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/’-ISOLATED MAPS AND LOCALIZATIONS
SARA HURVITZ

0. Introduction. Let P be the set of primes, I € P a subset and
I = P — I. Recall that an H-space is a space the rational cohomology of
which is a free algebra.

Cassidy and Hilton defined and investigated /'-isolated homomorphisms
between locally nilpotent groups. Zabrodsky [8] showed that if X and ¥V
are simply connected Hy-spaces either with a finite number of homotopy
groups or with a finite number of homology groups, then every rational
equivalence f : X — Y can be decomposed into an /-equivalence and an
I'-equivalence.

In this paper we define and investigate /’-isolated maps between pointed
spaces, which are of the homotopy type of path-connected nilpotent CW-
complexes. Our definition of an /'-isolated map is analogous to the defini-
tion of an /'-isolated homomorphism. As every homomorphism can be
decomposed into an [-isomorphism and an /’-isolated homomorphism,
every map can be decomposed into an l-equivalence and an /'-isolated
map. This decomposition is unique, hence in case that X and Y satisfy
the conditions of the first paragraph and f : X — Y is a rational equiva-
lence, it coincides with Zabrodsky’s decomposition. The construction of
the decomposition is applied to study homotopy pull back diagrams and
to study spaces and maps by means of their localizations.

Throughout this paper, commutative, pull back and pushout mean
homotopy commutative, homotopy pull back and homotopy push out.
Aside from Proposition 1.9 pullback should be understood as pullback in
the category of path-connected spaces.

Among others we obtain the following propositions:

0.1 ProprosITION (Theorem 3.5). Let f: X — YV, X Y, be a rational
equivalence. Suppose there exist subsets of the primes I, and 1y satisfying:
11U12=P,l1f\lz=ﬂ,X“%ZiXWi and
fu=gXki: Z; XW;—= (V1) X (Vo) (2=1,2).

Then:
(a) There extist spaces X1and Xosothat X =~ X, X X,.
(b) There exist a homotopy equivalence e¢: X — X; X X, and maps
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g X,—> Yiand k: Xo— Vs, so that

fe@XBeX — X x X, 225 Xk V1 X Y.

0.2 ProposIiTIiON (Theorem 3.13). Let X, pand Y, v be simply connected
H-spaces and let f: X — YV be a map. Given subsets of the primes Iy, s,
Iy U Iy = P and rationalizations ¢: X = X, ¢i: Y > YV, (1 =1, 2). If
fi; (1 = 1, 2) 1s the localization of f at 1, for which the diagram

J

—— Y —— ) ——

’

Pi \l/i/

Ju

@i X— Yy, 2

"

©i ¢/iH

Jo

> X, >V, «—

commutes, then f is an H-map 1f and only if f,, and f,, are H-maps.

The paper is organized as follows: The first section deals with simple
properties of /'-isolated maps. These properties are used in Section 2 to
study pull backs, and in Section 3 to study properties of spaces and maps,
especially of Hy-spaces and H-maps, by means of their localizations.

1. I'-isolated maps.

1.1 Definition. Let X, Y be nilpotent spaces, f: X — ¥ a map and
()i the l-localization operation. We say that fis I’-isolated if the square

XLY

||

X, ﬁ Y
is a pull back.

1.2 COROLLARY. A rational equivalence is I'-isolated if and only if it is an
U'-equivalence.

Proof. f is a rational equivalence and /'-isolated implies that the homo-
topy groups of the homotopy fiber of f are finite groups of order prime to
', hence f is an I'-equivalence.

Conversely, f is an I’-equivalence implies that f; is an /’-equivalence,
hence the fact that X — X, and ¥ — Y, are l-equivalences implies that
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X[& Yl
is a pull back and f is /'-isolated.

1.3 COROLLARY. If a map is an l-equivalence and I'-isolated then it is a
homotopy equivalence.

1.4 LEmMmA. (@) If f: X — Y and g: Y — Z arel'-isolated, then g o f is
V-isolated.

M) Iff: X > Y and g: Y — Z are such that g is I'-isolated and go f
is l'-isolated, then f is I'-isolated.

Proof. (a) Since f and g are I’-isolated the two squares in the diagram

xhvs ,
1

wo | ||

X,i’» v,%5 2z

are pull back squares, hence [6] the rectangle is a pull back and go f is
'-isolated.

(b) Since g and g o f are !-isolated the right and the big squares in
diagram (1.4.1) are pull back squares hence (6] the left square is a pull
back and fis /'-isolated.

1.5 PrROPOSITION. Suppose X and Y are nilpotent spacesand f: X — ¥
is a map. Given a set of primes 1, there exist a space X (I, f), unique up to
homotopy type, and mapsf': X =X (1, f),f": X, f) = Y sothatf” o f' ~f,
S is an l-equivalence and ' is I'-isolated. Furthermore, given a commutative
diagram

=

XLy
glh

Ly

>
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and a set of primes 1, there exists a map g(l, f, f), so that the following diagram
1s commutative:

f‘/ j‘l !

X ——>X(l,f) ——>V

g g, f, ) |k
f_l j'll

X— XU f)— 7

If X, Y are of finite type, f, f are rational equivalences, and either X, Y have
a finite number of homology groups or X, ¥ have a finite number of homotopy
groups, then g(1, f, f) is unique up to homotopy.

Proof. X (I, f), f' and f" are constructed as follows: X (/, f) is the pull
back of

Y—-’ YlﬁXl,

f" is the projection f”: X (I,f) — Yand f': X — X (/, f) is an l-equivalence
that completes the following diagram:

The uniqueness of homotopy type of the component of the base point will
follow from the second part of the proposition.
The existence of g(I, f, f) follows from the following

1.5.1 LEMMA. Given a pull back diagram

S

X— X,
fo J1o
f20

X, —2 5 X,

if fao is I'-isolated then f1is l'-isolated.
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Proof of 1.5.1. Consider the following cube:

Since the back face and the lower face are pull backs, X is the pull back of

X, f2°‘>X0,4 X0<f1° X1 16).

Therefore the commutativity of the right and left faces and the fact that
the front face is a pull back imply [6] that the upper face is a pull back and
fris-isolated.

1.5.2 LEMMA. Given a commutative diagram

where g is an l-equivalence and h is I'-isolated. There exists f: V1 — X so that
fogw—foand ho f— fi.

Proof of 1.5.2. Construct the pull back W, , of f1 and & and complete:

{ g
A i
#
O ¥y
fi f1
So Y h s }21

As 7 is !-isolated (Lemma 1.5.1) and g is an l-equivalence, g"’ is an
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l-equivalence and /'-isolated (Lemma 1.4(a)), hence gf‘” is a hon:notopy
equivalence (Corollary 1.3). Let u be the homotopy inverse of gf’' and
leta = f”p. Obviously ga ~ gf‘”p ~ 1. Consider the map f = fia; since
fe ~ fag Nflf“ug Nflf"#(@f”)f’ "“flf”f“ ~flJ?Nfo
and
hf = hfwa ~ fige ~ fi,
f is the desired map.

Now, apply 1.5.2 for ¥ = X, ¥V, = X, f), X = X(, f), X, = 7,
g=fh=71"fo=Ff og fi = hof"” toobtain g(l, f, f). The uniqueness
of the homotopy type of X (1, f) follows from the fact that the map f which
completes the diagram

X—X(, f)— Y

|

X——X(,f)—>Y

is both an l-equivalence and /'-isolated (Lemma 1.4(b)) and therefore
(Corollary 1.3) it is a homotopy equivalence.

Finally, suppose X, Y are of finite type, f, f are rational equivalences
and either X, Y are finite dimensional or X, ¥ have a finite number of
homotopy groups. If

f1)f2: X(lrf) _—)X‘(lrf)
close the diagram

j‘l ](’/ !

X—L »X(, f)—L v

g lflyfz 1}!
X ! > X (1, f) fﬁv‘y

then f”fi ~ f'f» and fif’ ~ faof’, hence the fact that f is an I’-equivalence
and f’ is an l-equivalence implies [4, 5.3] that f; ~ fand g(J, f, f) is unique.

1.6 Remark. Let X and Y be spaces of finite type and let f: X — Y be a
map. Denote by F the component of the base point of the fibre of f.
Since the fibre of f/: X (I, f) = YVis F,, X (I, f) is of finite type if and only if
f is a rational equivalence.

1.7 CoroLLARY. If X, YV are H-spaces and f: X — Y 1is an H-map, then
X, 1), f andf"’ admit H-structures.

Proof. By the uniqueness of the 1.5 decomposition one has

XXXULfFXH=X(AS XXAS
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and if X, p ¥, v are H-spaces and f is an H-map one has a commutative

diagram
X XX -—/ﬁf»X(l,f) X X(l,f)—”—x-—l;yx v
ln lu(l,f L) lv
y— I xiy—T
Let

te XU f) =2 XU, ) X XU, f) (e =1,2)

be the injections. Consider the maps u(, f X f, f) o 2. (¢ = 1, 2); since
af’ ~ f and f"ac. ~ f”, a. is an l-equivalence and /'-isolated, hence a
homotopy equivalence. Let v, be the homotopy inverse of a¢; v¢f’ ~ f’ and

f"ve~ f". Then one can replace u(l, f X f, f) by u(l, f X £, ) o (1 X 7v2)
which is an H-structure for X (/, f) and

p(LFX S ) o (i Xye) o (ff X f) ~ull, f X f,f)
o(ff Xf)~fou
f oull,f X f,f) o (y1 X v2) ~vo (f" X f") o (y1 X v2)

~ vO fl/ >< f//)
so both f" and f” are H-maps.

1.8 Notation. For every space X denote by X, the n-stage of the
Postnikov system of X and by # X the set of all maps f: I — X for which
f(0) = the base point of X.

1.9 PrRoPOSITION. Given a map f: X — YV and a pull back diagram

Xq, f)—”> %

o

X, —Y,
If fis a principal fibration then f" is a principal fibration.

Proof. Suppose f: X — Yisinduced by g: ¥ — Z, then f; is induced by
g:. Consequently the diagram

X f) — X, > L7,
Y SV, — 7,

is a composite of pull backs and f”’ is a principal fibration.
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1.10 ProprosITION. Let f: X — YV be l'-isolated and let w, X be l'-torsion free.
Then:

(a) m, Yisl'-torsion free.

(b) fu: Xp— Y, 1sl'-isolated.

(c) f#: mX > w,Yisl'-isolated.

Proof. (a) Since the square
x4y
]
Xz - Yl

is a pull back and 7,X is I'-torsion free we have an exact sequence:

(110.1) 0> 1 X% r.X, ® V> n,V,. ..

Consequently the fact that =,V is /-torsion free implies that the /-
torsion of 7, ¥ belongs to the image of a, and =, Y is //-torsion free.
(b) Let W be the pull back of

fnl

Xyu— YV, «——Y,

and let g: X, — W make the diagram

Ja
4

We—HQY,
Jui
an_>Ynl

commutative. Consider g4: 7,X, = m,W. For m > =,
TaW = 10X, = 0,

hence g# is an isomorphism. For m < 7, one has a commutative diagram

7Tm+1Ynl > 7|'an A"’rm‘)(n @ T Yn—_fﬁ'm Yn:
(110.2) lg ”
7rm+1Ynl > W —> 7ran @ Yy ——— 1, Y,
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hence, by the five lemma, g is an isomorphism. For m = #,
Tm+1 Ynl = O,

hence (1.10.1) together with (1.10.2) imply that also in this case g4 is an
isomorphism and therefore X, &~ W.
(c) This follows from the fact that

;
T X IEELEEN T, Y

.

7l'nXl —_— T, Yl
is a pull back if and only if the sequence
0O-»mnX-omX &@mnY—orY,

is exact.

2. Pull back diagrams. In this section we study the relations between
pull back diagrams and /'-isolated maps.

2.1 PROPOSITION. Given a commutative diagram

X—f1—>X1

g Jo
J2o

Xo—— X,

(@) If fio and fs are l-equivalences, fa and f, are l'-isolated, then the
square is a pull back.

(b) If (a) us satisfied and all the maps are rational equivalences, then the
square is, also, a push out.

Proof. (a) Let W be the pull back of
X, 22, x, I x,
There exists g: X — W so that the following diagram commutes:

X‘——»f‘ X,
2 % /

f| W fro

X?___ﬁo_>X0
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Since W — X is I'-isolated (Lemma 1.5.1) and W — X, is an l-equiva-
lence, g is both /'-isolated and an /-equivalence, hence (Corollary 1.3) a
homotopy equivalence.

(b) This is similar to (a).

2.2 PROPOSITION. If f: X — Y is a rational equivalence then X is the pull
backof X(1,f) = Y <X, f).

Proof. By Corollary 1.2 X (I, f) — Y is an ’-equivalence and X (¢, f) —
Y is an l-equivalence. Hence the square

X——-> XU, 1)

XU, fl——Y

satisfies the conditions of Proposition 2.1(a) and therefore it is a pull back
square.

2.3 PROPOSITION. Given a pull back diagram

x I, X
(2.3.1) l s 1 10
X, Jao Xo

then the two squares in the diagram

X—i—-)X(lj)——bf X

(2.3.2) fo folly f1, f20) |10
fao fa0"’

Xo— X,(l, Sfa0) —> X

are pull back squares.

Proof. Let W be the pull back of

Xl fao) 2205 30 20
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Consider the following diagram

’

x—L x24T x,

N

(2.3.3) fof  fo(l, f1, fo0) *w f1o
f20 fao”!

Xo(l, fro) == X,

Let h: X (I, f) = W close the diagram. Since (2.3.1) is a pull back, it
follows from [6] that X is the pull back of

X 32, Xyl fur) — W
Consequently, the fact that fa is an l-equivalence, and fs0' is /-isolated
imply that fh, is an l-equivalence and W — X, is /-isolated, hence
(Corollary 1.3) k is a homotopy equivalence and the result follows.

2.4 PROPOSITION. Suppose all the spaces and the maps in diagram (2.3.1)
are H-spaces and H-maps. Then:

(a) There exist H-structures on X (I, f1) and X2(l, f2) so that all the maps
in diagram (2.3.2), except possibly for fi', are H-maps.

(b) If fao is a rational equivalence and f1o is an l-equivalence, then the H-
structures on X (I, f1) and X 2(l, f2) can be chosen so that fy' is, also, an H map.

Proof. (a) This follows from the fact that X (/, f1) is homotopy equiva-
lent to the pull back of

II

Xa(l, fu) 225 X0 20
(Proposition 2.3) and X.(l, f20) admits an H-structure so that fi,’ and
feo”" are H-maps (Corollary 1.7).
(b) Consider diagram (2.3.3) with X (I, fi) = W. Since fi"’ o fi’ and
f2(l, f1, f20) 0 fi’ are H-maps and
(X 10)x ® (0" )a: [X X X, 0X,1] @ [X X X, QX(l, fo) ]
is an epimorphism, it follows from [1, Proposition 10.3] that f,’ is an
H-map.
2.5 PROPOSITION. Given a push out diagram

S

X—X,

(2.5.1) lfz Ifm
fa0

"_——')Xo
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If fi: X — X, is a rational equivalence, then the two squares in the diagram

xS xa T, x,

f2 f2(lyf1,f20) f1o
f20 f2 "

Xo——X,(, f20) 25X,

are push out squares.

Proof Let W be the push out of X2<-—f—— X f—2>X(l fi) and let

H: W — X,(l, fa) close the following diagram

XD LT x,

f2

4 h l‘w
4 .
> 2(lf20)———"X0

Since (2.5.1) is a push out it follows from [6] that X, is the push out of

”n
We— X3 1) 25 X0
Consequently, the fact that fi’ is an l-equivalence and fi"’ is an /’-equiva-
lence imply that X: — W is an l-equivalence and f5k is an ’-equivalence,

hence k is a homotopy equivalence and the result follows.

2.6 PropPoSITION. Let

X——"——-»X1

1}“2 lf}o
X, f

20

— X

be a pull back square and let W be the pull back of

XZ(l)f20) i))(0 (-——10—X1(l,f10).
Ifh = f1(l, f2, f10), then

W = X(l, fz) (l, h) = X(l, f10f1).
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Further, if g = fa(l, f1, f20), then W = X(I, f1) (I, g) and all the squares in

the diagram
xS xa - x,
f‘:/ g’ fm,
v ’ v " v
o h
X (U, fo)——> W > X 1L, f10)
I ¢ f”
‘} f20/

L 4 7 L 4
X, Xz(z,fm)ﬂ—» X,

are pull back squares.

Proof. Since the lower right square is a pull back, #”” and g"” are /-
isolated and there exists #': X (I, fo) = W so that Bk ~ h and g’k
~ fa'fs’’. Consequently the fact that the lower rectangle is a pull back
(Proposition 2.3) implies [6] that the lower left square is a pull back.
Hence /' is an l-equivalence and

W =X f) Uy k) = X frofr)

(Proposition 1.5). ,

Letg = £/, f1, h): X, fi) > Wand let g = g”’¢’. By Proposition 2.3
the right and left rectangles in the above diagram are pull backs. Conse-
quently the fact that the two lower squares are pull backs implies [6]
that the two upper squares are pull backs. Therefore g’ is an l-equivalence
and W= X1, ¢g).

2.7 PROPOSITION. Given a commutative diagram

h

X _~"—']——"X1
% Ly
ho )
(2.7.1) X
g‘ A 4 h«20 A 4
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where:

(a) X, Yareof finite type.

(b) f,foare rational equivalences.

(c) Either X, Y are finite dimensional or X, Yo have a finite number of
homotopy groups.

Then the middle vertical square in the following diagram is commutative:

h
X ! > X,

j/ he / Rio
21
Y ” > Yl kzo VL
X2 > X()
2.7.2 .
( ) / /jo’
v v
g2 X?(Lf?) ———-——-—)Xo(l,fo)
£10 "
Jr/ {rﬁo
Y. £20 »Y,

Proof. Since f’ is an l-equivalence and fy'’ is an /'-equivalence, one
obtains by chasing the diagram, that for every prime p, hio(/, f1, fo)
o hi(l, f, f1) is mod-p homotopic to ko (Z, f2, fo) © ha(l, f, f2) and the result
follows from [4, 5.3].

2.8 PROPOSITION. With the hypothesis of 2.7, if either:

g2: Y > Yy, g10: Yi— Y, arel'-isolated and hy: X — Xy, hoo: X2 — Xo
are l-equivalences, or

g1: Y= Vi, goo: Yo— Yy are I'-tsolated and he: X — X2, hio: X1 — X,
are l-equivalences, then the middle vertical square is a pull back.

Proof. The assumptions of the proposition imply that the middle
vertical square is a commutative square, which satisfies the conditions of
Proposition 2.1 and therefore it is a pull back square.

2.9 PROPOSITION. If the base and cover in (2.7.1) are push outs and etther
the front and left faces or the left and back faces are pull backs, then the middle
vertical square in (2.7.2) is a pull back.

Proof. Suppose that the base and cover in (2.7.1) are push outs and
that the left and front faces are pull backs, then the same is true for the
front cube in (2.7.2). Thus, by Walker’s Theorem 1.10 ({7]), the right and
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back faces of this front cube are pull backs; in particular, the middle
vertical square is a pull back.

Similarly, suppose that the base and cover in (2.7.1) are push outs and
that the left and back faces are pull backs, then the same is true for the
back cube in (2.7.2). Thus by Mather’s Theorem 18 ([6]), the right and
front faces of this back cube are pull backs; in particular, the middle
vertical square is a pull back.

The following two propositions deal with lifting problems:

2.10 PROPOSITION. Suppose in the following diagram

X(, f1) (L, f20)
lf]" s
] 10 7’7_ Xo
goll
’ gO”
& Yo(l, go)
go//
> Y()
f 10 fzo

(a) X is the pull back of X1 —— X ——— X..
(b) gg' and fs0 are rational equivalences.

(c) fr0g1 ~ gog1o-

If all the spaces are CW-complexes of finite type, and either X, and Y, are
finite dimensional or X, and X, have a finite number of homotopy groups,
then the existence of a lifting, 8o: Yo — X, of gotmplies the existence of liftings

golll Yo(l, g()) - X(l, fzo), gli Yl — X and
@' Vil g) = X, f2)

of g, g1and g\"’, respectively, so that the diagram commutes.
Proof. Denote f = f2(l, f1, f20), g = g10(l, g1, go). Since X is the pull back of

le&XOﬂXl

and f20Zog10 ~ f10g1, there exists a lifting #; of g, which satisfies f2g; ~ Fog1o.
By Proposition 1.5 there exist liftings g’ and g," of go and gi”’, so that
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the left and right trapezoids and all the triangles are commutative. Hence
(b) and the fact that

(fa')e ~ (&"g)g’ and  fo'' (f81") ~ f2''(8"'¢)
imply (4, 5.3] that fg,"" ~ g¢'’g and the diagram commutes.

2.11 PROPOSITION. Given a commutative diagram

xLyv, &y

v |5 s

xLyv &y

where:

(a) X, Yand Yyare of finite type.

(b) fand g are rational equivalences.

(c) Either X and Yy are finite dimensional or Y and Y, have a finite
number of homotopy groups.

If either g is a principal fibration or Y, Y, are H-spaces and g is an
H-map, then the existence of a lifting f': X — Y, of [ implies the existence
of an integer m divisible only by primes dividing

H exp H"(x, =, (fiber g))
n=0

and of liftings f: X — ¥ and f": X (I, f) — Y(I, g) so that the following
diagram commautes:

Sm
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Proof. By [9, 3.1] there exist an integer m divisible only by primes
dividing

[T exp H'(X, m(fiber g)),
n=0

and a lifting f: X — Y of f, so that S*f ~ fT™. Hence the considerations
of the proof of Proposition 2.10 imply the result.

3. Localizations. In this section we use the decomposition of a map
into an l-equivalence and an /-isolated map, and the structure of the
genus to study spaces and maps by means of their localizations.

3.1 LEMMA. Let X, Y and W be nilpotent CW-complexes. Suppose Y is
quasifinite and W s a connected H-space. Given a map f: X — Y satisfying:
for every prime p, f,*: [ Yy, W,] — [X,, W, is onto, then f* is onto.

Proof. Let ¢, be the n-power map. For every map h: X — W and for
every prime p there exists a map g,’: ¥, — W, so that g,’f, ~ h,. Since W
is an H-space it follows from [4, 6.5] that there exists an integer n,
(n, p) = 1, and a map g: ¥ — W so that g, ~ ¢,2)/; as g,f, ~ ¢.h, for
all p, it follows from [4, 5.3] that gf ~ ¢,h.

Suppose n = pf1- .. .- p*t where all the p; are primes. The same
considerations imply the existence of integers #;, (n;, p;) = 1, and maps
g Y — W so that g,f ~ ¢,.k. Consequently if one defines k: ¥ — W by

where

4
an+ Y am; =1
i=1

one obtains that kf ~ k and f* is onto.

3.2 PrROPOSITION. Let X and Y satisfy the conditions of 3.1 and let f:
X — Ybeamap. If for every prime p, Zf,: ZX, — Z Y, has a left homotopy
inverse, then Ef: X — ZY has a left homotopy inverse.

Proof. The result follows from Lemma 3.1 and from the fact that
f* Y, W] — [X, W] is onto for every H-space W if and only if Zf has
a left homotopy inverse ([8], Corollary 1.1.4). The corollary follows from
[5].

3.3 Remark. All spaces considered from now on, except in Proposition
3.13, are of the homotopy type of simply connected CW-complexes of
finite type, which are either finite dimensional or have a finite number of
non-zero homotopy groups.
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3.4 PROPOSITION. Let X, Y be Hy-spaces and let | C P be a finite subset.
Given localizations X — X ;, Y — Y, and a rational equivalenceg,: X, — Y,
there exist a rational equivalence f: X — YV and a homotopy equivalence
e X, — X, sothatf, ~ ge.

g1
Proof. Let X' be the pull back of X; — ¥V, « Y. Since X’ is mod
l-equivalent to X and / is finite there exists an l-equivalence g’': X — X’
[10]. Consequently it follows from the diagram

’
x £, x_8

Lo

’
x,Ehx, £y,
thatf = g¢’ and e = g, are the desired maps.

3.5 THEOREM. Let f: X — V1 X Y, be a rational equivalence. Suppose
there exist subsets of the primesl, and I, satisfying:
l1U12=P,llm12=¢,X“%Z1XWi and

fu=g Xk Zi X W= (V1)) X (Yo)u (=1,2).
Then:
(a) There exist spaces X1and X2 so that X ~ X, X X..
(b) There exist a homotopy equivalence e¢: X — X, X X. and maps
g X1 — Yiand k: Xy — Yy, so that

f~ (ng)e:X—E>X1XX2—g—X-—k> Y1 X V..

Proof. Let Z* and W' be the pull backs of

g

k
Z;= Vi< Vi and WS Vo Ve (i=1,2),
respectively, and let f;: X — Z X W close the diagram
5

[ 4 N
x- i EXE Y Ty,

X ky

Z; X Wi—gi——>(yl)t,- X (Ya)u

Obviously f; is an /;-equivalence and g* X k'is a P — I; equivalence.
Consequently if X; X X, is the pull back of

g2xk2

lxkl
1E 2R yix 1 E2E 22xw?

Z'X W
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the map e X — X; X X, which closes the diagram

N: S

»
X i X Xgy—>Z' X W’
gl Xkl

2 2
VAS'S W?M,yl X Vs

is a homotopy equivalence [4, 5.3] and the result follows.
In case X is an Hy-space we obtain a stronger result:

3.6. THEOREM. Let X be an Hy-space and let | P be a subset. Suppose
there exist spaces Vi, Z; (1 = 1, 2) satisfying X , = Vi X Vo, Xy R Z, X Z,
(Y1)o & (Z1)o, (Y2)o & (Z2)o. Then there exist spaces U, and U, so that
X=U, X U.

In order to prove this theorem and Propositions 3.9 and 3.10, we need
the following definition and notations:

3.7 Definition. Let X be an Hy-space and let f: X — X be a map.
Suppose QH"(X, Q) # Ofor< =1,...,kandd = (d,, ..., d;) € Z*.
We say that f realizes d if for every 1,

det (QH™i(f, Z)/torsion) = d ;.

3.8 Notations. Let ¢ be an integer and let X be an Ho-space. Denote by
ZX(Z, = Z/tZ) the units in Z,, by G(X) the genus of X, by K(X) the
space K(QH*(X, Z)/torsion) of [10], by /(X) the number of integers »
satisfying QH"(X, Q) # 0, by [X, X], the set of homotopy classes of
t-equivalences f: X — X ([10]), and by ay: [X, X], = (Z/*/£1)'® the
composition

X, X],— Aut (QH*(X, Z)/torsion @ Z,) Idﬂ» (ZX/£1)'™,

Proof of Theorem 3.6. Let p: ¥V — (YV)oand y¢i: Z;— (Z,)o (1 = 1,2)

be rationalizations and let W, X W, be the pull back of
Vi XY, ﬁl><—m—>(yl)o X (Yz)(ﬁﬂ—x—“p—2 Z1 X Z.
Obviously W, X W, € G(X).

Suppose QH"i{(Wi X W,, Q) #0 for 1 £ ¢ = (W, X W;) and

ne Wi—> K(W,) (¢ =1, 2) is any map yielding an isomorphism on
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QH*(W,, Z)/torsion. Since the map SL(n, Z) — SL(n, Z,) is an epi-
morphism it follows from [10, Propositions 2.5 and 2.6] that there exists

d= (dy,...,d

(W XWa)
"l(W1><W2)) €z

so that X is the pull back of

Wy x W X0 g () X K(Wa) «L— KW x K(Wa),

where f is any map which realizes d. Obviously one can choose f:: K(W)
— K(W,) (i =1, 2), so that f; X f, realizes d. Hence X =~ U, X U,
where U is the pull back of

W ey Leowy.

3.9 ProposiTION. Let X be an Ho-space and let | & P be a subset. Suppose
¢: X — K(X) is a rational equivalence which induces an isomorphism on
QH*(X, Z)/torsion. If H*(X, Z) is torsion free then there exists an epi-
morphism G(X) = G(X (I, ¢)).

Proof. Suppose QH™(X, Q) # Ofori =1, ...,(x). Let f: X = X
realize d = (dy, ..., dix)). Since H*(X, Z) is torsion free there exists
[’ K(X) — K(X) so that f'¢ ~ ¢f. Consequently (Proposition 1.5) there
exists a unique map f"': X (/, ¢) — X (I, ¢) which closes the diagram

S

X—X

(3.9.1) X1, o)== X, ¢)

K(x)—Ls K (x)
Define a map g: [X, X], = [X((, ¢), XU, ¢)] by g(f) = " if and only if
S closes diagram (3.9.1). Since f” is unique and it realizes d, g is well
defined and its image is contained in [X (/, ¢), X (I, ¢)]..
Consider the following diagram:

(X, X], —2% » (Z*) 1)1 > G(X) >0

: H

(X(, @), X (U, 0)] XLy (7 %/ £1) 150 —5 G(X (1, ¢)) ——>0
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Since the diagram is commutative and its rows are exact (main theorem
in [10]) there exists h: G(X) — G(X(l, ¢)) and h is an epimorphism.

3.10 PropoSITION. Let X be an Hy-space and let o: X — K(X) be a
rational equivalence. Then Y € G(X) if and only if for every subset ] C P
there exist spaces Y1 € G(X (L, ¢)), Vo € G(X(V, ¢)) so that Y is the pull
back of

v L xke) & v,
where f is an I'-equivalence and g 1s an l-equivalence.

Proof. Suppose ¥V € G(X). By Proposition 4.6.4 in [8] there exist an
integer ¢, a t-equivalence fo: K(X) — K(X) and mapsf: Y - X, n: ¥V
— K (X) so that the square

Y—J:X

bl

k)L e

is a pull back and ¢ is a #-equivalence. By [8, Lemma 4.2.1] f and 7 are,
also, a t-equivalence and a t'-equivalence, respectively. Hence f(I, 7, ¢)
and f(¥, 5, ¢) are t-equivalences (Proposition 2.3) and therefore Y (I, )
€ G(X(, ¢))and Y, n) € G(X{, ¢)). Consequently the fact that ¥V is
the pull back of Y(7, n) — K(X) <« Y(, n) (Proposition 2.2) implies
that ¥; = Y(l,9) and ¥, = Y(I, ) are the desired spaces.

The converse is obvious.

3.11 Definition. Define the genus G(f) of f as follows: Consider first of all
(homotopy classes of) maps f: X’ — ¥’ such that for every prime p there
exist homotopy equivalences k,: X,) —» X, and k,: ¥V, = ¥, so that
fohy ~ kyf,/. Call two such (homotopy classes of) maps f': X' — V7,
. X" — Y equivalent if there exist homotopy equivalences h: X' — X"/
and k: Y’ — Y so that f’h ~ kf’ and let G(f) be the set of equivalence
classes.

3.12 ProposiTION. Let X, YV be H-spaces with primitively generated
rational cohomology and let f: X — Y be an H-rational equivalence. For every
I £ P there exist an epimorphism G(f) — G(f"').

Proof. By [3, Lemma 4.2] there exists an integer ¢ so that each map

o fok
f: X = Yin G(f) is the pull back of X — ¥V « ¥, where k is a {-equivalence.

; k
Let f € G(f) (f: X > ¥) be the pull back of X — ¥ « ¥ and let
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k' X(l, f) = X (I, f) close the diagram

X—0>X

)
k//

X(l H—>X(, 1)

f/l lfl/
Y
y———7

By Proposition 2.3 the lower square is a pull back, hence f/ € G(f")
(3, Lemma 4.2]. Define a map n: G(f) — G(f"’) by #(f) = f”. The defini-
tion of the multiplications in G(f) and G(f”’) implies that 5 is a homo-
morphism. To show that 5 is an epimorphism, suppose g’ € G(f"') is the
k fll

pull back of ¥ — ¥ «— X (I, f), where k is a t-equivalence.

2 5 x0

g// f/l
y—k >y
~ ~ kl! fl

Let g': X — X be the pull back of X — X(I, f) < X. Obviously [3,
Lemma 4.2] g""¢’: X — ¥ belongs to G(f) and 7 is an epimorphism.

The last two propositions apply the decomposition of a rationalization
into an l-equivalence and an /-equivalence to deal with the question:
When is a map between H-spaces an H-map?

3.13 THEOREM. Let X, u and Y, v be simply connected H-spaces and let
f: X — Y be a map. Giwen subsets of the primes Iy, I, Iy \J Iy = P, and
rationalizations ¢ X > Xo, ¥ Y=Y, (0 = 1,2). If f1;, 4 =1, 2) 1s
the localization of f at l; for which the diagram

S

X—V
‘Pi/ \l/i,
\ 4 fl v
Xl—'—-)y“

el 128

Xo—I" 57,
commautes, then f is an H-map if and only if f, and f,, are H-maps.
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Proof. Let po and vy be the multiplications on X, and ¥, induced by ¢,
and i, respectively, and let e X¢— X, #: Yo — ¥y, be homotopy
equivalences satisfying epy ~ @2, n¥1~ ¢¥2. Then eug(e™! X 1) and
po(n~t X 771) (¢! and 5~! are the homotopy inverses of ¢ and 7) are
multiplications on X, and ¥, induced by ¢, and ¢., respectively and e
and 5 are H-maps.

Consider the following diagram:

’
X—2 ,x,

\

Y 23
X, —X,
. , Yo
nfoe ¥
n
fo
v ¢2” Y
Yly -"——_>I/0

Since all spaces and maps in the diagram, except possibly for f, are
H-spaces and H-maps and Y is the pull back of

"

n
Vi ve, Yo ¥, i Yu,

it follows from [1, 10.3] that f is an H-map.
The converse is obvious.

3.14 ProposITION. Let X, p, Y, v, X4, p;, Vi, vy (@ = 1, 2) be H-spaces
and let f: X — Y be a map. Suppose H*(X, Q), H*(Y, Q) are primitively
generated and H*(f, Q) is either a monomorphism, an epimorphism or zero.
Suppose, also, that there exist subsets of the primes Iy, Iy, 11 \J I, = P, and
li~equivalences g2 X 1 — X, hyt Y — Yy, so that the map hifg:: X4y pi — Yy,
v, (v = 1,2) isan H-map. If either

(a) H*(X 4, Q) and H*(Y,, Q) (z = 1, 2) are primitively generated, or

(b) (g:)oand (h;)e (2 = 1, 2) are H-maps, then there exist H-structures
on X and Y so that f is an H-map.

Proof. (a) Let uo and v be the standard multiplications on

Xo= ] K(Q,n:) and Y,= [] K(Q,m,),

finite finite

respectively. Since H*(X ,, Q) and H*(Y,, Q) (+ = 1, 2) are primitively
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generated, one can choose H-rational equivalences, ¢;: X4, pi— Xo, po
and ¥;: Vi, v; > Yo, vo (¢ = 1, 2), so that PH*(hiofogre, Q) and PH*-
(haofogeo, Q) are represented by diagonal matrices. Moreover, since b and
g« (1 = 1, 2) are homotopy equivalences, one can choose ¢;and ¥, so that
the matrices of PH*(hiofogio, Q) and PH*(hafoge0, Q) have nonzero
entries in the same rows. Consequently, there exists an H-homotopy
equivalence

€ Y(), vy — Y(), Vo
so that
f(hwfogm) ~ h20fog20-

Let uqy; and vy, (2 = 1, 2) be the multiplication on (X;),;, and (Y;) .
Identify (X ;) ,;and (V) with X ;;and V,,, by meansof the /;-equivalences
goX;,—>Xandh;: V> YV, andlet V', » and X', u be the pull backs of

¢2II

’

’
21 € i
Vi, vy > Yo, vo ¢ Vo, vo ¢ Vi, vau

and
¢1’I S02/'
Xy, w1y — Xo, po «—— X4y, gy,

respectively. Suppose f: X’ — V' closes the diagram

Xy e Xy, a1y

\ hiufugin
\
e’
X
05 Mo hiofog1o
\ lp]’/
1
\‘J'
v ¢2// L 2 YOy Vo
X bany—— 3 X, o haofogeo
\ €
w\‘ ‘L

]
Ylw Vlz_‘—>y0y Vo

’ /
Viw ’Yln”lll

h:»zthgm

Since all spaces and maps in the diagram, except possibly for f’, are
H-spaces and H-maps, it follows from [1, 10.3] that f’ is an H-map.
Therefore the fact that f* € G(f) and the structure of the genus of f
{3, Proposition 3.16] imply that fis an H-map.
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(b) Since (gi)o and (k,)o (¢ = 1, 2) are H-equivalences, the fact that
H*(X, Q) and H*(Y, Q) (+ = 1, 2) are primitively generated implies
that H*(X,, Q) and H*(Y;, Q) (¢ = 1, 2) are, also, primitively generated
and therefore (b) follows from (a).
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