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Abstract

We obtain a complete structural characterization of Cohn–Leavitt algebras over no-exit objects as graded
involutive algebras. Corollaries of this result include graph-theoretic conditions characterizing when a
Leavitt path algebra is a directed union of (graded) matricial algebras over the underlying field and over
the algebra of Laurent polynomials and when the monoid of isomorphism classes of finitely generated
projective modules is atomic and cancelative. We introduce the nonunital generalizations of graded
analogs of noetherian and artinian rings, graded locally noetherian and graded locally artinian rings,
and characterize graded locally noetherian and graded locally artinian Leavitt path algebras without any
restriction on the cardinality of the graph. As a consequence, we relax the assumptions of the Abrams–
Aranda–Perera–Siles characterization of locally noetherian and locally artinian Leavitt path algebras.

2010 Mathematics subject classification: primary 16S10; secondary 16W50, 16W10, 16D25, 16D70.

Keywords and phrases: Leavitt path algebra, graded ring, no-exit graph, local units, graded noetherian,
graded artinian.

1. Introduction

Leavitt path algebras of directed graphs are the algebraic counterparts of graph C∗-
algebras and generalizations of Leavitt algebras. Since the introduction of Leavitt path
algebras in the mid-2000s, many results, generalizations, and applications to other
areas of mathematics have been obtained and further directions of research developed.
In the first several years after their introduction, Leavitt path algebras were considered
primarily for countable graphs and, in many cases, just for row-finite graphs, i.e. for
graphs with vertices that emit only finitely many edges. Subsequently, some results,
previously shown for countable and row-finite graphs, were shown to hold for arbitrary
graphs. In this paper, we continue this trend.

If K is a field, and E a row-finite and countable graph in which no cycle has
an exit (no-exit graph) and in which infinite paths end in sinks or cycles, then the
Leavitt path algebra LK(E) is isomorphic to a direct sum of locally matricial algebras
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of the form Mκ(K) and Mµ(K[x, x−1]) where κ and µ are countable cardinals by [1,
Theorem 3.7]. More recently, in [14], the authors show that if E is as above but
not necessarily countable, then LK(E), naturally graded by the group of integers Z,
is graded isomorphic to a direct sum of graded locally matricial algebras of the form
Mκ(K) andMµ(K[xn, x−n]) where κ and µ are cardinals and n positive integers. Finally,
in [6], the Leavitt path algebras over arbitrary no-exit graphs have been characterized
as directed unions of direct sums of (nongraded) matricial algebras over K and
K[x, x−1]. We provide a complete characterization of Leavitt path algebras of no-exit
graphs as graded and involutive algebras without any restriction on the cardinality of
the graph or the number of edges which vertices emit (Proposition 3.3). Therefore, our
result is an involutive and graded version of [6, Theorem 3.2, equivalences (i) and (ii)]
and a generalization of [14, Theorem 6.7, equivalences (2) and (3)].

Moreover, we show that the no-exit graphs are the only graphs with the Leavitt path
algebras (graded) ∗-isomorphic to directed unions of algebras of the form Ai ⊕ Bi for
some directed set I, (graded) matricial ∗-algebras Ai over K, and (graded) matricial
∗-algebras Bi over K[xni , x−ni ] for positive integers ni and i ∈ I (Corollary 3.4). The
Leavitt path algebras of acyclic graphs are the only Leavitt path algebras which are
(graded) ∗-isomorphic to a directed union of (graded) matricial ∗-algebras over K
(Corollary 3.5). In addition, the Leavitt path algebras of row-finite, no-exit graphs
in which infinite paths end in sinks or cycles are the only Leavitt path algebras which
are (graded) ∗-isomorphic to a direct sum of the (graded) matrix ∗-algebras of the form
Mκ(K) andMµ(K[xn, x−n]) where κ and µ are cardinals and n positive integers, and are
the only Leavitt path algebras whose monoid of the isomorphism classes of finitely
generated projective modules is atomic and cancelative (Corollaries 3.4 and 3.9). We
also show that, surprisingly, not every graded matrix ∗-algebra is graded isomorphic
to a Leavitt path algebra (Proposition 3.7).

We formulate our results for Cohn–Leavitt algebras (of nonseparated graphs)
considered in [4]. Although this class of algebras is no larger than the class of Leavitt
path algebras, using Cohn–Leavitt algebras has one important advantage over using
Leavitt path algebras alone – a Cohn–Leavitt algebra can be represented as a directed
union of the subalgebras over the finite, complete subgraphs. We make use of this
fact throughout Section 3 and present examples which further illustrate the benefits of
using Cohn–Leavitt algebras over using Leavitt path algebras alone.

A prominent direction of research on Leavitt path algebras is the characterization
of the ring-theoretic properties of a Leavitt path algebra LK(E) in terms of the graph-
theoretic properties of the graph E, i.e. results of the form

LK(E) has ring-theoretic property (P) if and only if
E has graph-theoretic property (P′).

While relevant in its own right, this line of research has also become a way to create
rings with various predetermined properties by selecting suitable graphs. We focus
on properties of being noetherian and artinian and their graded generalizations. It is
known that LK(E) is noetherian if and only if E is a finite, no-exit graph and LK(E) is
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artinian if and only if E is a finite, acyclic graph. While it is known that LK(E) is neither
noetherian nor artinian unless E is finite, it is still of interest to characterize when
LK(E) is ‘locally’ noetherian and artinian. With these generalizations appropriately
defined, locally noetherian and locally artinian Leavitt path algebras of countable, row-
finite graphs have been characterized in [1, Theorems 2.4 and 3.7].

If the graded structure of the algebra is taken into account, the characterization
results have the form

LK(E) has graded ring-theoretic property (P) if and only if
E has graph-theoretic property (P′).

Recently, many ring-theoretic properties have been adapted to graded rings, for
example, graded von Neumann regular in [12], graded directly finite in [15] and graded
Baer in [16]. We introduce the graded versions of the nonunital generalizations of
noetherian and artinian rings, graded locally noetherian and graded locally artinian
rings. In Theorems 4.4 and 5.4 we characterize graded locally noetherian and graded
locally artinian Leavitt path algebras. We also show that the assumptions that the
underlying graph is countable and row-finite can be dropped from the characterization
of locally noetherian and artinian Leavitt path algebras [1, Theorems 2.4 and 3.7]. Our
results imply that the property of being locally noetherian is invariant for the graded
structure of Leavitt path algebras, while the property of being locally artinian is not,
i.e. the following holds for a Leavitt path algebra LK(E).

LK(E) is graded locally noetherian if and only if
LK(E) is locally noetherian while
LK(E) can be graded locally artinian without being locally artinian.

The paper is organized as follows. Section 2 contains some preliminaries. Section 3
contains Proposition 3.3 with the structural characterization of Cohn–Leavitt algebras
of no-exit objects as graded and involutive algebras and its corollaries, Corollaries 3.4,
3.5, 3.6, and 3.9, as well as a negative answer to realization question (Proposition
3.7). In Sections 4 and 5 we introduce the graded versions of locally noetherian and
locally artinian rings, prove some of their properties, and characterize Leavitt path
algebras which are graded locally noetherian and graded locally artinian as well as
locally noetherian and locally artinian without any restriction on the cardinality of the
graph (Theorems 4.4 and 5.4).

2. Preliminaries

In this section, we recall some concepts and prove some preliminary results.

2.1. Graded rings. If Γ is an abelian group, a ring R is a Γ-graded ring if R =⊕
γ∈Γ Rγ such that each Rγ is an additive subgroup of R and RγRδ ⊆ Rγ+δ for all

γ, δ ∈ Γ. If it is clear from the context what the group Γ is, such ring R is said to
be a graded ring. The elements of

⋃
γ∈Γ Rγ are the homogeneous elements of R. If R is
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an algebra over a field K, then R is a graded algebra if R is a graded ring and Rγ is a
K-vector subspace for any γ ∈ Γ.

A Γ-graded ring R is trivially graded if R0 = R and Rγ = 0 for 0 , γ ∈ Γ. Note that
any ring can be trivially graded by any abelian group.

For a Γ-graded ring R and (γ1, . . . , γn) in Γn, Mn(R)(γ1, . . . , γn) denotes the ring of
matrices Mn(R) and the Γ-grading such that the δ-component consists of the matrices
(ri j) ∈ Mn(R) such that ri j ∈ Rδ+γ j−γi for i, j = 1, . . . , n (more details in [13, Section
1.3]).

A graded left R-module is a left R-module M with a direct sum decomposition
M =

⊕
γ∈Γ Mγ where Mγ is an additive subgroup of M such that RγMδ ⊆ Mγ+δ for all

γ, δ ∈ Γ. In this case, for δ ∈ Γ, the δ-shifted graded left R-module M(δ) is defined
as M(δ) =

⊕
γ∈Γ M(δ)γ, where M(δ)γ = Mδ+γ. A left R-module homomorphism f of

graded left R-modules M and N is a graded homomorphism if f (Mγ) ⊆ Nγ for any
γ ∈ Γ.

A graded left ideal of R is a left ideal I such that I =
⊕

γ∈Γ I ∩ Rγ. A left ideal I of
R is a graded left ideal if and only if I is generated by homogeneous elements. Graded
right modules and graded right ideals are defined similarly. A graded ideal is a graded
left and a graded right ideal.

2.2. Graded rings with involution. A ring R with an involution ∗ (an anti-
automorphism of order two) is said to be an involutive ring or a ∗-ring. If a ∗-ring
R is also a K-algebra for some commutative, involutive ring K, then R is a ∗-algebra
if (kr)∗ = k∗r∗ for k ∈ K and r ∈ R.

In [15], a Γ-graded ring R with involution is said to be a graded ∗-ring if R∗γ ⊆ R−γ
for every γ ∈ Γ. A graded ring homomorphism f of graded ∗-rings R and S is a
graded ∗-homomorphism if f (r∗) = f (r)∗ for every r ∈ R. If R is a graded ∗-ring, the
∗-transpose (ri j)∗ = (r∗ji), for (ri j) ∈Mn(R)(γ1, . . . , γn), gives the structure of a graded
∗-ring toMn(R)(γ1, . . . , γn). A graded matricial ∗-algebra over R is a finite direct sum
of graded matrix algebras of the formMn(R)(γ) for γ ∈ Γn where the involution is the
∗-transpose in each coordinate.

Let κ be a cardinal and R a ring. We letMκ(R) denote the algebra of matrices over R,
having rows and columns indexed by κ and with only finitely many nonzero entries. If
Γ is an abelian group, R a Γ-graded ∗-ring and γ : κ→ Γ any function, we letMκ(R)(γ)
denote the Γ-graded ringMκ(R) with the δ-component consisting of the matrices (ri j),
i, j ∈ κ, such that ri j ∈ Rδ+γ( j)−γ(i). The graded ringMκ(R)(γ) is a graded ∗-ring with the
∗-transpose involution.

2.3. Leavitt path and Cohn–Leavitt algebras. Let E = (E0,E1, s, r) be a (directed)
graph where E0 is the set of vertices, E1 the set of edges, and sE , rE : E1 → E0 are the
source and the range maps. If it is clear from the context, we write sE and rE simply
as s and r.

A vertex v of a graph E is said to be regular if s−1(v) is nonempty and finite. A
vertex v is a sink if s−1(v) is empty and a bifurcation if s−1(v) has at least two elements.
A graph E is row-finite if sinks are the only vertices which are not regular, finite if
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E is row-finite and E0 is finite (in which case E1 is necessarily finite as well), and
countable if both E0 and E1 are countable.

A path p of E is a finite sequence of edges p = e1 . . . en such that r(ei) = s(ei+1)
for i = 1, . . . , n − 1. Such path p has length |p| = n. The maps s and r extend to
paths by s(p) = s(e1) and r(p) = r(en). A vertex v is a trivial path of length zero with
s(v) = r(v) = v. A path p = e1 . . . en is closed if s(p) = r(p). If p = e1 . . . en is a closed
path and s(ei) , s(e j) for all i , j, then p is a cycle. A cycle of length one is a loop. A
graph E is no-exit if no vertex of any cycle is a bifurcation.

An infinite path of a graph E is a sequence of edges e1e2 . . . such that r(ei) = s(ei+1)
for i = 1, 2, . . . .An infinite path is an infinite sink if none of its vertices are bifurcations
or in a cycle. An infinite path ends in a sink if there is a positive integer n such that
the subpath enen+1 . . . is an infinite sink. An infinite path ends in a cycle if there is a
positive integer n such that the subpath enen+1 . . . is equal to the path cc . . . for some
cycle c.

Extend a graph E by the new edges {e∗ | e ∈ E1} such that s(e∗) = r(e) and r(e∗) =

s(e) for all edges e. Extend the map ∗ to paths by defining v∗ = v for vertices v
and (p)∗ = e∗n . . . e

∗
1 for paths p = e1 . . . en, ei ∈ E1, i = 1, . . . , n, and extend s and r by

s(p∗) = r(p) and r(p∗) = s(p).
For a graph E and a field K, the Leavitt path algebra LK(E) of E over K is the free

K-algebra generated by the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} such that for all vertices v,w
and edges e, f :

(V) vw = 0 if v , w and vv = v;
(E1) s(e)e = er(e) = e;
(E2) r(e)e∗ = e∗s(e) = e∗;

(CK1) e∗ f = 0 if e , f and e∗e = r(e);
(CK2) v =

∑
e∈s−1(v) ee∗ for each regular vertex v.

The Cohn path algebra CK(E) of E over K is the free K-algebra generated by
E0 ∪ E1 ∪ {e∗ | e ∈ E1} such that the axioms (V), (E1), (E2), and (CK1) hold for all
vertices v,w and edges e, f .

The Cohn–Leavitt algebras are obtained from Cohn path algebras by requiring the
axiom (CK2) to hold just for a portion of regular vertices, not necessarily all of them.
Thus, the Cohn–Leavitt algebras of E over K can be considered to be ‘CK(E), LK(E)
and everything in between’. More precisely, if S is a subset of regular vertices, the
Cohn–Leavitt algebra CLK(E, S ) of E and S over K is the free K-algebra generated
by the sets E0 ∪ E1 ∪ {e∗ | e ∈ E1} subject to relations (V), (E1), (E2), (CK1) for all
vertices v,w and edges e, f and

(SCK2) v =
∑

e∈s−1(v) ee∗, for every vertex v ∈ S .

The Cohn–Leavitt algebra CLK(E, ∅) is a Cohn path algebra and we write
CLK(E,∅) as CK(E). The algebra CLK(E, R(E)) is a Leavitt path algebra and we
write CLK(E,R(E)) as LK(E).
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By the axioms (V), (E1), (E2), (CK1), every element of CLK(E, S ) can be
represented as a sum of the form

∑n
i=1 ai piq∗i for some n, paths pi and qi, and elements

ai ∈ K, for i = 1, . . . , n. By the same axioms, CLK(E, S ) is a unital ring if and only if
E0 is finite (in this case the identity is the sum of elements of E0). If E0 is not finite,
the finite sums of distinct vertices are local units of CLK(E).

If K is a field with involution ∗ (and there is always at least one such involution, the
identity), CLK(E, S ) becomes a ∗-algebra by (

∑n
i=1 ai piq∗i )∗ =

∑n
i=1 a∗i qi p∗i for ai ∈ K

and paths pi, qi, i = 1, . . . , n. The algebra CLK(E, S ) is also naturally graded by Z so
that the n-component is

CLK(E, S )n =

{∑
i

ai piq∗i | pi, qi are paths with |pi| − |qi| = n, ai ∈ K
}
.

Since CLK(E, S )∗n = CLK(E, S )−n for every n ∈ Z, CLK(E, S ) is a graded ∗-algebra.
The field K is assumed to be trivially graded by Z. We keep this assumption throughout
the paper.

In [4], Ara and Goodearl introduced the Cohn–Leavitt algebras for a class of
separated graphs, which is a strictly larger class of graphs than the class of directed
graphs. A directed graph is considered to be trivially separated. The C∗-analog of
Cohn–Leavitt algebras over trivially separated graphs, the relative graph C∗-algebra
C∗(E, S ) of a graph E and S ⊆ R(E), was introduced in [19].

Based on the definitions alone, one could suspect that the class of Cohn–Leavitt
algebras of trivially separated graphs is strictly larger than the class of Leavitt path
algebras. However, that is not the case: there is a canonical ∗-isomorphism of
CLK(E, S ) and LK(ES ) for a suitable graph ES defined via E and S (see [19, Theorem
3.7] for E countable and [22, Lemma 4.8] for any E).

Although the classes of Leavitt and Cohn–Leavitt algebras are the same, the
consideration of Cohn–Leavitt algebras has (at least) one significant advantage over
the consideration of Leavitt path algebras alone: every Leavitt path algebra is a direct
limit of Cohn–Leavitt algebras of certain finite subgraphs with injective connecting
maps by [4, Proposition 3.6]. This fact enables one to transfer the consideration of
certain properties of algebra to subalgebras corresponding to finite graphs. Using
Leavitt path algebras alone, such direct limit representation is not always possible.

We start by showing that some results of [4] and [22], formulated for nongraded
algebras, continue to hold in the category of graded involutive algebras as well.

Let E be a graph with S ⊆ R(E) and F a subgraph of E with T ⊆ R(F). We say that
(F,T ) is a complete subobject of (E, S ) if T ⊆ S and the following condition holds.

(C) If v ∈ S ∩ F0 is such that s−1
E (v) ∩ F1 , ∅, then s−1

F (v) = s−1
E (v) and v ∈ T .

Note that the conditions T ⊆ S and (C) imply that T = S ∩ {v ∈ F0 | s−1
E (v) ∩ F1 , ∅}.

If T = R(F) and S = R(E), this agrees with the definitions of a complete
subgraph for row-finite graphs from [5, Section 3] and for countable graphs from [3,
Definition 9.7]. In this case, the inclusion of F into E induces a graded homomorphism
as pointed out in [11, Section 2].
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In [4, Proposition 3.5] it is shown that for a finite subgraph G of a graph E and any
S ⊆ R(E), there is a complete subobject (F, T ) of (E, S ) such that F is finite and G is
a subgraph of F. In the case when S = R(E), E has an infinite emitter v and G is a
subgraph consisting of v with finitely many edges v emits the ranges of these edges,
such complete subobject (F, T ) is with v ∈ R(F) but v < T . Thus CLK(F, T ) is a K-
subalgebra of LK(E) while LK(F) is not. Cases like this one highlight advantages of
working with Cohn–Leavitt algebras instead of Leavitt path algebras alone.

Consider the category G whose objects are pairs (E, S ), where E is a graph and
S ⊆ R(E) and whose morphisms (E, S )→ (F,T ) are graph morphisms f : E→ F such
that (1) f is a graph morphism which is injective on the set of vertices, (2) v emits
edges if and only if f (v) emits edges for every v ∈ E0 and f is injective on s−1

E (v) for
every v ∈ E0 which emits edges, and (3) f maps S into T and, if v ∈ S , then f maps
s−1

E (v) bijectively onto s−1
F ( f (v)).

By [4, Proposition 3.3], the category G admits arbitrary direct limits. The following
proposition, which is the graded version of [4, Proposition 3.6] for trivially separated
graphs, holds since all the maps defined in the proof of [4, Proposition 3.6] preserve
the degrees of elements and, hence, are graded homomorphisms.

Proposition 2.1. The assignment (E, S )→ CLK(E, S ) extends to a continuous functor
CLK from the categoryG to the category of graded ∗-algebras over K. Moreover, every
algebra CLK(E, S ) is a direct limit, with injective connecting maps, of the algebras
CLK(F, T ) where the direct limit is taken over all objects (F, T ) of the directed system
of finite complete subobjects of (E, S ).

Next, we briefly review the construction of the relative graph ES of E with respect
to S from [19, Theorem 3.7]. The graph ES is defined by

E0
S = E0 ∪ {v′ | v ∈ R(E) − S },

E1
S = E1 ∪ {e′ | e ∈ E1 with r(e) ∈ R(E) − S },

and by letting the maps s and r in ES be the same as in E on E1 and such that
s(e′) = s(e) and r(e′) = r(e)′ for any added edge e′.

Define a map φE,S on E0
S by φE,S (v) = v if v < R(E) − S , φE,S (v) =

∑
e∈s−1(v) ee∗ and

φE,S (v′) = v −
∑

e∈s−1(v) ee∗ if v ∈ R(E) − S . Define φE,S on E1
S by φE,S (e) = eφE,S (r(e))

for e ∈ E1 and φE,S (e′) = eφE,S (r(e)′) for e ∈ E1 such that r(e) ∈ R(E) − S . If f ∈ E1
S ,

let φE,S ( f ∗) = φE,S ( f )∗.
It can be directly checked that the map φE,S is such that the images φE,S (w), φE,S ( f )

and φE,S ( f ∗) for w ∈ E0
S and f ∈ E1

S satisfy (V), (E1), (E2), (CK1) and (CK2). Thus,
φE,S uniquely extends to a K-algebra ∗-homomorphism of LK(ES ) to CLK(E, S ) by
the universal property of Leavitt path algebras (see [22, Lemma 4.7] for the involutive
version of this property). Moreover, since the map φE,S respects the grading on
vertices, edges and ghost edges, its extension is a graded homomorphism which is
injective by the graded uniqueness theorem (more details in [22, Lemma 4.8]). This
map is onto by [19, Theorem 3.7] or [22, Lemma 4.8].
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Moreover, the map φE,S is canonical. Indeed, if f is a graded ∗-homomorphism of
algebras f : CLK(E, S )→ CLK(F,T ), one can check that the map f defined on E0

S and
E1

S by

v 7→ φ−1
F,T f (φE,S (v)) for v ∈ E0,

v′ 7→ φ−1
F,T ( f (v) − f (φE,S (v))) for v ∈ R(E) − S ,

e 7→ φ−1
F,T ( f (e) f (φE,S (r(e)))) for e ∈ E1,

e′ 7→ φ−1
F,T ( f (e) f (φE,S (r(e)′))) for e ∈ E1 with r(e) ∈ R(E) − S ,

extends to a graded ∗-homomorphism f : LK(ES )→ LK(FT ). Thus, we have the
following lemma.

Lemma 2.2. The map φE,S : LK(ES ) �gr CLK(E, S ) is a canonical graded ∗-iso-
morphism.

3. Involutive and graded structure of Leavitt path algebras of no-exit graphs

In this section, we characterize Cohn–Leavitt algebras of no-exit graphs as graded
and involutive algebras without any restriction on the cardinality of the graph or the
infinite paths (Proposition 3.3). Our result is an involutive and graded version of
[6, Theorem 3.2, equivalences (i) and (ii)] and a generalization of [14, Theorem 6.7,
equivalences (2) and (3)]. Corollaries of this result include graph-theoretic conditions
characterizing when a Leavitt path algebra is a directed union of (graded) matricial
algebras over the underlying field and over the algebra of Laurent polynomials and
when the monoid of isomorphism classes of finitely generated projective modules is
atomic and cancelative.

3.1. Benefits of using Cohn–Leavitt algebras. By [15, Proposition 5.1], if E is a
row-finite, no-exit graph in which each infinite path ends in a sink or a cycle and K is
any field, LK(E) is graded ∗-isomorphic to the algebra⊕

i∈I

Mκi (K)(αi) ⊕
⊕

j∈J

Mµ j (K[xn j , x−n j ])(γ j)

where I indexes the set of sinks, J indexes the set of cycles, κi is the number of paths
ending in a sink indexed by i ∈ I, µ j is the number of paths ending in a fixed but
arbitrary vertex of the cycle indexed by j ∈ J, and n j corresponds to the length of the
jth cycle, j ∈ J. A bit of care is needed when dealing with infinite sinks, and [15,
Section 5.2] contains more details as well as examples.

The kth entry of the shift αi
∈ Zκi , for k ∈ κi, i ∈ I, corresponds to the length of the

kth path ending in the ith sink. The kth entry of the shift γ j
∈ Zµ j , for k ∈ µ j, j ∈ J,

corresponds to the length of the kth path ending in a fixed (but arbitrary) vertex of the
jth cycle. A bit more care is needed when handling infinite sinks, and [15, Section 5.2]
contains more details.
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Before proving any results, we consider the following example. It illustrates that
the use of Cohn–Leavitt algebras is necessary when representing a Leavitt path algebra
LK(E) as a direct limit of subalgebras of its finite subgraphs in the case when E fails
to be row-finite.

Example 3.1. Let E be the graph

•u2 •u3 ◦

•u1 •ve1
oo
e2

aa

e3

OO ??

// ◦

with one source v emitting infinitely many edges e1, e2, . . . with en ending in a sink
un, n = 1, 2, . . ., as in the figure above. Note that E has no regular vertices, so every
subgraph F is such that (F,∅) is a complete subobject of (E,∅). Let Fn, n = 1, 2, . . .,
denote the family of subgraphs

•u2 ◦ •un

•u1 •ve1
oo
e2

`` OO

en

>>

generated by the edges e1, e2, . . . , en. Then (Fn,∅) is a complete subobject of both
(Fn+1,∅) and (E,∅). The algebra CK(Fn) is graded ∗-isomorphic toM2(K)(0, 1)n ⊕ K.
Indeed, if ei

jl, j, l = 1,2, denote the standard matrix units in the ith copy of the matricial
algebraM2(K)(0, 1)n ⊕ K, for i = 1, . . . , n, then the following map induces a graded ∗-
isomorphism:

ui 7→ (ei
11, 0), ei 7→ (ei

21, 0), i = 1, . . . , n, v 7→
( n∑

i=1

ei
22, 1

)
.

Thus, the element (0, 1) corresponds to v −
∑n

i=1 eie∗i .
Let φn(n+1) : CK(Fn) → CK(Fn+1) denote the graded ∗-monomorphism induced

by the inclusion (Fn,∅)→ (Fn+1,∅), and R denote the direct limit of the system
{(CK(Fn), φn(n+1)) | n = 1, 2, . . .} with the translational maps φn : CK(Fn)→ R. Also,
let ψn : CK(Fn)→ CK(E) = LK(E) denote the graded ∗-monomorphism induced by the
inclusion (Fn,∅)→ (E,∅). Since ψn = φn(n+1)ψn+1, there is a graded ∗-monomorphism
ψ : R→ LK(E) such that ψn = ψφn by the universal property of the direct limit.

The inverse φ of the map ψ can be obtained by noting that the correspondence

un 7→ φn(un), v 7→ v = φn(v), en 7→ φn(en), for n = 1, 2, . . . ,

defines a universal Cuntz–Krieger (E, ∅)-family and, hence, a graded ∗-
homomorphism φ : LK(E)→ R. The relation φψn = φn holds by definition on F0

n and
F1

n and, consequently, φψn = φn holds on CK(Fn) for every n. This implies that φψ is
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the identity on R. For the converse, note that if x is any of ui, v, or ei for i = 1, 2, . . . , n,
for any n, then ψ(φ(x)) = ψ(φn(x)) = ψn(x) = x. This implies that ψφ is the identity.

Using a matricial representation of CK(Fn), the algebra R can be identified with
the graded ∗-algebra lim

−−→n
(M2(K)(0, 1)n ⊕ K) with the connecting maps given by

(x, 0) 7→ (x, 0) for x ∈M2(K)(0, 1)n and (0, 1) 7→ (en+1
22 , 1) and we have the following

commutative diagram.

· · · // CK(Fn) //

�gr

��

CK(Fn+1)

�gr

��

// · · · // LK(E)

�gr

��
· · · // M2(K)(0, 1)n ⊕ K // M2(K)(0, 1)n+1 ⊕ K //// · · · // lim

−−→n
(M2(K)(0, 1)n ⊕ K)

Note that the algebra LK(E) cannot be represented as a directed union of Leavitt path
algebras of any of its finite, complete subgraphs. Note also that the graph E is acyclic.
Thus, [14, Theorem 6.7] is not applicable to this graph but, as we shall see, Corollary
3.5 is.

3.2. The structure of Cohn–Leavitt algebras of no-exit objects. If E is a no-exit
graph and S ⊆ R(E), the relative graph ES is also a no-exit graph provided that the
following condition holds.

(∗) Vertices of every cycle of E are in S .

We say that the object (E, S ) is a no-exit object of the category G if E is a no-exit graph
and condition (∗) holds. We consider finite, no-exit objects of G in the next lemma.

Lemma 3.2. If (E, S ) is a finite, no-exit object of G, then CLK(E, S ) is graded
∗-isomorphic to the algebra

k⊕
i=1

Mki (K)(αi) ⊕
m⊕

j=1

Mm j (K[xn j , x−n j ])(γ j)

where k is the number of sinks and vertices in R(E) − S , ki is the number of paths
ending in the sink or the vertex in R(E) − S indexed by i for i = 1, . . . , k, αi( j) is the
length of the jth path ending in the ith vertex for j = 1, . . . , ki and i = 1, . . . , k, m is the
number of cycles, m j is the number of paths ending in a fixed but arbitrary vertex of
the cycle indexed by j, n j is the length of the jth cycle for j = 1, . . . ,m, and γ j(l) is the
length of the lth path ending in the fixed vertex of the jth cycle for l = 1, . . . ,m j and
j = 1, . . . ,m.

Proof. Since (E, S ) is a finite, no-exit object, the relative graph ES is a finite, no-exit
graph. Several different papers relate the Leavitt path algebra of a finite, no-exit graph
with a direct sum of matricial algebras over K and over K[xn, x−n] for positive integers
n. In particular, there is an algebra isomorphism by [1, Theorem 3.7], a ∗-algebra
isomorphism by [18, Corollary 32], a graded algebra isomorphism by [14, Theorem
6.7], and a graded ∗-algebra isomorphism by [15, Proposition 5.1]. Thus, LK(ES ) is
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graded ∗-isomorphic to an algebra as in the statement of the lemma. Let φES denote
this graded ∗-isomorphism.

By construction of the relative graph and the assumption that (∗) holds, the cycles
and paths which end in them correspond to the same elements in (E, S ) and in ES .
The number of sinks of ES is equal to the number of sinks in E plus the number
of vertices in R(E) − S . By construction, the sinks and paths which end in them
correspond to the same elements in (E, S ) and in ES , and the number of paths in E
which end in v ∈ R(E) − S corresponds exactly to the number of paths in ES which
end in the sink v′. The length of a path ending in v ∈ R(E) − S and the length
of the corresponding path ending in v′ ∈ E0

S are the same. Let φE,S be the graded
∗-isomorphism LK(ES )→ CLK(E, S ) from Lemma 2.2. Then φES φ

−1
E,S is a graded ∗-

isomorphism of CLK(E, S ) and the direct sum of matricial algebras as in the statement
of the lemma. �

Proposition 3.3. Let E be a graph and S ⊆ R(E) such that (E, S ) is a no-exit object of
the category G. Then CLK(E, S ) is graded ∗-isomorphic to a direct limit

lim
−−→
i∈I

( ki⊕
l=1

Mkil (K)(αi
l) ⊕

mi⊕
j=1

Mmi j (K[xni j , x−ni j ])(γi
j)
)

with injective connecting maps where I is a directed set, ki,mi are nonnegative integers
and ki j, mil, and ni j positive integers, αi

l ∈ Z
kil and γi

j ∈ Z
mi j , for i ∈ I, l = 1, . . . , ki, and

j = 1, . . . ,mi.
In particular, if E is a no-exit graph and S = R(E), then condition (∗) holds, so the

conclusion holds for LK(E).

Proof. The object (E, S ) can be represented as a direct limit of a family of finite,
complete subobjects (Fi, Si)i∈I by [4, Proposition 3.5]. Each subobject (Fi, Si) is finite
and no-exit since (E, S ) is no-exit and the vertices of all cycles of Fi are in Si by
completeness. By Proposition 2.1, CLK(E, S ) is graded ∗-isomorphic to the direct
limit of the algebras CLK(Fi, Si) over I with injective connecting maps. By Lemma
3.2, CLK(E, S ) is graded ∗-isomorphic to an algebra of the required form. �

Proposition 3.3 is related to [6, Theorem 3.2] except that we use Cohn–Leavitt
algebras of the subgraphs of the graph and [6, Theorem 3.2] uses the Leavitt path
algebras corresponding to the duals of the subgraphs, not the subgraphs themselves.
Moreover, we consider both the graded and the involutive structure of the algebras.

If (E, S ) is a no-exit object, we shall say that the graded ∗-algebra from Proposition
3.3 is a graded locally matricial representation of the algebra CLK(E, S ). The next
corollary shows that no-exit graphs are the only graphs with Leavitt path algebras
graded ∗-isomorphic to a direct limit as in Proposition 3.3.

Corollary 3.4. Let E be an arbitrary graph, K a field, Rgr a graded ∗-algebra of the
form

lim
−−→
i∈I

( ki⊕
l=1

Mkil (K)(αi
l) ⊕

mi⊕
j=1

Mmi j (K[xni j , x−ni j ])(γi
j)
)
,

https://doi.org/10.1017/S1446788717000295 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000295


240 L. Vaš [12]

and R a ∗-algebra of the form

lim
−−→
i∈I

( ki⊕
l=1

Mkil (K) ⊕
mi⊕
j=1

Mmi j (K[x, x−1])
)
,

where I, ki,mi, kil, mi j, ni j α
i
l, and γi

j are as in Proposition 3.3 for i ∈ I, l = 1, . . . , ki,
and j = 1, . . . ,mi. The following conditions are equivalent:

(a) LK(E) is graded ∗-isomorphic to Rgr;
(b) LK(E) is graded isomorphic to Rgr;
(c) LK(E) is ∗-isomorphic to R;
(d) LK(E) is isomorphic to R;
(e) E is no-exit.

Let Sgr denote a graded ∗-algebra of the form⊕
i∈I

Mκi (K)(αi) ⊕
⊕

j∈J

Mµ j (K[xn j , x−n j ])(γ j)

and S a ∗-algebra of the form⊕
i∈I

Mκi (K) ⊕
⊕

j∈J

Mµ j (K[x, x−1])

where I, J are sets, κi, i ∈ I, and µ j, j ∈ J, are cardinals, n j are positive integers for
j ∈ J, αi

∈ Zκi for i ∈ I, and γ j
∈ Zµ j for j ∈ J.

Let (1)–(4) denote the conditions (a)–(d) with Rgr replaced by Sgr and R replaced
by S and (5) denote the following condition.

(5) E is a row-finite, no-exit graph such that every infinite path ends in a sink or a
cycle.

Then conditions (1)–(5) are equivalent.

Proof. The implications (a) ⇒ (b) ⇒ (d) and (a) ⇒ (c) ⇒ (d) are direct and (e) ⇒
(a) follows from Proposition 3.3. So it remains to show (d) ⇒ (e). Assuming (d),
it is direct to check that LK(E) is directly finite (in the sense that for any x, y with a
local unit u such that xu = ux = x and yu = uy = y, if xy = u then yx = u) since the
connecting maps are injective. By [22, Theorem 4.12], E is a no-exit graph.

The implications (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4) are direct. Assuming (4), it is
direct to check that LK(E) is a locally Baer ring (pLK(E)p is Baer for every idempotent
p). By [16, Theorem 15], this implies condition (5). The implication (5)⇒ (1) holds
by [15, Proposition 5.1]. �

Proposition 3.3 also implies that the acyclic graphs are the only graphs with Leavitt
path algebras graded ∗-isomorphic to a directed union of graded matricial ∗-algebras
over K.
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Corollary 3.5. Let E be an arbitrary graph, K a field, Rgr a graded ∗-algebra of the
form

lim
−−→
i∈I

ki⊕
l=1

Mkil (K)(αi
l),

and R a ∗-algebra of the form

lim
−−→
i∈I

ki⊕
l=1

Mkil (K),

where I, ki, kil, and αi
l are as in Proposition 3.3 for i ∈ I and l = 1, . . . , ki. The following

conditions are equivalent:

(a′) LK(E) is graded ∗-isomorphic to Rgr;
(b′) LK(E) is graded isomorphic to Rgr;
(c′) LK(E) is ∗-isomorphic to R;
(d′) LK(E) is isomorphic to R;
(e′) E is acyclic.

Let Sgr denote a graded ∗-algebra of the form
⊕

i∈IMκi (K)(αi) and S a ∗-algebra of
the form

⊕
i∈IMκi (K) where I is a set, κi cardinals, and αi

∈ Zκi for i ∈ I.
Let (1′)–(4′) denote conditions (a′)–(d′) with Rgr replaced by Sgr and R replaced by

S and let (5′) denote the following condition.

(5′) E is a row-finite, acyclic graph such that every infinite path ends in a sink.

Then conditions (1′)–(5′) are equivalent.

Proof. The implications (a′)⇒ (b′)⇒ (d′) and (a′)⇒ (c′)⇒ (d′) are direct. Since a
direct limit of matricial algebras over K is a regular ring, the implication (d′) ⇒ (e′)
follows from [2, Theorem 1] stating that LK(E) is regular if and only if E is acyclic.
The implication (e′)⇒ (a′) follows from the fact that the absence of cycles in a no-exit
graph implies the absence of the Laurent polynomial algebras in the graded locally
matricial representation from Proposition 3.3.

The implications (1′) ⇒ (2′) ⇒ (4′) and (1′) ⇒ (3′) ⇒ (4′) are direct. Assuming
(4′), it follows that LK(E) is a locally Baer and regular ring. By [16, Theorem 15],
E is a row-finite, no-exit graph and every infinite path ends in a sink or a cycle. The
regularity of LK(E) implies that E is acyclic by [2, Theorem 1], so (5′) holds. The
implication (5′) ⇒ (1′) holds by Corollary 3.4 since the absence of cycles in a graph
as in (5′) implies the absence of the Laurent polynomial terms in the representation
from Corollary 3.4. �

The graph in Example 3.1 is acyclic but does not satisfy condition (5′) of
Corollary 3.5. By Corollary 3.5, the Leavitt path algebra of this graph is graded
∗-isomorphic to a direct limit of matricial algebras over K but not to a direct sum of
algebras of the formMκ(K)(γ) where κ is a cardinal and γ ∈ Zκ. The same conclusion
can be drawn also for the graph in the following example.
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Let E be the graph in the following figure.

• • • . . .

•

OO

// •

OO

// • //

OO

. . .

The Leavitt path algebra of this graph is graded ∗-isomorphic to

lim
−−→

n

( n⊕
i=1

Mi+1(K)(0, 1, 2, . . . , i) ⊕Mn(K)(0, 1, . . . , n − 1)
)
.

By Corollary 3.5, LK(E) is not graded ∗-isomorphic to an algebra as Sgr in
Corollary 3.5.

Considering Corollaries 3.4 and 3.5, one could suspect that the Leavitt path algebra
of a no-exit graph without sinks necessarily lacks matricial algebras over K in its
graded locally matricial representation. Yet, this is not the case. Consider the graph

•
$$

• dd ◦ dd

•
$$

•voo

`` OO >>

// ◦ dd

with an infinite emitter v emitting countably many edges to vertices each of which
emits a single loop. This graph is no-exit and without sinks and has a graded locally
matricial representation

lim
−−→

n

(M2(K[x, x−1])(0, 1)n ⊕ K)

which can be seen similarly to Example 3.1. However, the following corollary of
Proposition 3.3 holds.

Corollary 3.6. Let E be an arbitrary graph, K a field, Sgr a graded ∗-algebra of the
form ⊕

i∈I

Mµi (K[xni , x−ni ])(γi)

and S a ∗-algebra of the form
⊕

i∈IMµi (K[x, x−1]) where I is a set, µi cardinals, ni

positive integers, and γi
∈ Zµi for i ∈ I. The following conditions are equivalent:

(1′′) LK(E) is graded ∗-isomorphic to Sgr;
(2′′) LK(E) is graded isomorphic to Sgr;
(3′′) LK(E) is ∗-isomorphic to S ;
(4′′) LK(E) is isomorphic to S ;
(5′′) E is a row-finite, no-exit graph without sinks such that every infinite path ends in

a cycle.
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Proof. The implications (1′′)⇒ (2′′)⇒ (4′′) and (1′′)⇒ (3′′)⇒ (4′′) are direct. Since
the socle of the algebra K[x, x−1] is zero, (4′′) implies that the socle of LK(E) is zero as
well. Thus, there are no sinks in LK(E) by [7, Corollary 5.3]. Also, E is row-finite and
its every infinite path ends in a cycle by Corollary 3.4, so (5′′) holds. Condition (5′′)
implies condition (1) of Corollary 3.4. The absence of sinks (and regular vertices not
in set T for any complete subobject (F, T ) of (E,R(E)) since E is row-finite) implies
the absence of the matrix algebras over K in the representation from Corollary 3.4.
Thus, condition (1′′) holds. �

3.3. Realization question. The reader may wonder whether every graded locally
matricial ∗-algebra of the same form as Rgr in Corollary 3.4 can be realized as a Leavitt
path algebra of some no-exit graph, and we refer to this question as the realization
question. In fact, the referee of this paper had the same question. The referee’s
question inspired the author to include the following proposition in the paper. The
proposition shows that the realization question has a negative answer.

Proposition 3.7. Let K be a field trivially graded by the set Z of integers and R be the
algebra M2(K)(0, 0). The algebra R is not graded ∗-isomorphic to any Leavitt path
algebra.

Proof. Assume that there is a graph E such that R and LK(E) are graded
∗-isomorphic. By Corollary 3.5, E is a row-finite, acyclic graph such that every infinite
path ends in a sink. Moreover, since R is unital, E0 is finite and, since E is row-finite
with E0 finite, E1 is finite also. Since R is simple, E has just one sink (otherwise
LK(E) would be isomorphic to a direct sum of more than one matricial algebra and,
thus, would not be simple). Let Q be a graded locally matricial representation of
LK(E). By Corollary 3.5, Q is graded ∗-isomorphic to single graded matrix algebra.
SinceMn(K) �M2(K) implies that n = 2, there are two paths ending in the sink of E by
Proposition 3.3. One path is the trivial path of length zero. If k is the length of the other
path, then k ≤ 1 since otherwise there would be more than two paths ending at the sink
of E. Thus k = 0 or k = 1. However, k = 0 cannot happen since there cannot be two
different paths of length zero ending in a vertex. If k = 1, the algebras R =M2(K)(0, 0)
and Q �gr M2(K)(0, 1) are not graded isomorphic since their zero-components,

[K K
K K

]
and

[K 0
0 K

]
respectively, are not isomorphic. �

3.4. The monoid of finitely generated projective modules of a Leavitt path
algebra. In this section we characterize when the monoid of finitely generated
projective modules of a Leavitt path algebra is atomic and cancelative. We let
V(R) denote the monoid of isomorphism classes of finitely generated projective
modules over R or, equivalently, the monoid of the equivalence classes of conjugated
idempotent matrices. We let [x] denote the equivalence class of an idempotent matrix
x. If R is a ring, possibly without an identity element, V(R) is defined using unitization
Ru of R ([4, Section 10] has more details).

By [1, Theorem 2.4], if E is a row-finite and countable graph, then the following
conditions are equivalent:

https://doi.org/10.1017/S1446788717000295 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000295


244 L. Vaš [16]

(1) E is acyclic and every infinite path ends in a sink;
(2) LK(E) is regular and V(LK(E)) is cancelative and atomic;
(3) LK(E) is regular and V(LK(E)) is isomorphic to a direct sum of copies of the

monoid of nonnegative integers N.

We shall delete the assumptions on the cardinality of the graph and characterize when
V(LK(E)) is atomic and cancelative (without the condition that LK(E) is regular).

Proposition 3.8. Let E be a graph and K a field.

(i) If V(LK(E)) is cancelative, then E is no-exit.
(ii) If V(LK(E)) is atomic, then every infinite path of E ends in a sink or a cycle.
(iii) If V(LK(E)) is atomic, then E is row-finite.

Statements (i) and (ii) have been shown in the proof of [1, Theorem 2.4] without
using the assumptions on the cardinality of the graph. We outline the proofs for
completeness.

Proof. (i) Assume that V(LK(E)) is cancelative and that E has a cycle c with an exit
e. Base the cycle c at v = s(e) and let pn = cn(c∗)n. The idempotents pn are such that
LK(E)pn+1 ( LK(E)pn and that [v] = [pn] for any nonnegative integer n. The relation
[pn] = [pn+1] + [pn − pn+1] implies that [v] = [v] + [pn − pn+1] and, by the assumption
that the monoid is cancelative, that [pn − pn+1] = 0. This is a contradiction since then
pn − pn+1 = v(pn − pn+1) = 0 implies that LK(E)pn+1 = LK(E)pn.

(ii) Assume that V(LK(E)) is atomic and that E has an infinite path p which does
not end in a sink or a cycle. The path p necessarily has infinitely many bifurcations
and we can write p as q1q2 . . . such that the range of each qn is a bifurcation and let
pn = q1 . . . qn(q1 . . . qn)∗. If v = s(p), the idempotents pn are such that vLK(E)vpn+1 (
vLK(E)vpn, that [r(qn)] = [pn] for any positive integer n, and that

[p1] = [p1 − p2] + [p2 − p3] + · · · + [pn−1 − pn] + [pn].

By [5, Theorem 3.5 and Proposition 4.4], V(LK(E)) is a refinement monoid if E is a
row-finite graph. By [4, Corollary 5.16], the same statement holds for arbitrary graphs.
Since V(LK(E)) is atomic by assumption, write [p1] as a sum of atoms and, if this sum
has m terms, consider n > m. The fact that V(LK(E)) is an atomic, refinement monoid
and n > m implies that at least one of the terms [p1 − p2], [p2 − p3], . . . , [pn−1 − pn] or
[pn] is zero. This leads to a contradiction analogously to the proof of (i).

(iii) Assume that V(LK(E)) is atomic and that E has an infinite emitter v. If {en | n =

1, 2, . . .} is a set of different edges in s−1(v), consider the orthogonal idempotents ene∗n
and nonzero idempotents pn = v −

∑n
i=1 eie∗i orthogonal to every eie∗i , i = 1, . . . , n. The

relation v =
∑n

i=1 eie∗i + pn implies that

[v] =

n∑
i=1

[eie∗i ] + [pn].
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Let a1, . . . , am be atoms such that [v] = a1 + · · · + am. Taking any n > m, and using
the fact that V(LK(E)) is a refinement monoid, we obtain that either [eie∗i ] = 0 for
some i = 1, . . . , n or [pn] = 0. The first case, [eie∗i ] = 0, implies that LK(E)eie∗i = 0,
which is a contradiction since eie∗i = veie∗i = 0 implies that ei = eie∗i ei = 0 and ei is
a basis element. The second case, [pn] = 0, implies that LK(E)pn = 0, which is a
contradiction since pn = vpn = 0 implies that en+1 = ven+1 =

∑n
i=1 eie∗i en+1 = 0 and en+1

is a basis element. �

Corollary 3.9. Let E be a graph, K a field, and let N stand for the monoid of
nonnegative integers. The following conditions are equivalent:

(5) E is a row-finite, no-exit graph in which every infinite path ends in a sink or a
cycle;

(6) V(LK(E)) is isomorphic to a direct sum of copies of N;
(7) V(LK(E)) is atomic and cancelative.

The numbering of the first condition refers to the numbering in Corollary 3.4.

Proof. Condition (5) implies that LK(E) is isomorphic to an algebra of the form⊕
i∈I

Mκi (K) ⊕
⊕

j∈J

Mµ j (K[x, x−1])

by Corollary 3.4. Thus, the monoid V(LK(E)) is isomorphic to the monoid N|I| ⊕ N|J|

which proves (6). The implication (6) ⇒ (7) is direct. Condition (7) implies (5) by
Proposition 3.8. �

4. Locally noetherian Leavitt path algebras

The property that a ring is locally noetherian generalizes the property that a ring is
noetherian for locally unital rings. In this section, we introduce the graded version
of the property that a ring is locally noetherian. The main result, Theorem 4.4,
characterizes Leavitt path algebras which are graded locally noetherian. As a corollary,
the assumptions that the underlying graph is countable and row-finite can be dropped
from the characterization of locally noetherian Leavitt path algebras [1, Theorem 3.7].

4.1. Graded locally and categorically noetherian rings. Recall that a ring R is said
to be locally unital if for every finite set F of elements of R, there is an idempotent
u such that ux = xu = x for every x ∈ F. The set of all such idempotents u is a set of
local units.

Some authors (e.g. [21]) define a ring R to be locally unital by a stronger condition:
there is a set of commuting idempotents ui, i ∈ I, such that for every x ∈ R, there is i ∈ I
with xui = uix = x. In this case, the set of local units is a directed set (the idempotent
ui + u j − uiu j is an upper bound for ui and u j) and R is the direct limit of rings uiRui.
If the idempotents ui are pairwise orthogonal, then R =

⊕
i∈I uiRui.

A ring R is said to have enough idempotents if there is a set of pairwise orthogonal
idempotents ui, i ∈ I, such that R =

⊕
i∈I Rui =

⊕
i∈I uiR. Every ring with enough
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idempotents is locally unital since the finite sums of the idempotents ui are local units.
If R has an orthogonal set of local units, then it has enough idempotents too.

If R is a ring with enough idempotents or with local units, then one usually considers
unitary left R-modules (a left module M is unitary, or full, if RM = M; see [8], [4,
Section 10] or [1, Section 1]). If R has enough idempotents, then it is a unitary left and
right module. As a consequence, a free left module over such ring is also unitary and,
hence, any quotient of a free left module is unitary as well.

We adapt these concepts to graded rings. Namely, a ring-theoretic property can
be adapted to graded rings by considering homogeneous elements instead of arbitrary
elements in the definition of the property. For example, a ring is regular if x ∈ xRx for
every element x. Thus, a graded ring R is said to be graded regular if x ∈ xRx for every
homogeneous element x. Following this principle, we define a graded locally unital
ring, a graded locally noetherian ring and, in the next section, a graded locally artinian
ring.

Definition 4.1. A graded ring R is graded locally unital if for every finite set F
of (homogeneous) elements of R, there is a homogeneous idempotent u such that
ux = xu = x for every x ∈ F.

A graded ring R has enough homogeneous idempotents if there is a set of pairwise
orthogonal homogeneous idempotents ui, i ∈ I, such that R =

⊕
i∈I Rui =

⊕
i∈I uiR.

The word ‘homogeneous’ appears in parentheses in one instance in the definition
above because requiring that the elements of the set F are homogeneous is equivalent
to requiring that the elements of the set F are arbitrary. Indeed, if for every finite set
Fh of homogeneous elements of R, there is a homogeneous idempotent u such that
ux = xu = x for every x ∈ Fh, and F is any finite set of elements of R, then let Fh be the
set of all homogeneous elements of R which appear in representations of elements of
F as sums of homogeneous elements. Let u be a homogeneous idempotent such that
ux = xu = x for each x ∈ Fh. Then clearly ux = xu = x for each x ∈ F too.

Analogously to the nongraded case, every graded ring with enough homogeneous
idempotents is graded locally unital. If a graded ring R has an orthogonal set of graded
local units, then R has enough homogeneous idempotents.

A ring of the form R =
⊕

i∈I Rui =
⊕

i∈I uiR or R =
⊕

i∈I uiRui, where ui are
orthogonal idempotents of R for i ∈ I, is clearly neither left nor right noetherian.
However, it is still of relevance to know if such a ring is built up from left or right
noetherian pieces. This is precisely the reason that motivated the introduction of
locally and categorically noetherian rings. We recall these definitions first and then
we adapt them to graded rings.

A ring R is said to be locally left noetherian if for every finite set F of elements of
R, there is an idempotent e ∈ R such that eRe contains F and eRe is left noetherian. A
locally right noetherian ring is defined analogously. A ring is locally noetherian if it is
both locally left and locally right noetherian.

A ring is categorically left noetherian if every finitely generated left module is
noetherian. A categorically right noetherian ring is defined analogously. A ring is
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categorically noetherian if it is both categorically left and categorically right
noetherian.

By [1, Proposition 1.2], if R =
⊕

i∈I Rui for a set of orthogonal idempotents ui, i ∈ I,
then R is categorically left noetherian if and only if Rui is a noetherian left module
for each i ∈ I. Thus, every ring R with enough idempotents ui is categorically left
noetherian if and only if Rui is noetherian for each i ∈ I. Such R is categorically
noetherian if and only if Rui and uiR are noetherian for each i ∈ I.

A ring R is locally left noetherian if and only if there are local units ui, i ∈ I, such
that uiRui is left noetherian for every i (see [1, page 99]). Moreover, if R is locally left
noetherian and v j, j ∈ J, is any set of local units, then v jRv j is left noetherian. This
statement can be proven analogously as part (4) of Lemma 4.3 below, which is the
graded version of this fact.

By [1, Lemma 1.6], if R is a categorically left noetherian ring with local units, then
R is locally left noetherian too. By the paragraph preceding [1, Lemma 1.6], not every
locally unital and locally noetherian ring is categorically noetherian.

We turn to graded rings now. A graded module M over a graded ring R is graded
noetherian if every ascending chain of graded submodules of M is constant eventually
(equivalently, if every graded submodule of M is finitely generated). A graded ring
R is graded left noetherian if it is graded noetherian as a left module (equivalently, if
every graded left ideal is finitely generated). A graded right noetherian ring is defined
analogously and a graded noetherian ring is defined using the usual convention.

If R is a commutative ring graded by a finitely generated abelian group Γ, then the
following conditions are equivalent by [10, Theorem 1.1]:

(1) R is noetherian;
(2) R is graded noetherian;
(3) R0 is noetherian and R is finitely generated as an R0-algebra.

The above equivalences do not hold if the group Γ is not finitely generated (see
[10, Example 3]). In addition, the example at the end of [13, Section 1.1.4] exhibits
a commutative ring which is graded noetherian but not noetherian. By [20, Theorem
5.4.7], conditions (1) and (2) are equivalent for any Z-graded ring (not necessarily
commutative). Thus, conditions (1) and (2) are equivalent for Leavitt path algebras.
Theorem 4.4 implies analogous conclusion when ‘noetherian’ is replaced by locally or
categorically noetherian.

We define the graded versions of locally and categorically noetherian rings now.

Definition 4.2. A graded ring R is graded locally left noetherian if for every finite set
F of (homogeneous) elements of R, there is a homogeneous idempotent e ∈ R0 such
that eRe contains F and eRe is graded left noetherian.

A graded ring is graded categorically left noetherian if every finitely generated
graded left module is graded noetherian.

Requiring that the set F consists of homogeneous elements in the definition of
graded locally unital ring is equivalent to requiring that the set F consists of arbitrary
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elements. This fact can be shown using the same argument as in the nongraded case in
the paragraph following Definition 4.1.

A graded locally right noetherian ring and a graded categorically right noetherian
ring are defined analogously, and a graded locally noetherian ring and a graded
categorically noetherian ring are defined using the usual conventions.

We prove some basic properties of the introduced concepts in the next lemma.

Lemma 4.3. Let R be a graded ring.

(1) If R =
⊕

i∈I Rui for a set of homogeneous idempotents ui, i ∈ I, then R is graded
categorically left noetherian if and only if Rui is a graded noetherian left module
for each i ∈ I. This statement also has its right-sided analog.

(2) If R is categorically left noetherian, then R is graded categorically left
noetherian.

(3) The ring R is graded locally left noetherian if and only if R has homogeneous
local units ui, i ∈ I, such that uiRui is graded left noetherian for every i.

(4) If R is graded locally left noetherian and ui, i ∈ I, is any set of homogeneous local
units, then uiRui is graded left noetherian.

(5) If R is graded locally unital and locally left noetherian, then R is graded locally
left noetherian.

(6) If R is graded locally unital and graded categorically left noetherian, then it is
graded locally left noetherian.

Statements (2)–(6) have their analogs with the words ‘left’ replaced by ‘right’.

Proof. To show the ⇒ direction of (1), note that if ui is homogeneous, then Rui

is graded. Thus, if R is graded categorically left noetherian, then Rui is graded
noetherian. For the converse, if Rui is graded noetherian for every i ∈ I, then any
finitely generated graded free left module is a submodule of a direct sum of finitely
many modules Rui and, hence, graded noetherian. As a consequence, any graded left
module with finitely many homogeneous generators (which is a graded homomorphic
image of a finitely generated graded free left module; see [13, Section 1.2.4]) is graded
noetherian too.

If R is graded, then every noetherian module over R is also graded noetherian. Thus
(2) holds.

To show (3), note that if R is graded locally left noetherian, then the set of all
homogeneous idempotents e such that eRe is graded left noetherian is a set of graded
local units. Conversely, if ui, i ∈ I, is a set of graded local units such that uiRui is
graded left noetherian for all i ∈ I, and F is a finite set of homogeneous elements, then
there is a local unit ui such that F ⊆ uiRui. This implies that R is graded locally left
noetherian by definition.

To show (4), let R be a graded locally left noetherian ring. Then, there is a set
of homogeneous local units e j, j ∈ J, such that e jRe j is left noetherian. If R also
has homogeneous local units ui, i ∈ I, then for every i ∈ I, there is j ∈ J such that
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uiRui ⊆ e jRe j. If In, n = 1, 2, . . . , is an increasing sequence of graded left uiRui-
ideals, then e jRe jIn is an increasing sequence of graded left e jRe j-ideals. Thus, this
sequence is constant and there is n such that e jRe jIn = e jRe jIm for all m ≥ n. Hence
uiRuie jRe jIn = uiRuie jRe jIm for all m ≥ n as well. Since uiRuie jRe jIm = uiRuiRe jIm =

uiRuiRe juiRuiIm = uiRuiIm = Im for all m ≥ n, we have that In = Im for all m ≥ n. Thus,
uiRui is graded left noetherian.

The proof of (4) also shows (5) since every increasing sequence of graded ideals is
also an increasing sequence of ideals.

The proof of (6) is analogous to the nongraded case [1, Lemma 1.6]. Let R be
graded categorically left noetherian with a set of graded local units ui, i ∈ I. By
(3), it is sufficient to show that uiRui is graded left noetherian for any i ∈ I. Let In,
n = 1, 2, . . . , be an increasing sequence of left uiRui-ideals for i ∈ I. Since Rui is
a finitely generated graded left ideal, it is graded noetherian. Thus, the increasing
sequence RIn is constant eventually and so the sequence uiRIn is constant eventually
also. Since uiRIn = uiRuiIn = In, for any n, the sequence In is constant as well. �

4.2. Locally noetherian Leavitt path algebras. By [1, Theorem 3.7], if E is a
countable, row-finite graph and K a field, the following conditions are equivalent:

• LK(E) is categorically left (right) noetherian;
• LK(E) is locally left (right) noetherian;
• E is a no-exit graph such that every infinite path ends in a sink or a cycle;
• LK(E) �

⊕
i∈IMκi (K) ⊕

⊕
j∈JMµ j (K[x, x−1]), where I and J are countable sets,

and κi, µ j are countable cardinals.

The isomorphism in the last condition can be taken to be a ring or an algebra
isomorphism. In [18, Corollary 32], it is shown that the assumption that E is countable
can be dropped (in which case I, J, κi, and µ j may be of arbitrary cardinalities)
for the equivalence of the last two conditions and that the isomorphism in the last
condition can be taken to be a ∗-isomorphism. Our next result has no assumptions on
the cardinality of the graph and incorporates the graded versions of the ring-theoretic
properties as well.

Theorem 4.4. For any graph E and a field K, the following conditions are equivalent:

(5) E is a row-finite, no-exit graph such that every infinite path ends in a sink or a
cycle;

(8l) LK(E) is categorically left noetherian;
(8r) LK(E) is categorically right noetherian;
(9l) LK(E) is locally left noetherian;
(9r) LK(E) is locally right noetherian;
(10l) LK(E) is graded categorically left noetherian;
(10r) LK(E) is graded categorically right noetherian;
(11l) LK(E) is graded locally left noetherian;
(11r) LK(E) is graded locally right noetherian.
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We let (8), (9), (10) and (11) denote conditions (8l), (9l), (10l) and (11l) respectively,
with the word ‘left’ deleted.

Proof. The left–right symmetry in conditions (8l)–(11r) holds since the vertices are
homogeneous local units for LK(E), making LK(E) a ring with enough homogeneous
idempotents such that (LK(E)v)∗ = vLK(E) and (vLK(E)v)∗ = vLK(E)v for any vertex v.

The implications (8)⇒ (9), (9)⇒ (11), (8)⇒ (10) and (10)⇒ (11) hold by parts
(2), (5) and (6) of Lemma 4.3 since the vertices are orthogonal, homogeneous local
units for LK(E).

The proof of [1, Theorem 3.7] shows that (9) implies that E is a no-exit graph in
which infinite paths end in sinks or cycles without using the fact that the graph E is
countable or row-finite. In particular, assuming that there is a cycle c with an exit based
at a vertex v, the left vLK(E)v-ideals vLK(E)v(v − cn(c∗)n) form a strictly increasing
chain. Since these ideals are generated by homogeneous elements, they are graded.
Also, if there is an infinite path p = q1q2 . . . which does not end in a sink or a cycle
and has bifurcations at r(qn) for every n, let v = s(p) and pn = q1 . . . qn(q1 . . . qn)∗. The
left vLK(E)v-ideals vLK(E)v(v − pn) form a strictly increasing chain. These ideals are
also generated by homogeneous elements and so they are graded. Thus, (11) implies
that E is a no-exit graph in which infinite paths end in sinks or cycles. So, for (11)
⇒ (5), it is sufficient to show that (11) implies that E is row-finite. Let us assume
that (11) holds and that E has an infinite emitter v. Let {en | n = 1, 2, . . .} be a set
of different edges in s−1(v) and pn =

∑n
i=1 eie∗i . Then the graded left vLK(E)v-ideals

vLK(E)vpn constitute a strictly increasing chain of graded left ideals. This contradicts
(11). Hence E is row-finite.

To finish the proof, it is sufficient to show that (5) implies (8). By Corollary 3.4, it
is sufficient to note that a direct sum of algebras each of which is of the form Mκ(K)
or Mκ(K[x, x−1]) for a cardinal κ, is categorically noetherian. This can be checked
directly by definition. �

Remarks 4.5.

(i) Results of [14] and [16] imply that the following conditions are equivalent with
conditions from Theorem 4.4.

(12) LK(E) is (graded) locally Baer (i.e. every (graded) idempotent-generated
corner of LK(E) is Baer; see [16, Theorem 15]).

(13) LK(E) is graded self-injective (see [14, Theorem 6.7]).
(14) LK(E) coincides with its graded socle (see [14, Theorem 2.10 and Remark,

page 469]).
(15) LK(E) is graded semisimple (i.e. LK(E) is a direct sum of minimal graded

ideals; see [14, Theorems 2.10, 4.5 and Remark, page 469]).

(ii) By Theorem 4.4, a Leavitt path algebra is locally (or categorically) noetherian if
and only if it is graded locally (or categorically) noetherian. Thus, the property
of being locally noetherian is invariant for the graded structure of Leavitt path
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algebras. This happens also with the property of being locally Baer by [16,
Theorem 15], but does not happen with every ring-theoretic property. For
example, every Leavitt path algebra is graded regular by [12, Theorem 9], while
just Leavitt path algebras of acyclic graphs are regular as nongraded rings by [2,
Theorem 1]. Also, the classes of Leavitt path algebras which are locally Baer
∗-rings and which are graded locally Baer ∗-rings are different by [16, Theorems
15 and 16].

5. Locally artinian Leavitt path algebras

In this section, we introduce the graded versions of the properties of being
categorically and locally artinian. The main result, Theorem 5.4, characterizes Leavitt
path algebras which are graded locally and graded categorically artinian. As a
corollary, the assumptions that the underlying graph is countable and row-finite can
be dropped from the characterization of locally artinian Leavitt path algebras in [1,
Theorem 2.4]. Also, it is interesting to point out that our results imply that the
properties of being noetherian and artinian differ for Leavitt path algebras in the
following sense.

LK(E) is graded locally noetherian if and only if
LK(E) is locally noetherian while
LK(E) can be graded locally artinian without being locally artinian.

5.1. Graded locally and categorically artinian rings. A ring R is said to be locally
left artinian if for every finite set F of elements of R, there is an idempotent e ∈ R such
that eRe contains F and eRe is left artinian. A ring is categorically left artinian if
every finitely generated left module is artinian. A locally right artinian ring and a
categorically right artinian ring are defined analogously. A locally artinian ring and a
categorically artinian ring are defined using the usual conventions.

By [1, Proposition 1.2], if R =
⊕

i∈I Rui for a set of idempotents ui, i ∈ I, then
R is categorically left artinian if and only if Rui is an artinian left module for each
i ∈ I. A ring R is locally left artinian if and only if there are local units ui, i ∈ I, such
that uiRui is left artinian for every i (see [1, page 99]). By [1, Lemma 1.5], if R is a
categorically left artinian ring with local units, then R is locally left artinian too. By
the paragraph preceding [1, Lemma 1.5], not every locally unital and locally artinian
ring is categorically artinian.

The definitions above adapt to graded rings as follows. A graded module over a
graded ring R is graded artinian if every descending chain of graded submodules is
constant eventually. A graded ring R is graded left artinian if it is graded artinian as a
left module. A graded right artinian ring is defined analogously and a graded artinian
ring is defined using the usual convention.

Definition 5.1. A graded ring R is graded locally left artinian if for every finite set F
of (homogeneous) elements of R, there is a homogeneous idempotent e such that eRe
contains F and eRe is graded left artinian.

https://doi.org/10.1017/S1446788717000295 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000295


252 L. Vaš [24]

A graded ring is graded categorically left artinian if every finitely generated graded
left module is graded artinian.

Similarly as in the definition of a graded locally left noetherian ring, the statements
with and without the word ‘homogeneous’ in parentheses in the definition of a graded
locally left artinian ring are equivalent. A graded locally right artinian ring and a
graded categorically right artinian ring are defined analogously and a graded locally
artinian ring and a graded categorically artinian ring are defined using the usual
conventions.

We summarize some of the properties of the artinian-related concepts in the next
lemma. The proof of the lemma is completely analogous to the proof of Lemma 4.3
and we omit it.

Lemma 5.2. Let R be a graded ring.

(1) If R =
⊕

i∈I Rui for a set of homogeneous idempotents ui, i ∈ I, then R is graded
categorically left artinian if and only if Rui is a graded artinian left module for
each i ∈ I. This statement also has its right-sided analog.

(2) If R is categorically left artinian, then R is graded categorically left artinian.
(3) The ring R is graded locally left artinian if and only if R has homogeneous local

units ui, i ∈ I, such that uiRui is graded left artinian for every i.
(4) If R is graded locally left artinian and ui, i ∈ I, is any set of homogeneous local

units, then uiRui is graded left artinian.
(5) If R is graded local unital and locally left artinian, then R is graded locally left

artinian.
(6) If R is graded locally unital and graded categorically left artinian, then it is

graded locally left artinian.

Statements (2)–(6) have their analogs with the words ‘left’ replaced by ‘right’.

In [14], a ring R is said to be graded semiprime if R has no nonzero nilpotent
graded ideals. If R is graded locally unital, the condition from this definition is
equivalent with xRx = 0 implies that x = 0 for every homogeneous element x. Using
this characterization, it is direct to check that every graded locally unital and graded
regular ring is graded semiprime.

A graded semiprime ring R is said to be graded semisimple if R is a direct sum of
minimal graded left (equivalently, right) ideals. This last condition is equivalent to R
being equal to its graded socle. The following lemma states that some well-known
facts for nongraded rings hold for graded rings as well.

Lemma 5.3. Let R be a graded ring.

(1) If R is graded semisimple, then it is graded categorically artinian.
(2) If R is unital, graded regular and graded artinian, then R is graded semisimple.
(3) If R is graded regular and graded locally artinian, then R is graded semisimple.
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Proof. To show (1), let R be graded semisimple. Each minimal graded left ideal from
the decomposition of R as a direct sum of such ideals is graded artinian since it is
graded simple. Thus, any finitely generated graded free left module is graded artinian
and so any finitely generated graded left module (which is a graded homomorphic
image of a finitely generated graded free left module) is graded artinian too.

The proof of (2) is analogous to the nongraded version. If R is unital and graded
regular, then the graded Jacobson radical is zero (by the graded version of [9, Corollary
1.2]). If R is also graded artinian, then the graded version of the Artin–Wedderburn
theorem (see [13, Remark 1.4.8]) implies that R is a finite direct sum of minimal graded
left ideals each of which is graded isomorphic to a graded matrix ring over a graded
field (a commutative graded ring in which every nonzero homogeneous element has a
multiplicative inverse). Thus, R is graded semisimple.

To show (3), it is sufficient to show that R is equal to its graded socle. We recall
that the local ring Ra for a ∈ R is defined as Ra = {axa | x ∈ R} with multiplication
axa · aya = axaya. The element axa is denoted by x when considered as an element of
Ra. We also recall [17, Proposition 2.1 (v)] stating that for an element a of a semiprime
ring R, x is in the socle of Ra if and only if axa is in the socle of R. It is direct to check
that the graded version of this statement holds as well. In the special case when a is
a homogeneous idempotent and x is a homogeneous element of aRa, then x is in the
graded socle of aRa if and only if x is in the graded socle of R.

Let x ∈ R be homogeneous and u a homogeneous idempotent such that x ∈ uRu and
uRu is graded artinian (such u exists by part (3) of Lemma 5.2). Since R is graded
regular, uRu is graded regular too and so uRu is graded semisimple by part (2). Thus,
x is in the graded socle of uRu and hence x is in the graded socle of R by the previous
paragraph. �

5.2. Locally artinian Leavitt path algebras. By [1, Theorem 2.4], if E is a
countable, row-finite graph and K a field, the following conditions are equivalent:

• LK(E) is semisimple;
• LK(E) is categorically left (right) artinian;
• LK(E) is locally left (right) artinian;
• E is acyclic and every infinite path ends in a sink;
• LK(E) �

⊕
i∈I Mκi (K), where I is a countable set, and each κi is a countable

cardinal.

The isomorphism in the last condition can be taken to be a ring or an algebra
isomorphism. We characterize the graded and the nongraded artinian-related
properties of Leavitt path algebras without imposing any restrictions on the cardinality
of the graph.

Theorem 5.4. For any graph E and a field K, the following conditions are equivalent
to conditions (1)–(15) of Corollaries 3.4 and 3.9, Theorem 4.4 and Remark 4.5:
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(15) LK(E) is graded semisimple;
(16l) LK(E) is graded categorically left artinian;
(16r) LK(E) is graded categorically right artinian;
(17l) LK(E) is graded locally left artinian;
(17r) LK(E) is graded locally right artinian.

We let (16) and (17) stand for statements (16l) and (17l) respectively, with the word
‘left’ deleted.

The following conditions are equivalent to conditions (1′)–(5′) of Corollary 3.5 and
imply conditions (1)–(17):

(5′) E is a row-finite, acyclic graph such that every infinite path ends in a sink;
(6′) LK(E) is semisimple;
(7′l) LK(E) is categorically left artinian;
(7′r) LK(E) is categorically right artinian;
(8′l) LK(E) is locally left artinian;
(8′r) LK(E) is locally right artinian.

We let (7′) and (8′) stand for statements (7′l) and (8′l) respectively, with the word ‘left’
deleted.

Proof. The left–right symmetry in the conditions holds for the same reason as in
Theorem 4.4.

The implication (15)⇒ (16) holds by the first part of Lemma 5.3 and (17)⇒ (15)
holds by the third part of Lemma 5.3 since LK(E) is graded regular by [12, Theorem
9]. The implication (16) ⇒ (17) holds by part (6) of Lemma 5.2. Condition (1) of
Corollary 3.4 implies (15), and the converse holds by [14, Theorem 2.10] which states
that the graded socle of a Leavitt path algebra is exactly the graded algebra as in
condition (1) of Corollary 3.4. Thus, conditions (1)–(17) are equivalent.

The implications (7′) ⇒ (16) and (8′) ⇒ (17) hold by parts (2) and (5) of
Lemma 5.2.

Conditions (6′) and (8′) are equivalent for any semiprime ring by [1, Theorem 2.3].
The implication (7′) ⇒ (8′) holds by part (6) of Lemma 5.2 if the grading is not
considered (also by [1, Lemma 1.5]). The implication (5′)⇒ (7′) holds by Corollary
3.5 since any direct sum of algebras of the formMκ(K), for a cardinal κ, is categorically
artinian.

It remains to show that (8′) implies (5′). Condition (8′) implies condition (17),
which is shown to be equivalent to condition (5) of Corollary 3.4. Thus, E is a row-
finite, no-exit graph in which every infinite path ends in a sink or a cycle. Assuming
that E has a cycle, there is an algebra of the formMµ j (K[x, x−1]) present in the algebra
S from Corollary 3.4. The algebra K[x, x−1] is not left artinian since the left ideals
K[x, x−1]xn are strictly decreasing. Hence, E has to be without cycles. Thus, (5′)
holds. �

https://doi.org/10.1017/S1446788717000295 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000295


[27] Graded chain conditions and Leavitt path algebras of no-exit graphs 255

We note that the algebra K[x, x−1] is graded artinian since it is graded simple (see
[14, page 463]), but not artinian. Considering the loop • dd and the fact that the
Leavitt path algebra of this graph is ∗-isomorphic to K[x, x−1], we can see that the
following implication is strict:

LK(E) is locally artinian =⇒ LK(E) is graded locally artinian.

Thus, the equivalent conditions (1′)–(8′) of Theorem 5.4 are strictly stronger than
the equivalent conditions (1)–(17).
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