
BULL. AUSTRAL. MATH. SOC. 08A30, 08B10,

VOL. 32 (1985), 45-53. 08B30.

INJECTIVITY AND RELATED CONCEPTS
IN MODULAR VARIETIES

II, THE CONGRUENCE EXTENSION PROPERTY

EMIL W. KISS

Varieties with enough injectives satisfy the congruence extension

property (CEP). We investigate the CEP in modular varieties by

using the techniques developed in the first part of the present

paper. As corollaries, we obtain the results of B. Davey and J.

Kollar for the congruence distributive case as well as the

description of all varieties of groups and rings with CEP, given

by B. Biro, E.W. Kiss and P.P. Palfy.

1. Preliminaries

Since a complete background and bibliography of the concepts related

to injectivity is found in Kiss, Marki , Prb'hle and Tholen [6], here we give

only those results, which we need explicitly. The reader is referred to

the first part (Kiss [5]) for terminology.

DEFINITION 1.1. An algebra A has CEP if all the congruences of its

subalgebras are restrictions of congruences of A . A class of algebras

has CEP if so does each of its members.

PROPOSITION 1.2. The class of CEP algebras of a variety V is
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closed under subalgebras, direct limits (Biro, Kiss and Palfy ill),

homomorphic images if V is CP (Kiss [4]), and finite direct products if

V is CD. •

We summarise a few basic, elementary methods, some of which have been

used in Davey [2]. For algebras B S A and 3 € Con B , we denote by 3

the smallest congruence of A collapsing the classes of 3 , that is,

CgA(3) .

LEMMA 1.3. Let B £ A be algebras, 3 € Con B .

(1) 3 can be extended to A if and only if 3 = 3 /B .

(2) if B < C s A have CEP, then 3A = (3C)A and 3A/C = 3° .

(3) If there is an a € Con A such that a/B £ 3 and B/a can

£>e extended to A/a _from its subalgebra B/a ., then 3 can be extended to

A .

(U) A Tias CEP i/ and onli/ £/ for eae« B < A , all the congruences

3 of B , with B/3 Si, can be extended to A .

(5) A has CEP i/ and only if for each a, b, a, d € A ,

(e, d) € Cg.(a, b) implies that (e, d) € Cg, , cf>^a' ̂  ^DaV £3]).

Proof. (l), (2), (3) are easy, (U) follows from the Birkhoff theorem,

since the restriction of the meet of some congruences is the meet of their

restrictions. D

Finally we present two theorems which we generalize, and a problem

which we solve.

THEOREM 1.4 (Davey [2]). Let V be a CD variety. If Si{V) is

axiomatic, then V has CEP if and only if S\(V) has CEP.

THEOREM 1.5 (Kol lar [7]). Let V be a CD variety. If F (It) is

finite, then V has CEP if and only if Si( V) has CEP.

PROBLEM 1.6 (Herrmann [9]). is every CP + CEP variety

disconnected?

From now on, we work in a fixed congruence modular variety.
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2. General results

First of all, we try to understand the relationship between CEP and

finite direct products. On this basis, we prove theorems that, having

information on particular subclasses, decide whether a variety satisfies

CEP.

PROPOSITION 2.1. If an algebra A satisfies CEP + C2 + S , then so

do its subalgebras.

Proof. Let B < A , a, B € Con B . Then [a, B] = [a , 6A]/B by

CEP and 5 , so C2 holds in B . Therefore S also holds in B by [5],

Proposition 3.*».

THEOREM 2.2. If A x A has CEP, then A has C2 + 5 + CEP .

Consequently, every CEP variety has C2 + S . Conversely, the direct

product of finitely many algebras with C2 + 5 + CEP also has CEP.

Proof. If A x A has CEP, then its diagonal, which is isomorphic to

A , has CEP also, as a subalgebra. We show that A satisfies C2 . Let

a, B € Con A . As (Aa ) = A holds by Lemma 1.3 (2), Lemma 1.3 (l)

gives Aa „ = (A g)/a , hence a[l, B] = [a, B] , that is, A has C2 .

In order to show S in A , we use the notation «A Q to emphasise

i A
that we work in the algebra A . Let B 5 A and 3 = (in) . Applying

(2) of Lemma 1.3 twice, we obtain that («A Q)/BxB = OA , hence
J-A'P B 1B'1B

[lB, lg] = [lA, B]/B . By C2 we have

[lA, B]/B = ([lft, 1A]/B)(B/B) = [lA, 1A]/B ,

since B/B = lg . Thus A satisfies S .

Suppose now that A and A have C2 + 5 + CEP , let B S A x b ,

and B € Con B . We want to extend B to A x A2 . By (U) of Lemma 1.3

we may assume that B/B is Si. As B has C2 ([5] Prop. 3.1,3.4 and

Proposition 2.l), B/B is either affine or prime ([5], Proposition U.l).

We use (3) of Lemma 1.3. If B/a is affine, we may choose
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a = [l«, 1«] , since affine algebras have CEP, and A * A? has S by [5]

Proposition 3.M-. If B/B is prime, then [5], Theorem 1.8 shows that the

kernel of a projection of A. x A. is below $ . Choosing it to be a ,

Lemma 1.3 (3) works again. •

Now we generalize Davey's result. Recall that P (K) = {A*A : A € K} .

THEOREM 2.3. A variety V has CEP if and only if

(i) P2Si(l0 has CEP and

(ii) PuSi(K) has CEP.

Proof. First we show that V has C2 + S . For C2 , this is clear

(by Theorem 2.2, [5], Propositions U.I and 1+.2). To establish S it

suffices to show that the prime algebras of V satisfy S by [5],

Corollary k.6. Applying [5], Theorem 1.8 (the Generalized Jonsson's

Theorem) with a = 0 we obtain that the prime algebras are always in

SPuSi(F) , thus they satisfy CEP. So let B < A be CEP algebras of V ,

and suppose that there is a pair (a, b) € [l«, 1«] /B - |jl_, In] . Let a

be an extension of V-a> 1R] t° A , and let 6 be maximal among the

congruences of A containing a but not containing {a, b) . Then A/a

is a Si factor of A not satisfying 5 , a contradiction. Thus V

satisfies S .

Now we copy the proof of the second statement of Theorem 2.2. Let

B £ A € V , and B € Con B such that B/6 is Si. If this factor is

affine, then a = [l«, 1.] works in Lemma 1.3 (3), as A has property

S . Otherwise B/f5 is prime, in this case consider a subdirect

representation of A with Si algebras, and choose a to be an ultra-

filtral congruence below 6 (C5], Theorem 1.8). This works in Lemma 1.3

(3) by condition (ii) . D

PROPOSITION 2.4. Let K be a class of algebras, V = V(K) . if

P2HPU(K) has CEP, and fy{2) is finite or C2 , then V has CEP. If V

is CPj then the operator H can be omitted from the first condition.

Proof. V has C2 + S by [5], Proposition 5.3. Thus each Si member
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S is either affine or prime. In the second case, S is in HSP (K) .

Since this class is closed under H, S and Pu , Theorem 2.3 applies. C

Starting in the direction of finiteness conditions, we generalize

Kollar's result (Theorem 1.5).

PROPOSITION 2.5. If Fy(U) is finite, then the variety V has CEP

if and only if P2Si(P) has CEP.

Proof. We apply Lemma 1.3 (5) (Day's observation). Let

a,b,e,dZ.ht.V, and decompose A into a subdirect product of Si

algebras A 5 Il{A. : i € l} . Then B = (a, b, c, <2> is finite by our

assumption. Hence there is a finite X c J such that the kernel

a = Cg»(X) of the projection of A into A' = Il{A. : i € x] separates

the elements of B . But A' has CEP by the assumptions and Theorem 2.2.

So Lemma 1.3 (3) shows, with a above, that every congruence of B can be

extended to A . •

PROPOSITION 2.6. Let K be a finite set of finite algebras. Then

V(K) has CEP if and only if P2H(K) has CEP. If V(K) is CP, then H

can be omitted.

Proof. Though this is a formal consequence of Proposition 2.U, the

reader will easily find an elementary argument using [5], Proposition 5-**,

Theorem 2.2 and V = DPsfSi(F) . •

PROPOSITION 2.7. If V and V~ are two CEP subvarieties of a

modular variety, then V v V has CEP.

This statement follows immediately from [5], Proposition 6.1 and

Theorem 2.2. Finally we solve Herrmann's problem (Problem 1.6).

PROPOSITION 2.8. There exists a finitely generated CP + CEP

variety, which is not disconnected.

Proof. Let A be the symmetric group on five letters, with its

elements as nullary operations. Then A has no subalgebras, and its only

nontrivial congruence (given by the alternating group) is perfect, and

equals [l, l] . Thus A has C2 + S + CEP . So V(A) has CEP by
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Proposition 2.6 and Theorem 2.2. However, it contains no neutral algebra

by the Generalized Jonsson's Theorem. •

3. Applications

We give the description of all varieties of groups and associative

rings over commutative rings K with identity (named K-rings) that have

CEP. Though most of these results have been obtained in Biro, Kiss and

Palfy [I], our proofs are much simpler.

An easy computation shows that the commutator of two normal subgroups

M and N of a group G is [M, N] = (n~ m ran : n € N, m £ M) , and the

commutator of the ideals I, J of a K-ring R is the K-ideal generated

by IJ + JI , even if R is non-associative. The affine K-rings are the

zerorings.

PROPOSITION 3.1. A group (Lie-algebra) with property S is

commutative. The varieties of groups (Lie-algebras) with CEP are exactly

the commutative ones.

Proof. Let H be an Abelian subgroup of the commutator subgroup G'

of a group G . Then S yields H' = H n G' , that is, H has one

element. The proof is the same for Lie-algebras, since their subalgebras

generated by one element are also commutative. D

PROPOSITION 3.2. K-rings with C2 + S are disconnected.

Proof. Suppose that R has C2 + S , and let T 5 R . S gives that

T2 = R2 n T and T3 = R3 n T , so as C2 yields R3 = R2 , we have

•3 p

T = T . Let A be the two-sided annihilator of R . Since nilpotent

ideals are clearly zerorings, factorising by a maximal one, we have to show

that A + 0 provided R t R .

2 "3 2
Let u f R - R , T = <u> . Then T = T yields a polynomial p

p o p p

such that u = u p(u) . Let s = u p(u) - u , then s # 0 = s . We show
2 2

s € A . Since t € R and t = 0 imply that t = 0 (by S ), for any

2 2
r € R , {srs) = 0 gives srs = 0 , so (sr) . = 0 , hence sr = 0 , and
similarly rs = 0 . •
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COROLLARY 3.3. A CEP variety of K-rings is disconnected.

This corollary follows from [5], Theorem 7.2. To get a description of

these varieties, we have to recall the characterization of congruence

distributive K-algebra varieties. This has been done by McKenzie [8].

Actually, his paper contains the description of CZ varieties of K-rings

as well, the previous argument has been included for its relative

simplicity.

THEOREM 3.4 (McKenzie [S]). A variety V of K-rings (with or

without identity) is neutral if and only if it is generated by division

K-rings of bounded finite cardinality if and only if the equation x = x

holds in V for some n > 1 . Such varieties are commutative. V has C2

if and only if it is disconnected.

If we speak about varieties of K-rings with identity, we assume that

the subalgebras contain the identity element. Let us summarize now the

results on K-rings.

THEOREM 3.5. The following are equivalent for a variety V of

K-rings without identity:

(1) V has CEP;

(2) V has C2 + S ;

(3) V has C2 ;

(U) V is disconnected (see the description in Theorem 3.^;

(5) V satisfies the equation (xy) = xy for some n > 1 .

The following are equivalent for a variety V of K-rings with identity:

(I1) V has CEP;

(21) V is neutral.

Proof. (5) =* CO. It turns out from the proof of Theorem 3.3 of [/]

that if a variety V satisfies (5), then the Si elements of the Z-reduct

of V are either zero-rings or fields of size at most n . So (k) holds

by [5], Theorem 7.2.

(h) =» (l). By Proposition 2.7 we may assume that V is neutral. The

Si algebras of V are just the division-K-rings by Theorem 3.U and

Jonsson's Theorem, so Theorem l.U applies. The remaining statements of the
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theorem are clear from the previous assertions. D

We mention that the description of all semigroup varieties with CEP

is found in Biro, Kiss and Palfy [/].

PROBLEM 3.6. Can one apply the methods of the paper to describe all

varieties of quasigroups and alternative rings having the CEP?
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