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/-ISOLATED MAPS AND LOCALIZATIONS 

SARA HURVITZ 

0. Introduction. Let P be the set of primes, / Ç P a subset and 
V — P — L Recall that an H0-space is a space the rational cohomology of 
which is a free algebra. 

Cassidy and Hilton defined and investigated /'-isolated homomorphisms 
between locally nilpotent groups. Zabrodsky [8] showed that if X and Y 
are simply connected if0-spaces either with a finite number of homotopy 
groups or with a finite number of homology groups, then every rational 
equivalence / : X —» Y can be decomposed into an /-equivalence and an 
/'-equivalence. 

In this paper we define and investigate /'-isolated maps between pointed 
spaces, which are of the homotopy type of path-connected nilpotent CW-
complexes. Our definition of an /'-isolated map is analogous to the defini­
tion of an /'-isolated homomorphism. As every homomorphism can be 
decomposed into an /-isomorphism and an /'-isolated homomorphism, 
every map can be decomposed into an /-equivalence and an /'-isolated 
map. This decomposition is unique, hence in case that X and Y satisfy 
the conditions of the first paragraph and / : X —> F is a rational equiva­
lence, it coincides with Zabrodsky's decomposition. The construction of 
the decomposition is applied to study homotopy pull back diagrams and 
to study spaces and maps by means of their localizations. 

Throughout this paper, commutative, pull back and pushout mean 
homotopy commutative, homotopy pull back and homotopy push out. 
Aside from Proposition 1.9 pullback should be understood as pullback in 
the category of path-connected spaces. 

Among others we obtain the following propositions: 

0.1 PROPOSITION (Theorem 3.5). Let f : X —» Yi X Y2 be a rational 
equivalence. Suppose there exist subsets of the primes h and l2 satisfying: 

i i U / , = P, h r\ l2 = 0, Xti « Zt X Wt and 

/ , , = gtXkr.Zi X Wi-*{Yl)li X (F2)It. (i = 1,2). 

Then: 
(a) There exist spaces X\ and X2so that X tt Xi X X2. 
(b) There exist a homotopy equivalence e : X —> X\ X X2 and maps 
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194 SARA HURVITZ 

g: Xi —> Yi and k: X2 —» F2, so /fea/ 

0.2 PROPOSITION (Theorem 3.13). Le/ X, n and Y, v be simply connected 
H-spaces and let f: X —» Y be a map. Given subsets of the primes h, h, 
liKJ li = P and rationalizations <p{: X —> XQ, ^*: Y —» F0 (i = 1 , 2 ) . / / 
f z, (t = 1, 2) is /fee localization of fat h for which the diagram 

commutes, then fis an H-map if and only iffh andfhl are H-maps. 

The paper is organized as follows: The first section deals with simple 
properties of /'-isolated maps. These properties are used in Section 2 to 
study pull backs, and in Section 3 to study properties of spaces and maps, 
especially of H0-spaces and if-maps, by means of their localizations. 

( ) 

1. /'-isolated maps. 

1.1 Definition. Let X, Y be nilpotent spaces, / : X —* Y a m; 
) r the /-localization operation. We say t h a t / i s lf-isolated if the 

Y a map and 
square 

X 

xth Y 

is a pull back. 

1.2 COROLLARY. A rational equivalence is lr-isolated if and only if it is an 
I''-equivalence. 

Proof, f is a rational equivalence and /'-isolated implies that the homo-
topy groups of the homotopy fiber of / are finite groups of order prime to 
/', hence/is an /'-equivalence. 

Conversely, / is an /'-equivalence implies that ft is an /'-equivalence, 
hence the fact that X —» X t and Y —» Yt are /-equivalences implies that 
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/'-ISOLATED MAPS 195 

the square 

X ^ Y 

xlhvl 

is a pull back a n d / is /'-isolated. 

1.3 COROLLARY. / / a map is an l-equivalence and V-isolated then it is a 
homotopy equivalence. 

1.4 LEMMA, (a) If f: X —> Y and g: Y —> Z are V-isolated, then g of is 
V-isolated. 

(b) Iff: X —» Y and g: Y —» Z are such that g is V-isolated and gof 
is V-isolated, then f is V-isolated. 

Proof, (a) Since/ and g are /'-isolated the two squares in the diagram 

X L Y ̂  Z 

(1.4.1) 

X l h Yl^>Zl 

are pull back squares, hence [6] the rectangle is a pull back and g of is 
/'-isolated. 

(b) Since g and gof are /'-isolated the right and the big squares in 
diagram (1.4.1) are pull back squares hence [6] the left square is a pull 
back and / i s /'-isolated. 

1.5 PROPOSITION. Suppose X and Y are nilpotent spaces and f: X —» Y 
is a map. Given a set of primes /, there exist a space X(l} / ) , unique up to 
homotopy type, and mapsf: X -+X(/,/),/": X(l,f) -^Yso thatfn of'~f, 
/ ' is an l-equivalence and / " is V-isolated. Furthermore, given a commutative 
diagram 

X^ Y 

XLY 

https://doi.org/10.4153/CJM-1983-013-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-013-9


196 SARA HURVITZ 

and a set of primes /, there exists a map g{l,}\ f), so that the following diagram 

is commutative: 

f f" X — J - — • X(l, f) —- • Y 

X- r 
g(i,fj) 

+ X(IJ)- r -¥Y 

If X, Y are of finite type, / , / are rational equivalences, and either X, Y have 
a finite number of homology groups or X, Y have a finite number of homotopy 
groups, then g(l,f, f) is unique up to homotopy. 

Proof. X(l,f),f a n d / " are constructed as follows: X(l,f) is the pull 
back of 

Y-+YlUxh 

f" is the projection / " : X(l,f) -> Y and/ ' : X->X(l,f) is an/-equivalence 
that completes the following diagram: 

/ 

X(IJ)-

->F 

/" 

•+Y, 

The uniqueness of homotopy type of the component of the base point will 
follow from the second part of the proposition. 

The existence of g(l,f,J) follows from the following 

1.5.1 LEMMA. Given a pull back diagram 

X-

h 

X 2 - ^ - > Z „ 

iff20 is I'-isolated thenfi is I'-isolated. 
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Proof of 1.5.1. Consider the following cube: 

/ i 

197 

X-

'h 
Xr 

h 

X« 
J20 

yx1 

A. 

-+X„ 

/20 / 

X2l • X0l 

Since the back face and the lower face are pull backs, X is the pull back of 

X21 >Xoi< Xo < X\ 16]. 

Therefore the commutativity of the right and left faces and the fact that 
the front face is a pull back imply [6] that the upper face is a pull back and 
/lis/'-isolated. 

1.5.2 LEMMA. Given a commutative diagram 

Y ^ Y1 

/o h 

xKx, 
where g is an Inequivalence and h is V-isolated. There exists f: Y\ —» X so that 
fog v-^/o and hof^fi. 

Proof of 1.5.2. Construct the pull back Wfuh of/i and h and complete: 

As g is /'-isolated (Lemma 1.5.1) and g is an /-equivalence, gj" is an 
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/-equivalence and /'-isolated (Lemma 1.4(a)), hence gf" is a homotopy 
equivalence (Corollary 1.3). Let IJL be the homotopy inverse of gf" and 
let a = /"/A. Obviously ga ~ gf'n ~ 1. Consider the m a p / = / ia ; since 

fg ~Jiag ~fj"»g ~fj"»(gf")f' ~fif'f ~ fif~fo 
and 

A/ = hfia ~figa ~ / i , 

/ is the desired map. 
Now, apply 1.5.2 for f = X, Fi = X ( / , / ) , X = X(/, / ) , Xi = f, 

g = / ' , ft = f",f0 = f o g,/i = i o / " to obtain g(/,/ , / ) . The uniqueness 
of the homotopy type ofX(l,f) follows from the fact that the map/which 
completes the diagram 

• + * ( / , / ) 

is both an /-equivalence and /'-isolated (Lemma 1.4(b)) and therefore 
(Corollary 1.3) it is a homotopy equivalence. 

Finally, suppose X, Y are of finite type, / , / are rational equivalences 
and either X, Y are finite dimensional or X, Y have a finite number of 
homotopy groups. If 

fi,ft:X(l,f)-+ X(l,î) 

close the diagram 

X-

g 

r + X(l,f)- r + F 

X- r 
fuh 

+x(ijy J" - • F 

thenf'fi ~ ffi and / i / ' ~ f%ff, hence the fact t h a t / " is an /'-equivalence 
and / ' i s an/-equivalence implies [4, 5.3] that / i ^ / 2 and g(/,/,/) is unique. 

1.6 Remark. Let X and F be spaces of finite type and let / : X —» F be a 
map. Denote by F the component of the base point of the fibre of / . 
Since the fibre of/": X(l,f) —» Fis FhX(l,f) is of finite type if and only if 
/ is a rational equivalence. 

1.7 COROLLARY. If X, Y are H-spaces and f: X —> Y is an H-map, then 
X ( / , / ) , / ' andf" admit H-structures. 

Proof. By the uniqueness of the 1.5 decomposition one has 

X X X(l,fXf)&X(l,f) X X(l,f) 
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and if X, n Y,v are iî-spaces and / is an i/-map one has a commutative 
diagram 

X x X-£-m+X(l,f) XX(/,/)il2LCyx y 

X- r -+x(i,f) 
f" 

•+Y 

Let 
*.: X{l,f)^X(l,f) X X(l,f) (e = 1, 2) 

be the injections. Consider the maps p(l, f X / , / ) o it (« = 1, 2); since 
a,f ~ / ' and /"«« ~ / " , a, is an /-equivalence and /'-isolated, hence a 
homotopy equivalence. Let y, be the homotopy inverse of at ; 7 , / ' ~ / ' and 
/" 7< - / " • Then one can replace »(l,f X / , / ) by ,*(/,/ X / , / ) o ( 7 l X 72) 
which is an iJ-structure for X(l, f) and 

M ( / , / X / , / ) O (71 X 72) o (/' X / ' ) - n(l,f X / , / ) 

o ( / ' X / ' ) ~ / ' O M 

f" o M ( / J X / , / ) o (71 X 72) ~ v o (/" X / " ) o (71 X 72) 

~ » o ( / " X / " ) 
so both / ' and / " are //-maps. 

1.8 Notation. For every space X denote by Xn the «-stage of the 
Postnikov system of X and by^fX the set of all maps/: / —» X for which 
/(0) = the base point of X. 

1.9 PROPOSITION. Given a mapf: X —* Y and a pull back diagram 

X(l,f)- f" 
•+Y 

Xr 
U 

•+Y, 

If fis a principal fibration thenf" is a principal fibration. 

Proof. Suppose/: X —> Y is induced by g: Y —•* Z, then/ , is induced by 
g 1. Consequently the diagram 

X(l,f) >xt y^£zl 

f" fi 

• > K i - -+Z, 

is a composite of pull backs a n d / " is a principal fibration. 
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200 SARA HURVITZ 

1.10 PROPOSITION. Letf: X —» Y be V-isolated and let wnX be I'-torsion free. 
Then: 

(a) TnYisV-torsionfree. 
(b) fn: Xn —> Yn is V-isolated. 
(c) /# : 7rnX —>irnYisV-isolated. 

Proof, (a) Since the square 

/ i 1 
X , - > F , 

is a pull back and wnX is /'-torsion free we have an exact sequence: 

(1.10.1) 0 
ran X -A wnXi ® irnY -A irnYi. . . 

Consequently the fact that irnYi is /'-torsion free implies that the /'-
torsion of irn Y belongs to the image of an and wn Y is /'-torsion free. 

(b) Let W be the pull back of 

fn 
Xn i > Yn i <-

and let g: Xn —> W make the diagram 

X 

*XnlJ^-+Ynl 

commutative. Consider g§: irmXn —» irmW. For m > n, 

TTrnW = TTmXm = 0 , 

hence g# is an isomorphism. For m < nt one has a commutative diagram 

Km+i Yn i • TrmXn y TrmXn © wm Yn y Tm Yn •• 

(1.10.2) || \g 

Tm+1 Yn i > TmW - "> KmXn © 7TmYn- " ^ ^m * n I 
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hence, by the five lemma, g # is an isomorphism. For m = n, 

TTm+l *nl — 0 , 

hence (1.10.1) together with (1.10.2) imply that also in this case g # is an 
isomorphism and therefore Xn tt W. 

(c) This follows from the fact that 

„X- u ->7TWF 

V if') I V < T > lTn A ; • 7Tn Ï i 

is a pull back if and only if the sequence 

0 —» TnX —• TnXt © 7Tn Y —> 7T„ Yi 

is exact. 

2. Pull back diagrams. In this section we study the relations between 
pull back diagrams and /'-isolated maps. 

2.1 PROPOSITION. Given a commutative diagram 

(a) / / /io and fa are l-equivalences, /20 and f\ are lf-isolated, then the 
square is a pull back. 

(b) / / (a) is satisfied and all the maps are rational equivalences, then the 
square is, also, a push out. 

Proof, (a) Let W be the pull back of 

v /20 v fio v 
A. 2 » A 0 < A 1. 

There exists g: X —> W $0 that the following diagram commutes: 
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Since W —> X\ is /'-isolated (Lemma 1.5.1) and W —> X% is an /-equiva­
lence, g is both /'-isolated and an /-equivalence, hence (Corollary 1.3) a 
homotopy equivalence, 

(b) This is similar to (a). 

2.2 PROPOSITION. / / / : X —» Y is a rational equivalence then X is the pull 
backofX(l,f)->Y<-X(l',f). 

Proof. By Corollary 1.2 X(l,f) -> Y is an /'-equivalence and X(V,f) -> 
F is an /-equivalence. Hence the square 

X- - * * ( / , / ) 

W/) - - • 7 

satisfies the conditions of Proposition 2.1 (a) and therefore it is a pull back 
square. 

2.3 PROPOSITION. Given a pull back diagram 

(2.3.1) 

X ^ i + X x 

X.J^Xo 

then the two squares in the diagram 

h' X n >X{l,f,) Jl >X, h 

(2.3.2) 

V Z20 

ML f i, M 

/ 2 0 

/ 1 0 

X2-^ >X2(l,fi0)
 JL" >X 

are pull back squares. 

Proof. Let W be the pull back of 

X<i (/, /20) > XQ < X10. 
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Consider the following diagram 

(2.3.3) 
hfi'' ' ' • . 

+ Xi 

x, 
/ 2 0 

H 
•* 

/ 

w h 

*Xt(l,fM). 
r II 

J 20 
> X 0 

Let h: X(l, f) —» W close the diagram. Since (2.3.1) is a pull back, it 
follows from [6] that X is the pull back of 

/20 
X2 > X2(l,f2d) <r~ w. 

Consequently, the fact that/20' is an /-equivalence, and/20" is /-isolated 
imply that fh\ is an /-equivalence and W —> Xi is /'-isolated, hence 
(Corollary 1.3) h is a homotopy equivalence and the result follows. 

2.4 PROPOSITION. Suppose all the spaces and the maps in diagram (2.3.1) 
are H-spaces and H-maps. Then: 

(a) There exist H-structures on X(l,fi) and X2(/,/2) so that all the maps 
in diagram (2.3.2), except possibly for // ' , areH-maps. 

(b) If f20 is a rational equivalence and f 10 is an l-equivalence, then the H-
structures onX{l,f\) and X 2(1^2) can be chosen so thatfi is, also, an H map. 

Proof, (a) This follows from the fact that X(l,fi) is homotopy equiva­
lent to the pull back of 

X2 (/, /20) > ^ 0 < Xi 

(Proposition 2.3) and X2(/,/20) admits an if-structure so that / i 0 ' and 
/20" are if-maps (Corollary 1.7). 

(b) Consider diagram (2.3.3) with X(l, /1) = W. S ince / / ' o / / and 
fi(ltfuf20) ofi are if-maps and 

(fi/10)* e (0/20")*: [x x x, nx,) ®[xxx, i2X2(/,/20)] 
-> [X X X, 12Xo] 

is an epimorphism, it follows from [1, Proposition 10.3] that / / is an 
iJ-map. 

2.5 PROPOSITION. Given a push out diagram 

(2.5.1) 
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Iffi'. X —> Xiis a rational equivalence, then the two squares in the diagram 

X h' >X(l,h) fl" >Xx 

X2 
/ 2 0 +Xt(l,fM)J2-+X<l 

are push out squares. 

f f ' 
Proof. Let W be the push out of X2 *^— X - ^ - » X(l, h) and let 

H: W —> Xi(l,fio) close the following diagram 

Since (2.5.1) is a push out it follows from [6] that Xo is the push out of 

W< X(lJi)^ÙXi. 

Consequently, the fact t h a t / / is an /-equivalence a n d / / ' is an /'-equiva­
lence imply that X2 —> W is an /-equivalence and/20/^ is an /'-equivalence, 
hence h is a homotopy equivalence and the result follows. 

2.6 PROPOSITION. Let 

be a pull back square and let W be the pull back of 

X2 (/, /20) > Xo < Xi (/, /10). 

If h =fi(l,f2,fw),then 

W = X(l,ft)(l,h) = X ( / , / 1 0 / 0 . 

https://doi.org/10.4153/CJM-1983-013-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-013-9


/'-ISOLATED MAPS 205 

Further, if g = f2(l, fu / 2 0 ) , then W = X(l, / i ) (/, g) and all the squares in 
the diagram 

X- liL+xyjo fl" >x, 

X(l,.h)-
h' 

-+w-

x2 
ho 

V 

-*'X1(IJ1<)) 

/ j o " 

*X»(l,fto)- J20 w V >xQ 

are pull back squares. 

Proof. Since the lower right square is a pull back, h" and g" are V-
isolated and there exists h': X(l, f2) -» W so that ft"/*' ~ h and g"/*' 
~ fzo'f^'. Consequently the fact that the lower rectangle is a pull back 
(Proposition 2.3) implies [6] that the lower left square is a pull back. 
Hence V is an /-equivalence and 

W = X(l,f2)(l,h) =X( / , / 1 0 / i ) 

(Proposition 1.5). 
Let g' = f2'(l,fi, A): * ( / , / i ) -* ^ a n d let g = g"g'- By Proposition 2.3 

the right and left rectangles in the above diagram are pull backs. Conse­
quently the fact that the two lower squares are pull backs implies [6] 
that the two upper squares are pull backs. Therefore g' is an /-equivalence 
and W=X(l,f)(l,g). 

2.7 PROPOSITION. Given a commutative diagram 

(2.7.1) 

Y-

£-> 

F2-

X-
h, 

- • F i 

X ^ 

« 2 0 

glO 

-t*i 

hio 

•+X0 

+ F0 
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where: 
(a) X, Y are of finite type. 
(b) / , /o are rational equivalences. 
(c) Either X, Y are finite dimensional or X0l F0 have a finite number of 

homotopy groups. 
Then the middle vertical square in the following diagram is commutative: 

(2.7.2) 

Proof. Since / ' is an /-equivalence and f0" is an /'-equivalence, one 
obtains by chasing the diagram, that for every prime p, /ho(/, / i , fo) 
° h\{l,f,f\) is mod-/? homotopic to /*2o(/,/2,/o) o hî(l,f,fi) and the result 
follows from [4, 5.3]. 

2.8 PROPOSITION. With the hypothesis of 2.7, if either: 
gi: Y —> F2, gio: Fi —» F0 are V-isolated and h\: X —» Xi, &20: ̂ 2 —• ^0 

are 1-equivalenceSj or 
gi: F—> Fi, g2o: F2 —» F0 are V-isolated and hï. X —> ^2 , /ho: -X\ —* ^0 

are l-equivalences, then the middle vertical square is a pull back. 

Proof. The assumptions of the proposition imply that the middle 
vertical square is a commutative square, which satisfies the conditions of 
Proposition 2.1 and therefore it is a pull back square. 

2.9 PROPOSITION. If the base and cover in (2.7.1) are push outs and either 
the front and left faces or the left and back faces are pull backs, then the middle 
vertical square in (2.7.2) is a pull back. 

Proof. Suppose that the base and cover in (2.7.1) are push outs and 
that the left and front faces are pull backs, then the same is true for the 
frontcubein (2.7.2). Thus, by Walker's Theorem 1.10 ([7]), therightand 
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back faces of this front cube are pull backs; in particular, the middle 
vertical square is a pull back. 

Similarly, suppose that the base and cover in (2.7.1) are push outs and 
that the left and back faces are pull backs, then the same is true for the 
back cube in (2.7.2). Thus by Mather's Theorem 18 ([6]), the right and 
front faces of this back cube are pull backs; in particular, the middle 
vertical square is a pull back. 

The following two propositions deal with lifting problems: 

2.10 PROPOSITION. Suppose in the following diagram 

(a) X is the pull back of X\ • X0 < X2. 
(b) gg\ and f2o are rational equivalences. 
(c) fiogi ~ gogio. 
If all the spaces are CW-complexes of finite type, and either Xi and Yi are 

finite dimensional or X2 and X0 have a finite number of homotopy groups, 
then the existence of a lifting, go : Y0 —» X2, of g0 implies the existence of liftings 

go'': Y0(l, go) ->X(Z,/2o), gi: YX->X and 
2i": Y1(l,g1)->X(l,f2) 

°f go", gi and gi", respectively, so that the diagram commutes. 

Proof. Denotef = f2(l1fhf2o)1 g = gio(l, gu go)- SinceXisthepullbackof 

A 2 > A 0 < A 1 

and/2ogogio ~fiogu there exists a lifting gi of gi which satisfies /2gi ^ gogio. 
By Proposition 1.5 there exist liftings go" and gi" of go and gi", so that 
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the left and right trapezoids and all the triangles are commutative. Hence 
(b) and the fact that 

(fh")gi' ~ (2o"gki' and / 2 0 ' W ) ~/2o"(2o"g) 

imply [4, 5.3] t h a t / g / ' ~ g0"g and the diagram commutes. 

2.11 PROPOSITION. Given a commutative diagram 

X I F0 

T So 

X •£> Yo £- Y 
where: 

(a) X, Y and F0 are of'finite type. 
(b) f and g are rational equivalences. 
(c) Either X and F0 are finite dimensional or Y and YQ have a finite 

number of homotopy groups. 
If either g is a principal fibration or F, F0 are H-spaces and g is an 

H-map, then the existence of a lifting f: X —» F, of f implies the existence 
of an integer m divisible only by primes dividing 

CO 

I l expHn(x, ir»(fiber g)) 
7? = 0 

and of liftings f:X—*Y and f"\ X(l, f) —> Y (I, g) so that the following 
diagram commutes: 

Y(l, g) 
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Proof. By [9, 3.1] there exist an integer m divisible only by primes 
dividing 

oo 

n expiT(X, 7rn(fiberg)), 

and a lifting/: X —• F of / , so that Smf ~ j'Tm. Hence the considerations 
of the proof of Proposition 2.10 imply the result. 

3. Localizations. In this section we use the decomposition of a map 
into an /-equivalence and an /'-isolated map, and the structure of the 
genus to study spaces and maps by means of their localizations. 

3.1 LEMMA. Let X, Y and W be nilpotent CW-complexes. Suppose Y is 
quasifinite and Wis a connected H-space. Given a mapf: X —» Y satisfying: 
for every prime p,fp*: [Yp, Wp}—* [Xp, Wp] is onto, thenf* is onto. 

Proof. Let <f>n be the w-power map. For every map h: X —» W and for 
every prime p there exists a map gp: Yp —> Wp so that gpfp ~ hp. Since W 
is an if-space it follows from [4, 6.5] that there exists an integer n, 
(«, p) = 1, and a map g: Y —» W so that gp ~ <j>ngp

f ; as gvfp ~ <$>nhv for 
all p, it follows from [4, 5.3] that gf ~ <l>nh. 

Suppose n = p\l • . . . • pf1 where all the pi are primes. The same 
considerations imply the existence of integers nu (nif pi) = 1, and maps 
gt: Y —• W so that gtf ~ <l>nih. Consequently if one defines k: Y —» W by 

* = ^ a • ^ g / , • 

where 

i 

an + ]C aini = 1 
i=i 

one obtains that kf ^ h and/* is onto. 

3.2 PROPOSITION. Let X and Y satisfy the conditions of 3.1 and let / : 
X —•> Ffo a raa£. / / / ^ r ^/^r^ prime p, 2)/p: 2XP —» 2 Fp has a left homotopy 
inverse, then 2/: XX —> S F ftas a /e// homotopy inverse. 

Proof. The result follows from Lemma 3.1 and from the fact that 
/*: [F, W]-+ [X, W] is onto for every if-space W if and only if 2 / has 
a left homotopy inverse ([8], Corollary 1.1.4). The corollary follows from 
[5]. 

3.3 Remark. All spaces considered from now on, except in Proposition 
3.13, are of the homotopy type of simply connected CW-complexes of 
finite type, which are either finite dimensional or have a finite number of 
non-zero homotopy groups. 
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3.4 PROPOSITION. Let X, Y be H0-spaces and let I C P be a finite subset. 
Given localizations X —» X h Y —* Yt and a rational equivalence gt: X x —» F h 

/ftere exist a rational equivalence fiX—^Y and a homotopy equivalence 
e: Xi —^Xisothatfi ~ gte. 

gi 
Proof. Let X' be the pull back of Xx —> F* <- F. Since X' is mod 

/-equivalent to X and / is finite there exists an /-equivalence gf: X -* X' 
[10]. Consequently it follows from the diagram 

X JL> X' -JU F 

t h a t / = ggf and e = g/ are the desired maps. 

3.5 THEOREM. Let f: X —> Yi X F \ be a rational equivalence. Suppose 
there exist subsets of the primes l\ and l2 satisfying: 

I i U I 2 = P , h C\ h = 0, -Ï i,- « Z, X Wt and 

fu = gtX kf.ZiX Wi-^(Yl)li X (Y2)u (i = 1,2). 

77tew: 
(a) r/tere exist spaces X\ and X2 so that X tt X\ X X2. 
(b) r/^ere a w / a homotopy equivalence e: X —>XiXX2 and maps 

g: Xi —» Fi and &: X2 —•» F2, so / t o 

/ ~ feX^)e:X—i-^XiX-X'ï-^-l Fi X F2. 

Proqf. Let Z ' and Wl be the pull backs of 

> k 
Zi ^ Yui *~ Yx and Wt -4 F2i <- F2 (i = 1, 2), 

respectively, and \etff: X -+ Zl X Wl close the diagram 

/ 

I f . „i y bl T 
X - -•'i - Z ' X W** > Fi X F2 

Z i X W, g < X f t < ) ( K , ) , < X ( F , ) , < 

Obviously /< is an /requivalence and g* X k* is a. P — /* equivalence. 
Consequently if Xx X X2 is the pull back of 

Z1 X Wl g Xk> Yt X Y2<
g X k Z2 X W2 
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the map e: X —» X\ X X2 which closes the diagram 

X* 

ç2 y £2 
Z 2 X W2 g * * > F i x y 2 

is a homotopy equivalence [4, 5.3] and the result follows. 

In case X is an i70-space we obtain a stronger result: 

3.6. THEOREM. Let X be an H^space and let I Q P be a subset. Suppose 
there exist spaces Yu Z{ (i = 1, 2) satisfyingX x œ Y\ X Y2lXv « Zi X Z2 

(Fi)o œ (Zi)o, (F2)o ^ (Z2)o. 77^« there exist spaces U\ and U2 so that 
I ^ C / i X t/2. 

In order to prove this theorem and Propositions 3.9 and 3.10, we need 
the following definition and notations: 

3.7 Definition. Let X be an i70-space and let f:X—>X be a map. 
Suppose QHn<(X, Q) ?* 0 for i = 1, . . . , k and d = (di, . . . ,</*) € Z*. 
We say that / realizes d if for every i, 

det (QHni(f, Z)/torsion) = dt. 

3.8 Notations. Let / be an integer and let X be an i/0-space. Denote by 
Zt*(Zt = Z//Z) the units in Z„ by G(X) the genus of X, by K{X) the 
space K{QH*(X, Z)/torsion) of [10], by l(X) the number of integers n 
satisfying QHn(X, Q) ^ 0, by [X, X]t the set of homotopy classes of 
/-equivalences/: X-+X ([10]), and by ax: [X, X]t -> ( Z , * / ± l ) w the 
composition 

[X,X],-+ Aut (Qff*(X, Z)/torsion ® Z,) ^ > (Zt*/±1) {l(X) 

Proof of Theorem 3.6. Let <pi: F, -> (F,)o and ft: Zt -> (Z,)o (*' = 1, 2) 
be rationalizations and let W\ X W2 be the pull back of 

Fx X F2
 y i X y 2 > ( F x ) , X ( F 2 ) „ ^ ^ - Zx X Z2. 

Obviously Wx X Wt € G(X). 
Suppose QH**(W! X IT», (?) ^ 0 for 1 g * g /(Wx X Wt) and 

IJ(: Wi —* K(Wt) (i = 1, 2) is any map yielding an isomorphism on 
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QH*(Wi, Z)/torsion. Since the map SL(n, Z) -> SL(n, Zt) is an epi-
morphism it follows from [10, Propositions 2.5 and 2.6] that there exists 

d = (d d ) G 7 / ( ^ i x ^ 2 ) 

so that X is the pull back of 

Wl x W2
 7JlXrj2>K(W1) X K(W2) +^- K(Wi) X X ( ^ 2 ) , 

where/ is any map which realizes d. Obviously one can choose ft: K(Wt) 
-*K(Wi) (i = 1, 2), so that fx X / 2 realizes d. Hence X œ Ui X U2 

where Z7* is the pull back of 

3.9 PROPOSITION. Let X be an HQ-space and let I Q P be a subset. Suppose 
(p: X —> K(X) is a rational equivalence which induces an isomorphism on 
QH*(X, Z)/torsion. If H*(X, Z) is torsion free then there exists an epi-
morphism G(X) -> G(X(l, <p)). 

Proof. Suppose QHmi(X, Q) ^ 0 for i = 1, . . . , /(*). L e t / : X -> X 
realize d — (di, . . . , d^x))- Since H*(X, Z) is torsion free there exists 
/ ' : K(X) —» K(X) so t h a t / V ^ <£>/• Consequently (Proposition 1.5) there 
exists a unique m a p / " : X(/, <p) —> X(/, <p) which closes the diagram 

X- f -+X 

(3.9.1) X{ly<p)^+X(U<p) 

K(X)^—+K(X) 

Define a map g: [X, X]t-> [X(l, <p), X(l, <p)} by g(f) = f" if and only if 
/ " closes diagram (3.9.1). S ince /" is unique and it realizes d, g is well 
defined and its image is contained in [X(l, <p), X(l, (p)]t. 

Consider the following diagram: 

<xx -> (Z/7±i) i ( X )- + G(X). + 0 [ X , X ] t -

r 
[X(l,<p),X(l,<p)]t

 ax{h(p)> (Z ,*/=*=!)'<*•*> >G(X(llip)) • ( ) 
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Since the diagram is commutative and its rows are exact (main theorem 
in [10]) there exists h: G(X) —•» G(X(l, <p)) and h is an epimorphism. 

3.10 PROPOSITION. Let X be an H0-space and let <p: X —> K(X) be a 
rational equivalence. Then Y £ G(X) if and only if for every subset I C P 
there exist spaces Y\ Ç G(X(l, <p)), Y2 6 G(X(l', <p)) so that Y is the pull 
back of 

Y1^>K(X)£-Y2, 

where f is an V-equivalence and g is an I-equivalence. 

Proof. Suppose Y 6 G{X). By Proposition 4.6.4 in [8] there exist an 
integer /, a /-equivalence /c: K(X) —>K(X) and maps/ : Y —>X, 77: Y 
—> K(X) so that the square 

Y ^ X 

K(X)hk(X) 
is a pull back and ç is a /'-equivalence. By [8, Lemma 4.2.1] / and 77 are, 
also, a /-equivalence and a /'-equivalence, respectively. Hence / ( / , 77, <p) 
and/ ( / ' , 77, <p) are /-equivalences (Proposition 2.3) and therefore F(/, 77) 
Ç G(X(l, <p)) and F(/', 77) £ G(X(l', <p)). Consequently the fact that F i s 
the pull back of F(/', 77) -> K(X) <- F(/, 77) (Proposition 2.2) implies 
that Y1 — F(/, 77) and F2 = F(/', 77) are the desired spaces. 

The converse is obvious. 

3.11 Definition. Define the genus G(J) of/as follows: Consider first of all 
(homotopy classes of) maps/ ' : X' —> Y' such that for every prime p there 
exist homotopy equivalences hp: Xp

f —• Xv and kp: Yv' —> Yp so that 
fphp ^ &?//. Call two such (homotopy classes of) maps / ' : X' —> Y', 
f": X" —> F " equivalent if there exist homotopy equivalences h\ X' —* X" 
and fc: F ' —> F " so that/"/* ~ ife/' and let G(/) be the set of equivalence 
classes. 

3.12 PROPOSITION. Let X, Y be H-spaces with primitively generated 
rational cohomology and letf: X —> F be an H-rational equivalence. For every 
I ^ P there exist an epimorphism G (J) —> G(f"). 

Proof. By [3, Lemma 4.2] there exists an integer / so that each map 

f k . 
j-.X—* Fin G (J) is the pull back of X —» F<— F, where k is a /-equivalence. 

/ k 
Let / € G(/) (f: X -> F) be the pull back of X -* Y^ Y and let 
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*": 1(1, f) -» X(l,f) close the diagram 
k' 

x- •+X 

!' r 

mf)-o-+xv,f) 
!" !" 

-+Y 

By Proposition 2.3 the lower square is a pull back, hence / " € G(f") 
[3, Lemma 4.2]. Define a map T,: G(f) -* G(J") by V(J) = J". The defini­
tion of the multiplications in G (J) and G (J") implies that i) is a homo-
morphism. To show that r) is an epimorphism, suppose g" G G(f") is the 

_ k f" 
pull back of Y —» F <— X(/, / ) , where £ is a ^-equivalence. 

• * a / ) 

Let g':X-*X be_the pull back of X - > X ( / , / ) i - X. Obviously [3, 
Lemma 4.2] g"g': ^ ~~* Y belongs to G(J) and 77 is an epimorphism. 

The last two propositions apply the decomposition of a rationalization 
into an /-equivalence and an /'-equivalence to deal with the question: 
When is a map between i7-spaces an if-map? 

3.13 THEOREM. Let X, /x and Y, v be simply connected H-spaces and let 
f: X —-> Y be a map. Given subsets of the primes /i, /2, h ^J h = P, and 
rationalizations <pf: X —> Xo, ^ : Y —> Y0 (i' = 1, 2). If fu (i = 1, 2) is 
the localization off at It for which the diagram 

Ï 

commutes, then f is an H-map if and only if f%x andfi2 are H-maps. 
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Proof. Let no and vo be the multiplications on X0 and F0 induced by <pi 
and ^i, respectively, and let e:Xo —> Xo, 77: F0 —» F0 be homotopy 
equivalences satisfying e<pi ~ <P2, v^i ~ ^2. Then ejuo^-1 X e"1) and 
WoC??-1 X T;-1) (e_1 and rj~l are the homotopy inverses of e and rj) are 
multiplications on X0 and F0 induced by (pi and ^2, respectively and e 
and 17 are #-maps. 

Consider the following diagram: 

Since all spaces and maps in the diagram, except possibly for / , are 
//-spaces and H-maps and F is the pull back of 

Yl,^Yo^~Yo^-YhJ 

it follows from [1, 10.3] t h a t / is an H-map. 
The converse is obvious. 

3.14 PROPOSITION. Let X, /z, F, v, Xu ni} Yiy vt (i = 1, 2) be H-spaces 
and let f: X —» Y be a map. Suppose H*(X, Q), H*(Y, Q) are primitively 
generated and H*(fy Q) is either a monomorphism, an epimorphism or zero. 
Suppose, also, that there exist subsets of the primes l\, l2> l\\J h = P, and 
Ii-equivalences gc Xt —» X, ht\ Y —* Yu so that the map hifgt: Xi} nt —> Yu 

Pi (i = 1, 2) isanH-map. If either 
(a) H*(Xi, Q) and H*(Yiy Q) (i = 1, 2) are primitively generated, or 
(b) (g*)o a^d (^z)o (i = 1, 2) are H-maps, then there exist PL-structures 

on X and Y so thatf is an H-map. 

Proof, (a) Let no and i>0 be the standard multiplications on 

X o = I I K(Q,nt) and F0 = U K(Q,mi), 
finite finite 

respectively. Since H*(Xt, Q) and H*(YU Q) (i = 1, 2) are primitively 
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generated, one can choose //-rational equivalences, <pt: Xu iii—^Xo, /x0 

and ft: Yu vt -> F0, n (i = 1, 2), so that PH*(h10fogio, (?) and PH*-
(h2ofog2o, Q) are represented by diagonal matrices. Moreover, since hto and 
gio (i = 1, 2) are homotopy equivalences, one can choose (pt and ^ so that 
the matrices of Pif*(/ho/ogio, Q) and Pif* (/&2o/og2o, (?) have nonzero 
entries in the same rows. Consequently, there exists an i7-homotopy 
equivalence 

so that 

e: F 0 , VO —•> F 0 , *>o 

t(hiofogio) ~ h2ofog2Q. 

Let //^x and ^^- (i = 1, 2) be the multiplication on (Xt) ti and ( F f ) ; i . 
Identify (X t) u and ( Yt) u with X u and Fjt-, by means of the / ̂ -equivalences 
gt: Xi —> X and ftf: F —> F*, and let F', / and X', \x be the pull backs of 

Yh, vUl > F o , ^o < F 0 , vo < Yt2J V2i, 
and 

A *,, Mizi • A O , Mo < A *,, M2z2> 

respectively. Suppose / : Xf —> Yf closes the diagram 

X', nf >Xh, JJLUI 

>Yhl v\h 

V <P2 
A i2, ll2l2 

Since all spaces and maps in the diagram, except possibly for / ' , are 
if-spaces and if-maps, it follows from [1, 10.3] that / ' is an H-map. 
Therefore the fact that / ' G G(f) and the structure of the genus of / 
[3, Proposition 3.16] imply t ha t / i s an //-map. 
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(b) Since (g*)o and (ht)o (i = 1, 2) are H -equivalences, the fact that 
H*(X} Q) and H*(Y, Q) (i = 1, 2) are primitively generated implies 
thatH*(Xit Q) and H*(YU Q) (i = 1, 2) are, also, primitively generated 
and therefore (b) follows from (a). 
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