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Abstract

We show that closed Sol3 × E1-manifolds are Seifert fibred, with general fibre the torus, and base one of
the flat 2-orbifolds T,Kb,A,Mb, S (2, 2, 2, 2), P(2, 2) or D(2, 2), and outline how such manifolds may be
classified.
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1. Introduction

A closed 4-manifold M is homeomorphic to an infrasolvmanifold if and only if
χ(M) = 0 and π1(M) is torsion-free and virtually poly-Z, of Hirsch length 4. Every
such group is realised in this way, and M is determined up to homeomorphism by π.
Such manifolds are either mapping tori of self-homeomorphisms of three-dimensional
infrasolvmanifolds or are unions of two twisted I-bundles over such 3-manifolds. (See
[3, Ch. 8].)

There are six families of four-dimensional infrasolvmanifolds, corresponding to
the geometries E4, Nil3 × E1, Nil4, Sol40, Sol41 and Sol4m,n of solvable Lie type. The 74
flat 4-manifolds can be listed, while Nil3 × E1- and Nil4-manifolds (infranilmanifolds
of dimension 4) were classified in [2]. Every torsion-free, virtually poly-Z group
of Hirsch length 4 which is not virtually nilpotent is the fundamental group of a
4-manifold with one of the remaining geometries [4]. Manifolds with geometry
Sol4m,n (with m , n) or Sol40 are mapping tori of self-homeomorphisms of the 3-
torus R3/Z3, and so may be classified in terms of conjugacy classes of matrices in
GL(3, Z). The relationship between the various Sol4m,n geometries is not obvious
(see [3, page 137].) However, when m = n all agree with the product geometry
Sol3 × E1. Partial classifications of Sol3 × E1- and Sol41-manifolds were given in [1].
A complete classification of Sol41-manifolds has recently appeared [6].
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The next section is on notation and terminology, and Section 3 gives some simple
observations on subgroups of GL(2, Z) with two ends. In Section 4 we show that
Sol3 × E1-manifolds have canonical Seifert fibrations, with general fibre the torus, and
base one of the seven flat 2-orbifolds T , Kb,A,Mb, S (2,2,2,2), P(2,2) orD(2,2). The
fibration is unique, and so this suggests a route to the classification of such manifolds,
in which the key elements are the base B, the action α of πorb

1 (B) on N = π1(F), where
F is the general fibre, and an ‘Euler class’ in H2(β; Nα). The manifolds which are
mapping tori may also be classified in terms of conjugacy classes of automorphisms.
In Section 5 we consider the interaction of the Seifert fibrations, mapping torus
structure and orientability for such manifolds, but shall not otherwise classify them
explicitly. The others all have base orbifold either S (2, 2, 2, 2), P(2, 2) or D(2, 2). The
orbifold fundamental groups all admit epimorphisms to the infinite dihedral group
Z/2Z ∗ Z/2Z, and so the Sol3 × E1-group has a corresponding decomposition as a
generalised free product with amalgamation. We use this structure in Section 6 to
give examples of each of these three types. In Section 7 we sketch why the Seifert
approach should suffice to classify the Sol3 × E1-manifolds with such bases, but we do
not pursue such a classification in detail.

2. Notation and terminology

If G is a group let G′ be its commutator subgroup and let β1(G) be the rank of G/G′.
Let I(G) be the preimage of the torsion of G/G′ in G, and let

√
G be the Hirsch–Plotkin

radical of G. (In the cases of interest below,
√

G is the unique maximal nilpotent
normal subgroup of G.) Let X2(G) be the subgroup generated by squares. If x ∈ G let
cx be the automorphism induced by conjugation by x. If H ≤ G let CG(H) and NG(H)
be the centraliser and normaliser of H in G, respectively. In particular, ζG = CG(G) is
the centre of G. If G is virtually solvable let h(G) be its Hirsch length.

The symbols G1, . . . ,G6 and B1, . . . , B4 denote the six orientable and four
nonorientable flat 3-manifold groups, respectively. (See [3, Ch. 8].)

Our notation for flat 2-orbifolds is taken from [7, Appendix A], embellished with
‘blackboard bold’ font for the initial letters of the symbols for such orbifolds with
reflector curves. Similarly, I denotes the reflector interval (the quotient of S 1 by
complex conjugation). (This font is otherwise used for the integers, rationals and
real numbers, and for the initial letters of names of geometries. We use italics for the
symbols for the associated model spaces, in this paper the Lie group Sol3 ×R.)

3. Some lemmas on subgroups of GL(2,Z)

Let D∞ = Z/2Z ∗ Z/2Z be the infinite dihedral group, with presentation 〈u, v |
u2 = v2 = 1〉. Recall that a group G has two ends if and only if G has an infinite
cyclic subgroup of finite index if and only if G has a maximal finite normal subgroup
with quotient Z or D∞.

Lemma 3.1. Let F be a finite subgroup of G = GL(2, Z). If NG(F) is infinite then
F ≤ {±I}.
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Proof. If P ∈ F \ {±I} then it is conjugate to one of
(1 0
0 −1

)
,
(0 1
1 0

)
,
( 0 1
−1 −1

)
,
( 0 1
−1 0

)
or

( 0 1
−1 1

)
.

(These have orders 2, 2, 3, 4 and 6, respectively.) In each case CG(P) is finite, and so
CG(F) is finite. Since Aut(F) is finite the lemma follows. �

Since we may assume without loss of generality that −I ∈ F, this lemma also
follows from the fact that PSL(2,Z) � Z/2Z ∗ Z/3Z.

Lemma 3.2. Let H < GL(2,Z) have two ends. Then either

(1) H � Z; or
(2) H � Z ⊕ 〈−I〉; or
(3) H = 〈A, B〉 where A2 = B2 = I; or
(4) H = 〈A, B,−I〉 where A2 = B2 = I; or
(5) H = 〈A, B〉 where A2 = −I and B2 = I; or
(6) H = 〈A, B〉 where A2 = B2 = −I.

In each case neither A nor B is −I.

Proof. Let F be the maximal finite normal subgroup of H. Then F ≤ {±I}, by Lemma
3.1. If H/F � Z then (1) or (2) holds.

Suppose that H/F � D∞, and let A, B ∈ H represent generators of the free factors of
D∞. Then A and B each have order dividing 4. Since AB has infinite order, neither A
nor B is −I. If A has order 2 then det(A) = −1, while if A has order 4 then det(A) = +1
and A2 = −I, and similarly for B. Thus if F = 1 then (3) holds, while if F = {±I} then
(4), (5) or (6) holds. �

Let D̃∞ = 〈a, b | a2 = b4 = 1, ab2 = b2a〉 be the central extension of D∞ arising in
case (5) of Lemma 2.

4. Seifert fibrations

The component of the identity in Isom(Sol3 × E1) is the solvable Lie group S =

Sol3 ×R � R3 oΘ R, where Θ(t) = diag[et, 1, e−t]. The nilradical of S is
√
S � R3,

and S/
√
S � R. (See [10], or [3, page 137].) The group of path components of

Isom(Sol3 × E1) is D8 × Z/2Z.

Lemma 4.1. Let π be a discrete cocompact subgroup of Isom(Sol3 × E1). Then
√
π � Z3, and π ∩ S′ � Z2.

Proof. Let T (π) = π ∩ S. Then [π : T (π)] ≤ |D8 × Z/2Z| = 16. The intersection T (π) ∩√
S = π ∩

√
S is a lattice in

√
S � R3, and so T (π)/π ∩

√
S is a discrete subgroup

of S/
√
S � R. (See [8, Ch. 2].) Therefore T (π) � Z3 oA Z, where A ∈ GL(3,Z) has

eigenvalues ξ, 1, ξ−1, for some ξ > 1. Hence T (π)′ � Z2 and
√

T (π) = π ∩
√
S � Z3.

Since π ∩
√
S is normal in π, it is a subgroup of

√
π. Since [π : T (π)] is finite,

h(
√
π) = 3, and since

√
π is torsion-free nilpotent it follows that

√
π � Z3.

The intersection π ∩ S′ is a discrete subgroup of S′ � R2, and so has rank at most
2. Since T (π)′ ≤ π ∩ S′, we see that π ∩ S′ � Z2. �
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The intersection T (π) = π ∩ S is the translation subgroup of π.

Theorem 4.2. Let M be a Sol3 × E1-manifold. Then M has an essentially unique Seifert
fibration, with general fibre T and base B = T, Kb, A, Mb, S (2, 2, 2, 2), P(2, 2) or
D(2, 2). In particular, β1(π) ≤ 2.

Proof. The manifold M is a quotient of the Lie group S by a lattice π = π1(M)
in Isom(Sol3 × E1). The foliation of S by translates of its commutator subgroup
is preserved by the isometry group, and so it induces a canonical foliation on M.
Since π ∩ S′ � Z2, by Lemma 4.1, the leaf map for this foliation is a Seifert fibration
p : M → B, with base B a flat 2-orbifold and general fibre F a flat 2-manifold. Hence
π has a normal subgroup N such that π/N � β = πorb

1 (B) is a flat 2-orbifold group.
Conjugation in π determines an ‘action’ homomorphism α : β→ Out(N). Since

π is not virtually nilpotent, Im(α) is infinite. Therefore N � Z2 and F � T , since
Out(π1(Kb)) is finite. Since Im(α) is an infinite solvable subgroup of Out(N) �
GL(2,Z), it must be virtually Z. Hence B fibres over S 1 or I.

Let M̂ be the finite covering space induced from a torus B̂ covering B, and let
π̂ = π1(M̂). Then β1(̂π) = β1(̂π/N) = 2, and so N and π̂′ are commensurable. Hence N
has finite image in π/π′. In particular, β1(π) = β1(β) ≤ 2.

Suppose that q : M→ B is another Seifert fibration and N is the fundamental group
of the general fibre. The base B is a flat 2-orbifold, since π is solvable, and again must
itself fibre over S 1 or I. After passing to a subgroup π̂ of finite index, if necessary, we
may assume that π̂/N � Z2. Since N and N ∩ π̂ have finite image in π̂/̂π′, N and N
must each be commensurable with π̂′ � Z2. Thus N and N each have finite index in
NN. Since the groups of flat 2-orbifolds do not have nontrivial finite normal subgroups
it follows that N = N. Thus the fibration is unique (up to automorphisms of the base).

Let α̃ be the composition of the projection of π onto β with the action α, and
let ν = α̃−1(F), where F is the maximal finite normal subgroup of Im(α). Since
N <
√
π � Z3, we see that

√
π ≤ Ker(α̃). Since N is central in Ker(α̃), which is a

torsion-free virtually poly-Z group of Hirsch length 3, it follows that Ker(α̃) =
√
π,

and ν =
√
π or ν � G2. Since

√
π/N is an abelian normal subgroup of β = π/N and β

has no nontrivial finite normal subgroup
√
π/N � Z, and so

√
π � N × Z.

If ν =
√
π then ν/N � Z. If ν � G2 then N = I(ν), and so we again have ν/N � Z. In

each case B must fibre over S 1 or I with general fibre S 1, and so B = T , Kb, A, Mb,
S (2, 2, 2, 2), P(2, 2), or D(2, 2). �

The existence of such a Seifert fibration is discussed briefly in [3, pages 146 and
176].

The torus only fibres over S 1, the next three have fibrations of both kinds, while
the remaining three only fibre over I. If π/π′ is finite then B = S (2, 2, 2, 2), P(2, 2)
or D(2, 2), and in each case the epimorphism from β to πorb

1 (I) � D∞ is unique up to
composition with an automorphism of β. (This is easily verified by considering the
infinite cyclic normal subgroups of β.) If B = S (2, 2, 2, 2) or D(2, 2) there is also an
essentially unique epimorphism to D∞ × Z/2Z, but none to D̃∞. If B = P(2, 2) there
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is no epimorphism to D∞ × Z/2Z, but there is one to D̃∞. There are no actions with
image as in case (6) of Lemma 3.2.

We shall show below that each of these seven flat 2-orbifolds is the base of the
Seifert fibration of some Sol3 × E1-manifold. There are two further flat 2-orbifolds
which fibre over 1-orbifolds, namely D(2, 2, 2) and D(2, 2, 2, 2), but these do not arise
here, by Theorem 4.2.

We may derive some of the algebraic consequences of Theorem 4.2 as follows. Let
τ be a characteristic subgroup of finite index in π, and such that τ ≤ S. (For instance,
we could let τ be be the intersection of all normal subgroups of index 8 in π.) Then
τ′ � Z2, and π/τ′ is virtually Z2. Let N be the preimage in π of the maximal finite
normal subgroup of π/τ′. Then N is a characteristic subgroup and h(N) = 2. Hence
N � Z2 and h(π/N) = 2. Since π/N is virtually Z2 and has no nontrivial finite normal
subgroup, it is a flat 2-orbifold group.

Closed Nil3 × E1- and Nil4-manifolds also have canonical Seifert fibrations. For
these, the images of the fundamental group of the general fibre in π are ζ

√
π and ζ2

√
π

(the second stage of the upper central series), respectively. In general, Nil3 × E1-
manifolds may have many Seifert fibrations, but in theNil4 case the fibration is unique.

5. Mapping tori
Let π be the fundamental group of a Sol3 × E1-manifold M. If π/π′ is infinite then π

is a semidirect product κ o Z, where κ is a torsion-free virtually poly-Z group of Hirsch
length 3. Either κ is the group of a Sol3-manifold or

√
π ≤ κ, and then [κ :

√
π] ≤ 2,

by [3, Theorem 8.4]. Such semidirect products may be classified in terms of conjugacy
classes in Out(κ). In this section we shall consider the interactions between Seifert
fibrations, mapping tori and orientability for these groups. We shall consider the
groups with π/π′ finite in later sections.

Lemma 5.1. If π � κ o Z, where κ = Z3 or G2 or is a Sol3-group such that κ/
√
κ � Z,

then B = T or Kb. Conversely, if B = T or Kb and
√
π ≤ κ then π �

√
π o Z or G2 o Z.

Proof. In each case N < κ and κ/N � Z. Hence β � Z2 or Z o−I Z and so B = T or Kb.
If B = T or Kb and

√
π ≤ κ then Im(α) is Z or Z ⊕ 〈−I〉, by Lemma 3.2, and so

π �
√
π o Z or G2 o Z. �

In Theorem 4.2 it was shown that β1(π) = β1(β) ≤ 2, and clearly β1(π) = 2 if and only
if B = T . If so, then π �

√
π o Z or G2 o Z, since Im(α) is abelian. The group π is also

a semidirect product σ o Z, where σ is a Sol3-group (with σ/
√
σ � Z), in infinitely

many ways. (However, π need not be a direct product σ × Z.) There are orientable
examples and nonorientable examples. (All T -bundles over T have been classified,
in terms of extension data [9]. However [9, Proposition 3] appears to overlook some
cases.)

If β(π) = 1 then B = Kb,A or Mb, and the splitting of π as a semidirect product is
unique. If B = Kb there are orientable and nonorientable examples with π �

√
π o Z

and with σ o Z, where σ is a Sol3-group such that σ/
√
σ � Z. (See [3, Section 8 of

Ch. 8].) Conversely, if π � σ o Z, where σ/
√
σ � Z, then B = T or Kb.
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Lemma 5.2. Let σ be a Sol3-group such that σ/
√
σ � D∞. Then σ is orientable, and

automorphisms of σ are orientation preserving.

Proof. The hypotheses imply that σ/σ′ is finite. Thus H1(σ;Q) = 0. Since σ is a
PD3-group, χ(σ) = 0, Therefore H3(σ;Q) , 0, and so σ is orientable. (This can also
be deduced from the fact that if N ∈ GL(2,C) is conjugate to N−1 then either det(N) = 1
or N2 = 1.) Let [σ] ∈ H3(σ;Z) be a generator.

Let u and v ∈ σ represent generating involutions of D∞, and let t = uv. Let f be
an automorphism of σ. Then f restricts to an automorphism of

√
σ, and induces

an automorphism of σ/
√
σ. After composition with an inner automorphism of σ,

if necessary, we may assume that either f (u) ≡ u and f (v) ≡ v, or f (u) ≡ v and
f (v) ≡ u mod

√
σ. Let P = f |√σ, and suppose that f (t) ≡ tε mod

√
σ. Then f∗[σ] =

ε det(P)[σ].
In the first case, f (t) ≡ t mod

√
σ, while Pcu|

√
σ = cu|

√
σP and Pcv|

√
σ = cv|

√
σP,

and so P = I. In the second case, f (t) ≡ t−1 mod
√
σ, while Pcu|

√
σP−1 = cv|

√
σ and

Pcv|
√
σP−1 = cu|

√
σ. Hence P2 = I. Since ct = cucv and ct |

√
σ has infinite order, P , ±I.

Therefore det P = −1. In each case, f is orientation preserving. �

If σ is a Sol3-group then Out(σ) is finite, by [3, Theorem 8.10].

Theorem 5.3. Suppose that B = A orMb. Then M is orientable if and only if π � σ o Z,
where σ is a Sol3-group such that σ/

√
σ � D∞. If M is nonorientable then π � B1 o Z.

Proof. If M is Seifert fibred over B = A orMb then β1(M) = β1(β) = 1. Hence there is
a unique splitting π = κ oθ Z. Moreover, N < κ and κ/N � D∞, since B = A orMb. If κ
is a Sol3-group then N =

√
κ, since

√
κ is characteristic and ν/

√
κ has no nontrivial finite

normal subgroup. Since κ is orientable and θ is orientation preserving, by Lemma 5.2,
M is orientable.

Conversely, if π � σ o Z, where σ is a Sol3-group such that σ/
√
σ � D∞, then

N =
√
σ and so π/N � D∞ o Z. Hence B = A orMb.

If κ maps onto D∞ and is virtually abelian then [κ :
√
π] = 2, by [3, Theorem 8.4].

Since κ is not G2, by Lemma 5.1, it must be B1 or B2, and since B2 does not map onto
D∞, we must have κ = B1. Hence N = ζB1 � Z

2, since ζD∞ = 1 and B1/ζB1 � D∞.
Since B1 is nonorientable, M is nonorientable. �

There are examples of each type allowed by Theorem 5.3. For instance, let σ be the
Sol3-group with presentation

〈x, y, u, v | xy = yx, u2 = x, uyu−1 = y, v2 = x3y−2, vxv−1 = x17y−12, vyv−1 = x24y−17〉.

Then
√
σ = 〈x, y〉 and σ/

√
σ � D∞. We may define an involution f of σ by f (u) = v,

f (y) = x4y−3 and f (v) = u. The groups σ × Z and σ o f Z are groups of orientable
Sol3 × E1-manifolds which are Seifert fibred over A andMb, respectively.

The flat 3-manifold group B1 has a presentation

〈X, y, z | Xz = zX, XyX−1 = y−1, yz = zy〉.
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Let θ and ψ be the automorphisms defined by θ(X) = X3z4, θ(y) = y and θ(z) = X2z3,
and ψ(X) = Xyz, ψ(y) = y−1 and ψ(z) = X2z3, respectively. Then B1 oθ Z and B1 oψ Z
are the groups of nonorientable Sol3 × E1-manifolds which are Seifert fibred over A
andMb, respectively.

6. Examples with π/π′ finite

Suppose now that β1(π) = 0. Then π/ν � D∞, and so π � G ∗ν H, where ν is the
preimage of the maximal finite normal subgroup of Im(α) and [G : ν] = [H : ν] = 2.
Moreover, either ν =

√
π and Im(α) � D∞ or ν � G2 � Z−IZ and Im(α) � D̃∞ or

D∞ × Z/2Z. Since ν/N is a normal subgroup of β it has no nontrivial finite normal
subgroup. Therefore if ν � Z3 then ν/N � Z and N is a direct summand of ν, while
if ν � G2 then either ν/N � Z and N = I(ν) or ν/N � D∞. (However, N need not be a
canonical subgroup of ν.)

In order to describe our examples clearly, we should be more precise about our
definitions of such amalgamated free products. We shall assume that ν is given as a
subgroup of G and that φ : ν→ H is a monomorphism. Then we shall write

G ∗φ H = G ∗ H/〈〈φ(n) = n ∀ n ∈ ν〉〉.

Since ν, G and H are each finite extensions of
√
π, they are flat 3-manifold

groups. If G and H were both nonorientable then π would be orientable, and so
β1(π) = 1 + 1

2 (β2(π) − χ(π)) > 0, contrary to the assumption. Hence we may assume
that H is orientable. A Mayer–Vietoris argument shows that β1(G) + β1(H) ≤ β1(ν).

If ν =
√
π then G and H each have holonomy of order 2 or less, and so β(G) and

β(H) are each greater than 0. We may then assume that H = G2 and G = G2, B1 or B2.
In each case ν =

√
G =
√

H.
If ν � G2 then we may assume that H � G6 and G � G2,G4,G6, B3 or B4. If

G � G4, B3 or B4 it has a unique subgroup of index 2 which is isomorphic to G2,
while if G � G2 or G6 there are three such subgroups, which are equivalent under
automorphisms of G.

We shall use the following presentations for these groups:

Z3 = 〈x, y, z | xy = yx, xz = zx, yz = zy〉,
G2 = 〈r, y, z | ryr−1 = y−1, rzr−1 = z−1, yz = zy〉,
G4 = 〈t, y, z | tyt−1 = z, tzt−1 = y−1, yz = zy〉,
G6 = 〈r, s | rs2r−1 = s−2, sr2s−1 = r−2〉,

B1 = 〈X, y, z | Xz = zX, XyX−1 = y−1, yz = zy〉,
B2 = 〈X, y, z | XyX−1 = y−1, XzX−1 = yz, yz = zy〉,
B3 = 〈t,Y, z | tYt−1 = Y−1, tz = zt, YzY−1 = z−1〉,

B4 = 〈t,Y, z | tYt−1 = Y−1z, tz = zt, YzY−1 = z−1〉.

(Here r2 ∈ G2, t4 ∈ G4, r2 ∈ G6, X2 ∈ B1, X2 ∈ B2, t2 ∈ B3 and t2 ∈ B4 correspond
to x ∈ Z3, while s2 ∈ G6, Y2 ∈ B3 and Y2 ∈ B4 correspond to y ∈ Z3, and (rs)2 ∈ G6
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corresponds to z ∈ Z3.) In each case, let A(G) be the maximal abelian normal subgroup
of the flat 3-manifold group G.

In order to realise the remaining bases S (2, 2, 2, 2), P(2, 2) and D(2, 2), it shall
suffice to consider the case ν � Z3. We shall assume that A(ν), A(G) and A(H)
have bases {x, y, z}, as above. Clearly N < A(ν) ≤ A(G) ∩ A(H). Since G/N has
ν/N � Z as an index-2 subgroup, G/N � Z, Z ⊕ Z/2Z or D∞. If G � G2 then either
N = I(G) = 〈y, z〉 or N � 〈x,w〉 for some w ∈ I(G), since N is normal in G. However,
if N = I(G) then G would act on N via −I, and so Im(α) would be finite. Hence, we
may assume that N � 〈x, y〉, and so G/N � D∞.

If G � B1 then either N � 〈xazb, y〉, with (2a, b) = 1 and G/N � Z, or N � 〈xaz2c, y〉,
with (2a, c) = 1 and G/N � Z ⊕ Z/2Z, or N � 〈x, z〉 and G/N � D∞. But in the latter
case G would act on N via −I, and so Im(α) would be finite.

If G � B2 we find that G/N can be either Z or Z ⊕ Z/2Z. However, B2 does not
admit any epimorphisms to D∞.

Let G, H � G2, and let φ : A(G)→ A(H) be the isomorphism given in terms of
standard bases by the bordered 3 × 3 matrix C ⊕ [1] =

(C 0
0 1

)
, where C =

(1 1
1 2

)
, and let

π = G ∗φ H. Then N = 〈x, y〉 < G is normal in π, and β = π/N � D∞ ∗Z D∞. Let u ∈ G
and v ∈ H correspond to r ∈ G2. Then the action of uv on ν by conjugation has matrix(

3 −2 0
−4 3 0
0 0 1

)
. The corresponding semidirect product is the fundamental group of a mapping

torus which is a Sol3 × E1-manifold. Hence the overgroup π is the fundamental group
of a Sol3 × E1-manifold which is Seifert fibred over B = S (2, 2, 2, 2). If we set G = B1

instead, and use the same matrices, we get an example with B = D(2, 2) instead, since
π/N � (Z ⊕ Z/2Z) ∗Z D∞. Modifying the 3 × 3 matrix so that each entry in its third
column is 1 gives an example with B = P(2, 2), since π/N � Z ∗Z D∞.

Similar examples can be constructed when ν � G2. We then have G/N � Z (and
N = I(G)) if G � G4, G/N � Z ⊕ Z/2Z if G = B3 or B4, and G/N � D∞ if G � G6.
Restriction from G2 to I(G2) induces an epimorphism from Aut(G2) to Aut(I(G2)).
Thus, given C ∈ GL(2,Z) and G = G4,G6, B3 or B4, there is an embedding of G2 in G
whose restriction to I(G2) has matrix C with respect to the standard bases, and which
fixes t. As before, the corresponding groups π = G ∗φ H are Sol3 × E1-groups, with
β = π/N � Z ∗Z D∞, (Z ⊕ Z/2Z) ∗Z D∞ or D∞ ∗Z D∞, respectively.

It is easy to see that every flat 3-manifold group or Sol3-group can be generated
by at most three elements [5], and hence that every Sol3 × E1-group requires at
most four generators. This is best possible in general. If A =

(1 2
2 5

)
then σ = Z2 oA Z is

a Sol3-group such that H1(σ; F2) � F3
2, and so σ × Z is a Sol3 × E1-group that cannot

be generated by three elements. Similarly, if φ =
(A 0

0 1
)
∈ GL(3,Z) then π = G2 ∗φ G2

needs four generators.

7. Outline of the classification in terms of Seifert data

The subgroup N is characteristic in π. Therefore any isomorphism f : π→ π̃ of
such groups induces isomorphisms f |N : N → Ñ and f̄ : π/N → π̃/Ñ. Hence the
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classification of such groups may be derived from the classification of the extensions

ξ : 1→ N → π(ξ)→ β→ 1.

The ingredients of such a classification are the quotient group β, the action α :
β→ Out(N) � GL(2,Z) and the cohomology class e(ξ) ∈ H2(β; Nα), where Nα is N
considered as a Z[β]-module with module structure determined by α. Given β, N and
α, the groups π(ξ) and π(ξ′) are isomorphic if and only if e(ξ′) = g#e(ξ), where g is a
β-linear automorphism of N.

The group π(ξ) determined by such an extension is the fundamental group of a
Sol3 × E1-manifold if and only if it is torsion-free and Im(α) contains a matrix with
trace greater than 2. The torsion condition can be checked by restricting the extension
to the finite cyclic subgroups of β. In all cases of interest to us, β is either torsion-free
or a semidirect product γ o Z/2Z where γ is torsion-free. The 2-torsion must act via I
or ±U, where U =

(1 0
0 −1

)
(and not via −I or ±

(0 1
1 0

)
).

Lemma 7.1. If β � γ o Z/2Z with γ torsion-free then π(ξ) is torsion-free if and only if
e(ξ|Z/2Z) , 0 in H2(Z/2Z; (Z2)α).

Proof. Since the nontrivial finite subgroups of β have order 2, and are all conjugate, π
is torsion-free if and only if any one of these subgroups has torsion-free preimage in π.
This is an extension of Z/2Z by Z2, with action trivial or via U, and the claim follows
easily. �

The identification of N with Z2 and π/N with β is only well defined up to
compositions with automorphisms, and so the same is true for the action α.

Let D(P) be the subgroup of GL(2, Z) generated by U and V = PUP−1, where
P ∈ GL(2,Z) is such that UV has infinite order. Then D(P) � D∞. If Im(α) � D∞ then
it is generated by elements conjugate to U, and so is conjugate to some D(P). There
is a matrix with trace greater than 2 in Im(α) if and only if UV has an eigenvalue not
equal to ±1. The pair of involutions u, v generating D∞ is unique up to interchange
and (simultaneous) conjugation. Therefore D(P) is conjugate to D(P̃) if and only if
P̃ = UδPεUδ, where δ = 0 or 1 and ε = ±1.

We may find the epimorphisms from β to D∞ by considering the possible kernels,
which are normal subgroups of Hirsch length 1.

If B = S (2, 2, 2, 2) then β = Z2 o−1 Z/2Z, so every subgroup of
√
β = Z2 is normal,

while normal subgroups with nontrivial torsion have finite index. In this case the
normal subgroups of Hirsch length 1 are infinite cyclic, and all epimorphisms from
β to D∞ are equivalent up to composition with an automorphism of β. Similarly, all
epimorphisms to D∞ × Z/2Z are equivalent. On the other hand, this group has no
epimorphisms to D̃∞.

If B = D(2, 2) then β = 〈 j, u, v | u jv = jvu, j2 = u2 = v2 = 1〉, and there are just
two maximal normal subgroups of Hirsch length 1, namely 〈 jv〉 and 〈u, ( ju)2〉. The
quotients by 〈( jv)2〉 and 〈( ju)2〉 are each D∞ × Z/2Z. In each case, the epimorphisms
are inequivalent. On the other hand, this group has no epimorphisms to D̃∞.
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If B = P(2, 2) then β = 〈s, u | (us2)2 = u2 = 1〉, and there are again just two maximal
normal subgroups of Hirsch length 1, namely 〈s2〉 and 〈(us)2〉. There is an
automorphism that fixes u and swaps s with us. The quotients by 〈s4〉 and 〈(us)4〉

are each D̃∞. In each case, the epimorphisms are equivalent. On the other hand, since
this group has a 2-generator presentation it has no epimorphism to D∞ × Z/2Z.

The possible actions αwith Im(α) � D∞ and with given kernel may be parametrised
by matrices P ∈ GL(2,Z) such that UPUP−1 has an eigenvalue not equal to ±1, modulo
inversion and conjugation by U. Similarly for epimorphisms to D∞ × Z/2Z, since the
Z/2Z direct factor must be generated by ±I. Let W = ±

( 0 1
−1 0

)
. Then actions with

Im(α) � D̃∞ are conjugate to actions generated by U and PWP−1, such that UPWP−1

has an eigenvalue not equal to ±1, modulo conjugation by U.
The final stage of the classification is the determination of the possible extensions

with given base and action, modulo automorphisms of the coefficients. We shall settle
for a slightly weaker result.

Theorem 7.2. There are only finitely many Sol3 × E1-groups with given base group β
and action α.

Proof. The cohomology groups H2(β; Nα) may be estimated by using the Lyndon–
Hochschild–Serre spectral sequence

Hp(β/
√
β; Hq(

√
β; Nα))⇒ Hp+q(β; Nα)

for β as a extension of the finite group β/
√
β by

√
β � Z2. Now H0(

√
β; Nα) = 0, since

α(
√
β) contains matrices with no eigenvalue 1, and Hq(

√
β; Nα) = 0, for q > 2. Hence

this spectral sequence has just two nonzero columns, and so there is an exact sequence

H1(β/
√
β; H1(

√
β; Nα))→ H2(β; Nα)→ H0(β/

√
β; H2(

√
β; Nα)).

Since Hq(
√
β; Nα) is finitely generated, for all q, the first term is finite. Poincaré duality

for
√
β gives H2(

√
β; Nα) � H0(

√
β; Nα). This is again finite, since α(

√
β) contains

matrices with no eigenvalue 1, and so the result follows. �
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