑥,𝑟 .
Hence, in this normalization, our estimate would instead be ‘depth(Π) ≤ 𝑝 · depth(𝜋)’.

In both cases, the inequalities we obtain are expected to be optimal [AL10].

A. The base change functor realizes Langlands functoriality by Tony Feng and Gus Lonergan

In this section, we prove Theorem 4.20.
First, we recall some general properties of Smith theory for schemes.

A.1. Recollections on Smith theory for schemes

The Tate category for schemes enjoys a robust 6-functor formalism (observed in the topological case
in [Tre19, §4.3] and proved for schemes in [RW22, §2,3]). Let us recall the statements for later use.
Let 𝑓 : 𝑌 → 𝑆 be a 𝜎-equivariant morphism of varieties with admissible 𝜎-action over a field of
characteristic ℓ ≠ 𝑝. Let Λ be a p-adic ring of coefficients; we are most interested in Λ ∈ {𝑊 (𝑘), 𝑘}.

• The pullback functor 𝑓 ∗ : 𝐷𝑏
𝑐 (𝑆

𝜎;Λ[𝜎]) → 𝐷𝑏
𝑐 (𝑌

𝜎;Λ[𝜎]) descends to

𝑓 ∗ : Perf (𝑆𝜎; TΛ) → Perf (𝑌 𝜎 ; TΛ).

The proper pushforward 𝑅 𝑓! : 𝐷𝑏
𝑐 (𝑌

𝜎 ;Λ[𝜎]) → 𝐷𝑏
𝑐 (𝑆

𝜎;Λ[𝜎]) descends to

𝑅 𝑓! : Perf (𝑌 𝜎; TΛ) → Perf (𝑆𝜎; TΛ).

• As Verdier duality D : 𝐷𝑏
𝑐,𝜎 (𝑌

𝜎;Λ) → 𝐷𝑏
𝑐,𝜎 (𝑌

𝜎;Λ) preserves Perf (𝑌 𝜎 ;Λ[𝜎]), it descends to the
Tate category to define

D : Perf (𝑌 𝜎; TΛ) → Perf (𝑌 𝜎 ; TΛ).

Using this, we may define the operations

𝑓 ! := D ◦ 𝑓 ∗ ◦ D : Perf (𝑆𝜎; TΛ) → Perf (𝑌 𝜎 ; TΛ)
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and

𝑅 𝑓∗ := D ◦ 𝑓! ◦ D : Perf (𝑌 𝜎; TΛ) → Perf (𝑆𝜎; TΛ).

We now list some properties which could be remembered under the slogan, ‘the Smith operation
commutes with all operations’ (cf. [Tre19, §4.4]).

A.1.1. Compatibility with pullback
If f satisfies the assumptions above, then the following diagrams commute:

𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ) 𝐷𝑏

𝑐,𝜎 (𝑆;Λ)

Perf (𝑌 𝜎 ; TΛ) Perf (𝑆𝜎; TΛ)
Psm Psm

𝑓 ∗

𝑓 ∗

𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ) 𝐷𝑏

𝑐,𝜎 (𝑆;Λ)

Perf (𝑌 𝜎 ; TΛ) Perf (𝑆𝜎; TΛ).
Psm Psm

𝑓 !

𝑓 !

The proof for the first square is formal; for the second, it follows immediately from the first plus [RW22,
Lemma 3.5], whose proof is the same as that for Lemma 3.8.

A.1.2. Compatibility with pushforward
If f satisfies the assumptions above, then the following diagrams commute:

𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ) 𝐷𝑏

𝑐,𝜎 (𝑆;Λ)

Perf (𝑌 𝜎 ; TΛ) Perf (𝑆𝜎; TΛ)
Psm

𝑅 𝑓∗

Psm
𝑅 𝑓∗

𝐷𝑏
𝑐,𝜎 (𝑌 ;Λ) 𝐷𝑏

𝑐,𝜎 (𝑆;Λ)

Perf (𝑌 𝜎 ; TΛ) Perf (𝑆𝜎; TΛ).
Psm

𝑅 𝑓!

Psm
𝑅 𝑓!

The proof for the second diagram is the same as that of Proposition 3.12. Then the commutativity of
the first diagram follows by applying Verdier duality and using Lemma 3.8.

A.2. Setup for the proof of Theorem 4.20

We keep the setup of §4.6.1: H is any reductive group over a separably closed field F of characteristic
≠ 𝑝, and 𝐺 = 𝐻 𝑝 . We let 𝜎 act on G by cyclic rotation, sending the ith factor to the (𝑖 + 1)st (mod p)
factor.

A.3. Proof of additivity

We first prove that BC is additive (i.e., we exhibit a natural isomorphism BC(F ⊕ F ′) � BC(F) ⊕
BC(F ′)). We have

Nm(F ⊕ F ′) = (F ⊕ F ′) ∗ (𝜎F ⊕ 𝜎F ′) ∗ . . . ∗ (𝜎
𝑝−1F ⊕ 𝜎𝑝−1F ′)

� Nm(F) ⊕ Nm(F ′) ⊕ (direct sum of free 𝜎-orbits).

Therefore, the restrictions of Nm(F ⊕F ′) and Nm(F) ⊕Nm(F ′) to 𝑌 𝜎 differ by a perfect complex of
O[𝜎]-modules and hence project to isomorphic objects in the Tate category Perf(𝑌 𝜎 ; TO). This shows
that Psm ◦Nm is additive. Since the lifting functor L is also additive, diagram (4.7) shows that BC(𝑝) ◦F
is additive. Since F is essentially surjective as our assumptions imply that all parity sheaves exist, BC(𝑝)
is additive. Finally, Frob−1

𝑝 is an equivalence so also additive, so BC is additive.
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A.4. Reduction to the case of a torus

Fix a regular 𝜎-equivariant cocharacter 𝜅 : G𝑚 → 𝐻. Its centralizer in G is a maximal torus 𝑇 ⊂ 𝐺, such
that 𝑇𝐻 := 𝑇 ∩ 𝐻 is a maximal torus of H. We recall the following statements relating the restriction
functor Rep(𝐻) → Rep(𝑇𝐻 ) with the hyperbolic localization functor under the Geometric Satake
equivalence.

The fixed points of G𝑚 acting by left translation on Gr𝐺 via 𝜅 are the 𝑡𝜈 for 𝜈 ∈ 𝑋∗(𝑇). The attracting
locus to 𝑡𝜈 is the semi-infinite orbit 𝑆𝜈 . These semi-infinite orbits form a stratification of Gr𝐺 . Let
𝑖𝜈 : 𝑆𝜈 → Gr𝐺 be the inclusion (a locally closed embedding of ind-schemes) and 𝑝𝜈 : 𝑆𝜈 → 𝑡𝜈 , viewed
as a point of Gr𝑇 . The hyperbolic localization functor (for G) is the functor

CT𝐺 =
⊕

𝜈∈𝑋∗ (𝑇 )

𝑅𝑝𝜈!𝑖
∗
𝜈 : 𝐷𝑏

𝑐 (Gr𝐺)G𝑚−mon → 𝐷𝑏
𝑐 (Gr𝑇 )G𝑚−mon,

where the superscript G𝑚−mon means monodromic for the G𝑚-action via 𝜅 (i.e., the full subcategory
spanned by objects pulled back from the G𝑚-equivariant derived category).

Denote by [deg𝐺] the function 𝑋∗(𝑇)
〈2𝜌𝐺 ,−〉
−−−−−−→ Z, and similarly for H. Set

CT𝐺 [deg𝐺] :=
⊕

𝜈∈𝑋∗ (𝑇 )

𝑅𝑝𝜈!𝑖
∗
𝜈 [deg𝐺 (𝜈)]

and CT𝐻 [deg𝐻 ] similarly. Then CT𝐺 [deg𝐺] and CT𝐻 [deg𝐻 ] are t-exact and under the Geometric
Satake equivalence; they are intertwined with restriction along 𝑇 → 𝐺 and 𝑇𝐻 → 𝐻, respectively:

P𝐿+𝐺 (Gr𝐺;Λ) RepΛ(𝐺)

P𝐿+𝑇 (Gr𝑇 ;Λ) RepΛ(𝑇)

∼

Geom. Sat.

CT𝐺 [deg𝐺 ] Res𝐺
𝑇

∼

Geom. Sat.

P𝐿+𝐺 (Gr𝐻 ;Λ) RepΛ (𝐻)

P𝐿+𝑇 (Gr𝑇𝐻 ;Λ) RepΛ (𝑇𝐻 ).

∼

Geom. Sat.

CT𝐻 [deg𝐻 ] Res𝐻
𝑇𝐻

∼

Geom. Sat.

(A.1)

(Here, CT is defined because equivariance implies monodromicity.)

Remark A.1. In the stated generality – with the scheme-theoretic Gr𝐺 in equal characteristic and the
coefficients being modular étale sheaves – the commutative diagram (A.1) is perhaps not completely
documented in the literature. It does appear for general coefficients on the complex affine Grassmannian
[BR18, p.66] and the 𝐵+dR-affine Grassmannian (in arbitrary characteristic) [FS, p.233]. The proofs
in either case are essentially the same – the commutativity of the diagram is baked into the step of
identifying the Tannakian group 𝐺 – and they carry over essentially verbatim to our setting.

The functor CT𝐻 [deg𝐻 ] induces

𝐷𝑏
𝑐,𝜎 (Gr𝐻 )G𝑚−mon → 𝐷𝑏

𝑐,𝜎 (Gr𝑇𝐻 )
G𝑚−mon.

Since ∗/!-restriction and ∗/!-pushforward all commute with Psm by §A.1, the Constant Term functor
commutes with Psm in the sense of the following commutative diagram:

𝐷𝑏
𝑐,𝐿+𝐺�𝜎 (Gr𝐺;O) Perf (𝐿+𝐻 ) (Gr𝐻 ; TO)

𝐷𝑏
𝑐,𝐿+𝐺�𝜎 (Gr𝑇 ;O) Perf (𝐿+𝐻 ) (Gr𝑇𝐻 ; TO),

Psm

CT𝐺 [deg𝐺 ] CT𝐻 [deg𝐻 ]

Psm

(A.2)

and the same holds with the shifts by deg𝐻 and deg𝐺 , thanks to the parity calculations in §4.6.3.
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Lemma A.2. Consider the cube

Tilt𝑘 (𝐺) Tilt𝑘 (𝐻)

Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

Tilt𝑘 (𝑇) Tilt𝑘 (𝑇𝐻 )

Parity0
𝐿+𝑇 (Gr𝑇 ; 𝑘) Parity0

𝐿+𝑇𝐻
(Gr𝑇𝐻 ; 𝑘)

ResBC

Res𝐺
𝑇

Res𝐻
𝑇𝐻BC

CT𝐺 [deg𝐺 ] CT𝐻 [deg𝐻 ]

ResBC

BC

(A.3)

where all diagonal arrows are the Geometric Satake equivalence (using Theorem 4.8). The back, front,
left and right faces commute.

Proof. The back face obviously commutes. The left and right faces commute by (A.1). It remains to
analyze the front square.

Consider the diagram

Parity0
𝐿+𝐺 (Gr𝐺;O) Parity0

𝐿+𝐺�𝜎 (Gr𝐺;O) Parity(𝐿+𝐻 ) (Gr𝐻 ; TO) Parity0
𝐿+𝐻 (Gr𝐻 ; 𝑘)

Parity0
𝐿+𝑇 (Gr𝑇 ;O) Parity0

𝐿+𝑇 �𝜎 (Gr𝑇 ;O) Parity(𝐿+𝑇𝐻 ) (Gr𝑇𝐻 ; TO) Parity0
𝐿+𝑇𝐻
(Gr𝑇𝐻 ; 𝑘).

Nm

CT𝐺 [deg𝐺 ] CT𝐺 [deg𝐺 ]

Psm 𝐿

CT𝐻 [deg𝐻 ] CT𝐻 [deg𝐻 ]

Nm Psm 𝐿

(A.4)

The left square commutes because CT𝐺 [deg 𝐺] is symmetric monoidal. The middle square commutes
because Psm is compatible with ∗-pullback and !-pushforward, as explained in §A.1. We claim that the
right square commutes. To see this, we consider the diagram

Parity0
𝐿+𝐻×𝜎 (Gr𝐻 ;O) Parity(𝐿+𝐻 ) (Gr𝐻 ; TO) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

Parity0
𝐿+𝐻×𝜎 (Gr𝑇𝐻 ;O) Parity(𝐿+𝑇𝐻 ) (Gr𝑇𝐻 ; TO) Parity0

𝐿+𝑇𝐻
(Gr𝑇𝐻 ; 𝑘).

T
∗ 𝜖 ∗

CT𝐻 [deg𝐻 ]

F

𝐿

CT𝐻 [deg𝐻 ] CT𝐻 [deg𝐻 ]

T
∗ 𝜖 ∗

F

𝐿

(A.5)

The upper and lower caps commute by (4.3). Then it is immediate from the definition of the modular
reduction functor F that the outer square commutes. In the left square, the vertical arrows are essentially
surjective since all (Tate-)parity sheaves exist for all strata. The maps on morphisms are given by (4.2).
Hence, the outer commutative diagram induces the right one.
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We have now established that the outer rectangle in (A.4) commutes. Therefore, by (4.7), the diagram

Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

Parity0
𝐿+𝑇 (Gr𝑇 ; 𝑘) Parity0

𝐿+𝑇𝐻
(Gr𝑇𝐻 ; 𝑘)

BC(𝑝)

CT𝐺 [deg𝐺 ] CT𝐻 [deg𝐻 ]

BC(𝑝)

commutes. Finally, applying the Frobenius linearization process of Definition 4.18 completes the proof
for commutativity of the front face of (A.3). �

Theorem 4.20 is the statement that the top face commutes. The bottom face is the special case of
Theorem 4.20 for a torus, which we will check directly. We may reduce the general case to the torus
case as follows. The restriction functor Rep(𝐻) → Rep(𝑇𝐻 ) is faithful and injective on tilting objects
(i.e. ‘tilting modules are determined by their characters’) by [Don93, p. 46]. Hence, by Lemma A.2,
to check that the top face commutes, it suffices to check that the bottom face commutes (i.e., to prove
Theorem 4.20 in the special case where H is a torus).

A.5. Proof in the case of a torus

Finally, we examine the case when H is a torus. Since the theorem is compatible with products, we can
even reduce to the case 𝐻 = G𝑚. For 𝐻 = G𝑚, the underlying reduced scheme of Gr𝐻 is a disjoint
union of points labeled by the integers.

The irreducible algebraic representations of 𝐻 are indexed by 𝑛 ∈ Z, with 𝑉𝑛 ∈ Rep(𝐻) corre-
sponding to the constant sheaf supported on the component Gr𝑛𝐻 labeled by n. The irreducible algebraic
representations of 𝐺 are then labeled by p-tuples of integers (𝑛1, . . . , 𝑛𝑝) ∈ Z𝑝 . By the additivity of BC
established in §A.3 and the complete reducibility of algebraic representations of tori, we may assume
thatF is irreducible, sayF = F (𝑛1, . . . , 𝑛𝑝) is the constant sheaf supported on Gr(𝑛1 ,...,𝑛𝑝)

𝐺 . Then the 𝜎-
equivariant sheaf Nm(F) is the constant sheaf 𝑘 supported on the component Gr(𝑛1+...+𝑛𝑝 ,...,𝑛1+...+𝑛𝑝)

𝐺 .
Its restriction to the diagonal copy of Gr𝐻 is the constant sheaf with value k supported on Gr𝑛1+...+𝑛𝑝

𝐻 .
This is already an indecomposable k-parity sheaf, which tautologically lifts its own image in the Tate
category. Hence, we have shown that

𝑘Gr𝑛1+...+𝑛𝑝
𝐻

= BC(𝑝) (𝑉𝑛1 ,...,𝑛𝑝 ).

And indeed, this is precisely the sheaf which corresponds under geometric Satake to ResBC (𝑉𝑛1 �𝑉𝑛2 �
. . . �𝑉𝑛𝑝 ) � 𝑉𝑛1+𝑛2+...+𝑛𝑝 ∈ Rep(𝐻). This confirms the commutativity of the diagram

Parity0
𝐿+𝐺 (Gr𝐺; 𝑘) Parity0

𝐿+𝐻 (Gr𝐻 ; 𝑘)

Tilt𝑘 (𝐺) Tilt𝑘 (𝐻)

∼

BC

∼

ResBC

at the level of objects. Our final step is to verify the commutativity on morphisms. Since (as H is a
torus) the categories involved are all semi-simple, the commutativity at the level of morphisms reduces
to examining a scalar endomorphism of the simple object F above, which corresponds to the simple
representation 𝑉𝑛1 ,...,𝑛𝑝 . The restriction functor ResBC is k-linear, so what we have to check is that BC
sends multiplication by 𝜆 on F to multiplication by 𝜆 on BC(F). Now, multiplication by 𝜆 on F is sent
under Nm to multiplication by 𝜆𝑝 on Nm(F), which restricts to multiplication by 𝜆𝑝 on BC(𝑝) (F).
Then the inverse Frobenius twist Frob−1

𝑝 sends it to multiplication by 𝜆, so BC := Frob−1
𝑝 ◦BC(𝑝) behaves

as desired.
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A.6. Proof of Lemma 4.21

In this subsection, we prove Lemma 4.21. We keep the notations from §A.4.

Lemma A.3. The functor CT: Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 ) → Perf (𝐿+𝑇𝐻 ) (Gr𝑇𝐻 ; T𝑘 ) is conservative.

Proof. Suppose CT(K) = 0 for some nonzero K ∈ Shv(𝐿+𝐻 ) (Gr𝐻 ; T𝑘 ). Let Gr𝜆𝐻 = 𝐿+𝐻𝑡𝜆 ⊂ Gr𝐻 be
the maximal stratum (for the closure order) on which K is supported. Then for 𝑤0, the longest Weyl
element, the semi-infinite orbit 𝑆𝑤0 (𝜆) intersects Gr𝜆𝐻 in a single point 𝑡𝑤0 (𝜆) [BR18, Theorem 5.2].
Hence, the stalk at 𝑡𝑤0 (𝜆) vanishes, which shows (by the assumed constructibility for 𝐿+𝐻-orbits) that
K vanishes on Gr𝜆, which contradicts the assumption on the support of K. �

Let 𝑖 : Gr𝐻 ↩→ Gr𝐺 . Since apply Frob−1
𝑝 preserves exact sequences, Lemma 4.21 is equivalent to

the following: if 𝐴→ 𝐵→ 𝐶 is an exact sequence in Rep𝑘 (𝐺), then the map in 𝐷𝑏
𝑐,𝐿+𝐻 (Gr𝐻 ; 𝑘 [𝜎]),

Cone [𝑖∗Nm Sat(𝐴) → 𝑖∗Nm Sat(𝐵)] → 𝑖∗Nm Sat(𝐶),

projects to an isomorphism in Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 ). By Lemma A.3, this can be checked after apply-
ing CT[deg𝐺]. Using the commutative diagram analogous to (A.2) but with k-coefficients, and that
CT[deg𝐺] is intertwined with restriction from 𝐺 to 𝑇 under Geometric Satake, we have a commutative
diagram

Rep𝑘 (𝐺) P𝐿+𝐺 (Gr𝐺; 𝑘) P𝐿+𝐺�𝜎 (Gr𝐺; 𝑘) 𝐷𝑏
𝐿+𝐻,𝑐 (Gr𝐻 ; 𝑘 [𝜎]) Perf (𝐿+𝐻 ) (Gr𝐻 ; T𝑘 )

Rep𝑘 (𝑇) P𝐿+𝑇 (Gr𝑇 ; 𝑘) P𝐿+𝑇 �𝜎 (Gr𝑇 ; 𝑘) 𝐷𝑏
𝐿+𝑇𝐻 ,𝑐 (Gr𝑇𝐻 ; 𝑘 [𝜎]) Perf (𝐿+𝑇𝐻 ) (Gr𝑇𝐻 ; T𝑘 ).

Sat

Res

Nm

CT[deg𝐺 ] CT[deg𝐺 ]

T
∗

CT[deg𝐺 ] CT[deg𝐺 ]

Sat Nm T
∗

The question of whether the composition of functors along the top then right is an isomorphism is
equivalent to the question of whether the composition of functors along the left then bottom is an
isomorphism. This reduces us to the case where 𝐺 = 𝑇 is a torus. In this case, since all maps in Rep(𝑇)
have splittings, the exactness statement reduces to the additivity, which was verified in §A.3.

B. Applying Drinfeld’s Lemma to Tate cohomology

Here, we prove Proposition 5.6, that the action of FWeil(𝜂𝐼 , 𝜂𝐼 ) on 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) factors through the
quotient FWeil(𝜂𝐼 , 𝜂𝐼 ) �Weil(𝜂, 𝜂)𝐼 . This statement is analogous to results in [Laf18] and [Xueb] for
ordinary cohomology, the latter of which incorporates simplifications by [XZ], and our argument will
follow the same broad lines. Here is an outline of the strategy:

1. Prove an Eichler-Shimura relation, relating the action of partial Frobenii and Hecke operators.
2. Using (1), express 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) as the filtered colimit of submodules stable under the partial

Frobenii, with each module being finite type over some finitely generated k-algebra (depending on
the submodule; it will be taken to a suitable tensor product of local Hecke algebras).

3. Apply Drinfeld’s Lemma, which says roughly that any continuous A-linear FWeil(𝜂𝐼 , 𝜂𝐼 )-action on
a finite-type A-module automatically factors over Weil(𝜂, 𝜂)𝐼 , to each of the submodules produced
in (1).

B.1. The Eichler-Shimura relation

Regarding the first step, Xue proves the following:

Proposition B.1 [Xueb, Proposition 7.2.6]. Let 𝑣 ∈
◦

𝑋 be a closed point with degree deg 𝑣. For any finite
set 𝐼 = �̃� � {0} and any 𝑉 ∈ Rep𝑘 (𝐺 𝐼 ), there exists 𝑊 ∈ Rep𝑘 (𝐺) such that
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dim𝑊∑
𝛼=0
(−1)𝛼𝑆∧dim𝑊−𝛼𝑊 ,𝑣 (𝐹

deg 𝑣
{0} )

𝛼 = 0 ∈ End
𝐷𝑐 ( (

◦
𝑋\𝐷) 𝐼×𝑣;𝑘)

(𝑅 𝑗𝜋𝐼 ! (
◦

Sht𝐺,𝐷,𝐼 |
(
◦
𝑋\𝐷) 𝐼×𝑣

; Sat(𝑉))).

Here, for a representation W of 𝐺, the operator 𝑆𝑊 ,𝑣 is defined in [Laf18, §6] by a process similar
to one defining excursion operators. The only thing we need to know about 𝑆𝑊 ,𝑣 is the following.

Theorem B.2 (“S=T Theorem”). 𝑆𝑊 ,𝑣 agrees with the Hecke operator 𝑇𝑊 ,𝑣 after restricting to
(𝑋 \ (𝐷 ∪ 𝑣))𝐼 .

This fact is proved in [Laf18, §6] in characteristic zero; a simpler proof is a consequence [XZ,
Theorem 6.0.1(2)], which already shows the equality at the level of cohomological correspondences on
local shtukas. The argument of Xiao-Zhu is written with integral coefficients in [Yu22, Theorem 5.1
and Corollary 5.5]. Since it holds at the level of cohomological correspondences, it holds in particular
for Tate cohomology.

Xue’s proof of Proposition B.1 (which is a small generalization of an argument appear-
ing in [XZ, §6]) works essentially verbatim for Tate cohomology, replacing her H 𝑗 ,O𝐸

𝐺,𝑁 ,𝐼 ,𝑊 by
𝑇 𝑗𝜋𝐼 ! (Sht𝐺,𝐷,𝐼 |

(
◦
𝑋\𝐷) 𝐼×𝑣

; Sat(𝑉))). It yields the following:

Lemma B.3. Let 𝑣 ∈ 𝑋 be a closed point with degree deg 𝑣. For any finite set 𝐼 = �̃� � {0} and any
𝑉 ∈ Rep𝑘 (𝐺 𝐼 ), there exists 𝑊 ∈ Rep𝑘 (𝐺) such that

dim𝑊∑
𝛼=0
(−1)𝛼𝑆∧dim𝑊−𝛼𝑊 ,𝑣 (𝐹

deg 𝑣
{0} )

𝛼 = 0 ∈ End
𝐷 ( (

◦
𝑋\𝐷) 𝐼×𝑣;𝑘)

(𝑇 𝑗𝑅𝜋𝐼 ! (Sht𝐺,𝐷,𝐼 |
(
◦
𝑋\𝐷) 𝐼×𝑣

; Sat(𝑉))).

B.2. The filtration

We carry out Step (2) of the outline, following [Xueb, §1].
Harder-Narasimhan truncation presents Sht𝐺,𝐷,𝐼 as a filtered colimit

Sht𝐺,𝐷,𝐼 = lim
−−→
𝜇

Sht≤𝜇𝐺,𝐷,𝐼 ,

where 𝜇 runs over dominant coweights of G.
Since the support of Sat(𝑉) on Sht≤𝜇𝐺,𝐷,𝐼 |𝜂𝐼 is of finite type over 𝜂𝐼 , 𝑇 𝑗 (Sht≤𝜇𝐺,𝐷,𝐼 ;𝑉) :=

𝑇 𝑗 (𝑅Γ𝑐 (Sht≤𝜇𝐺,𝐷,𝐼 |𝜂𝐼 ; Sat(𝑉))) is finite-dimensional over k. We have a filtered colimit

𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) � lim
−−→
𝜇

𝑇 𝑗 (Sht≤𝜇𝐺,𝐷,𝐼 ;𝑉).

We will express 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) as an increasing union of submodules 𝔐𝜇 which are stable under
FWeil(𝜂𝐼 , 𝜂𝐼 ), and such that for each 𝔐𝜇, there is a finite set of points 𝑣𝑖 (depending on 𝔐𝜇) so that
𝔐𝜇 is stable under the partial Frobenii and finite type over ⊗𝑖∈𝐼H𝐺,𝑣𝑖 .

Write

𝔗 := 𝑅𝜋𝐼 ! (Sht𝐺,𝐷,𝐼 |
(
◦
𝑋\𝐷) 𝐼

; Sat(𝑉)) ∈ 𝐷𝑏 ((
◦

𝑋 \𝐷)𝐼 ; 𝑘)

and

𝔗𝜇 := 𝑅𝜋𝐼 ! (Sht≤𝜇𝐺,𝐷,𝐼 |(
◦
𝑋\𝐷) 𝐼

; Sat(𝑉)) ∈ 𝐷𝑏
𝑐 ((

◦

𝑋 \𝐷)𝐼 ; 𝑘).
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Note that proper base change gives an isomorphism 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) � 𝔗 |
𝜂𝐼

. Since 𝔗𝜇 is constructible,

there is an open dense subscheme Ω ⊂ (
◦

𝑋 \𝐷)𝐼 such that 𝔗𝜇 is a local system over Ω. Choose a closed
point 𝑣 ∈ Ω and let 𝑣𝑖 = pr𝑖 (𝑣) for 𝑖 ∈ 𝐼. Then ×𝑖∈𝐼 𝑣𝑖 ∈ (

◦

𝑋 \𝐷)𝐼 is a finite union of closed points
containing v. Let 𝔐𝜇 be the subspace of 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) given by

𝔐𝜇 :=
∑
𝑛𝑖 ∈N𝐼

(
⊗𝑖∈𝐼H𝑖,𝑣𝑖

) ∏
𝑖∈𝐼

𝐹𝑛𝑖
{𝑖 }

(∏
𝑖∈𝐼

(Frob𝑛𝑖
{𝑖 }
)∗ Im

(
𝔗𝜇 |

𝜂𝐼
→ 𝔗 |

𝜂𝐼

))
. (B.1)

Then it is clear that 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) =
⋃

𝜇 𝔐
𝜇.

We regard 𝔐𝜇 as a module over the finite type k-algebra 𝐴𝜇 := ⊗𝑖∈𝐼H𝑖,𝑣𝑖 . The following Lemma
and its proof are variants of [Xueb, Lemma 1.3.11].

Lemma B.4. The submodule 𝔐𝜇 ⊂ 𝔗 |
𝜂𝐼
� 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉) is stable under the partial Frobenii 𝐹{𝑖 }

and of finite type over 𝐴𝜇.

Proof. The stability under partial Frobenii is clear by construction. Let 𝑣 be a geometric point over v.
We have a specialization map 𝔰𝔭 : 𝜂𝐼 � 𝑣. For any 𝑛𝑖 , we have the partial Frobenius

𝐹
𝑛𝑖 deg(𝑣𝑖)
{𝑖 }

: (Frob𝑛𝑖 deg(𝑣𝑖)
{𝑖 }

)∗𝔗𝜇 → 𝔗.

Altough partial Frobenius does not preserve the HN truncation, there exists 𝜅 fitting into a commutative
diagram

(Frob𝑛𝑖 deg(𝑣𝑖)
{𝑖 }

)∗𝔗𝜇 |𝑣 (Frob𝑛𝑖 deg(𝑣𝑖)
{𝑖 }

)∗𝔗𝜇 |
𝜂𝐼

𝔗𝜇+𝜅 |𝑣 𝔗𝜇+𝜅 |
𝜂𝐼

.

𝐹
𝑛𝑖 deg(𝑣𝑖 )
{𝑖}

𝔰𝔭∗

𝐹
𝑛𝑖 deg(𝑣𝑖 )
{𝑖}

𝔰𝔭∗

(B.2)

We have Frob𝑛𝑖 deg(𝑣𝑖)
{𝑖 }

(𝑣) = 𝑣 ∈ Ω. Then using Proposition B.3, we may eliminate all powers of partial
Frobenius with exponent ≥ dim 𝑊 in (B.1) in terms of S-operators because for 𝑑 ≥ dim 𝑊 , we have

𝐹
𝑑 deg 𝑣𝑖
{𝑖 }

(Frob𝑑 deg(𝑣𝑖)
{𝑖 }

)∗ Im (𝔗𝜇 |𝑣 → 𝔗 |𝑣 ) ⊂
dim𝑊−𝑤∑

𝛼=0
𝑆?𝐹

𝛼 deg(𝑣𝑖)
{𝑖 }

(Frob𝛼 deg(𝑣𝑖)
{𝑖 }

)∗ Im (𝔗𝜇 |𝑣 → 𝔗 |𝑣 ).

Since the S-operators and the 𝐹{𝑖 } are morphisms of sheaves, they commute with the specialization
map 𝔰𝔭∗. The upper arrow in (B.2) an isomorphism because 𝑣 ∈ Ω lies in the lisse locus of 𝔗𝜇 by
construction. Therefore, the Eichler-Shimura relation from Proposition B.3 is also satisfied in the right
column. Now over 𝜂𝐼 we can apply the same elimination argument and use Theorem B.2 to replace
S-operators by Hecke operators, thus deducing that for 𝑑 ≥ dim 𝑊 , we have

𝐹
𝑑 deg 𝑣𝑖
{𝑖}

(Frob𝑑 deg(𝑣𝑖 )
{𝑖}

)∗ Im (𝔗𝜇 |
𝜂𝐼
→ 𝔗 |

𝜂𝐼
) ⊂

dim𝑊−1∑
𝛼=0

(
⊗𝑖∈𝐼H𝑖,𝑣𝑖

)
𝐹
𝛼 deg(𝑣𝑖 )
{𝑖}

(Frob𝛼 deg(𝑣𝑖 )
{𝑖}

)∗ Im (𝔗𝜇 |
𝜂𝐼
→ 𝔗 |

𝜂𝐼
) .

Therefore, we actually have

𝔐𝜇 =
∑

0≤𝑛𝑖<dim𝑊 deg 𝑣𝑖

(
⊗𝑖∈𝐼H𝑖,𝑣𝑖

) ∏
𝑖∈𝐼

𝐹𝑛𝑖
{𝑖 }

(∏
𝑖∈𝐼

(Frob𝑛𝑖
{𝑖 }
)∗ Im

(
𝔗𝜇 |

𝜂𝐼
→ 𝔗 |

𝜂𝐼
)
))

.

Since 𝔗𝜇 |
𝜂𝐼

is finite-dimensional over k, 𝔐𝜇 is finite-type over 𝐴𝜇. �
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B.3. Drinfeld’s Lemma

The following result of Xue is a generalization of the so-called ‘Drinfeld’s Lemma’.

Lemma B.5 [Xuea, Lemma 7.4.2]. Let A be a finitely generated k-algebra. Let M be an A-module of
finite type. Then any continuous 𝐴[FWeil(𝜂𝐼 , 𝜂𝐼 )]-action on M factors through Weil(𝜂, 𝜂)𝐼 .

Proof of Proposition 5.6. Applying Lemma B.5 to each 𝔐𝜇, we deduce that the FWeil(𝜂𝐼 , 𝜂𝐼 )-action
on 𝔐𝜇 factors through Weil(𝜂, 𝜂)𝐼 . Then the same holds for lim

−−→𝜇
𝔐𝜇 = 𝑇 𝑗 (Sht𝐺,𝐷,𝐼 ;𝑉). �
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