
Forum of Mathematics, Sigma (2013), Vol. 1, e2, 40 pages
doi:10.1017/fms.2013.2

1

MIXING FOR PROGRESSIONS IN NONABELIAN
GROUPS

TERENCE TAO
UCLA Department of Mathematics, Los Angeles, CA 90095-1555, USA;

email: tao@math.ucla.edu

Received 11 December 2012; accepted 31 May 2013

Abstract

We study the mixing properties of progressions (x, xg, xg2), (x, xg, xg2, xg3) of length three and
four in a model class of finite nonabelian groups, namely the special linear groups SLd(F) over a
finite field F, with d bounded. For length three progressions (x, xg, xg2), we establish a strong
mixing property (with an error term that decays polynomially in the order |F| of F), which
among other things counts the number of such progressions in any given dense subset A of
SLd(F), answering a question of Gowers for this class of groups. For length four progressions
(x, xg, xg2, xg3), we establish a partial result in the d = 2 case if the shift g is restricted to be
diagonalizable over F, although in this case we do not recover polynomial bounds in the error term.
Our methods include the use of the Cauchy–Schwarz inequality, the abelian Fourier transform, the
Lang–Weil bound for the number of points in an algebraic variety over a finite field, some algebraic
geometry, and (in the case of length four progressions) the multidimensional Szemerédi theorem.

2010 Mathematics Subject Classification: 11B30, 20D60

1. Introduction

Let G= (G, ·) be a finite group, not necessarily abelian. Given a natural number
k ≥ 1 and k functions f0, . . . , fk−1: G→ C, we define the k-linear form

Λk,G(f0, . . . , fk−1) := Ex,g∈G

k−1∏
i=0

fi(xgi−1),
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where E denotes the averaging notation

EEf := Ex∈Ef (x) :=
1
|E|

∑
x∈E

f (x)

for nonempty finite sets E and complex-valued functions f on E, with |E|
denoting the cardinality of the set E. Thus, for instance, if A is a subset
of G, with the associated indicator function 1A: G→ {0, 1}, Λk,G(1A, . . . , 1A)

denotes the number of (possibly degenerate) length k geometric progressions
(x, xg, . . . , xgk−1) in A, divided by |G|k.

The form Λk,G is easily computed for k = 1, 2:

Λ1,G(f0) = EGf0

Λ2,G(f0, f1) = (EGf0)(EGf1).

Now we turn to the k = 3 case. If f0, f1, f2 are selected in a sufficiently ‘random’
fashion, then probabilistic heuristics suggest that one has

Λ3,G(f0, f1, f2)≈ (EGf0)(EGf1)(EGf2), (1.1)

and, more generally,

Λk,G(f0, . . . , fk−1)≈

k−1∏
i=0

EGfi. (1.2)

However, if G has a nontrivial low-dimensional unitary representation ρ: G→
Ud(C) for some small d, then it becomes possible to violate the heuristic (1.1).
Indeed, if one lets B be a small neighbourhood of the identity in Ud(C), and sets
B′ to be the slightly larger neighbourhood

B′ := B · B−1
· B := {b1b−1

2 b3 : b1, b2, b3 ∈ B},

with the associated preimages A := ρ−1(B),A′ := ρ−1(B′), then from the identity

ρ(xg2)= ρ(xg)ρ(x)−1ρ(xg)

we see that xg2
∈ B′ whenever x, xg ∈ B. In particular, we have

Λ3,G(1A, 1A, 1A′)=Λ2,G(1A, 1A)= (EG1A)(EG1A),

which violates (1.1) if B (and hence B′) is small enough; if the dimension d is
small, this can be done with a relatively large value for the density EG1A. A
similar argument demonstrates a deviation from (1.2) for any k ≥ 3.

The deviation from (1.1) is most pronounced in the case when G is abelian
(in which case all irreducible unitary representations of G are in fact one
dimensional). In this case, we will switch to additive notation, and write the
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group operation of G as +, so that

Λ3,G(f0, f1, f2) := Ex,g∈Gf0(x)f1(x+ g)f2(x+ 2g). (1.3)

The analysis of this form usually begins by introducing the Fourier transform

f̂ (ξ) := Ex∈Gf (x)e(−ξ · x)

for all ξ in the Pontryagin dual Ĝ of G, defined as the space of all
homomorphisms ξ : x 7→ ξ · x from G to the (additive) unit circle R/Z, where
e(x) := e2π ix; of course, Ĝ is encoding the irreducible one-dimensional unitary
representations of G mentioned previously. Using the Fourier inversion formula

f (x) :=
∑
ξ∈Ĝ

f̂ (ξ)e(ξ · x),

one soon arrives at the useful identity

Λ3,G(f0, f1, f2)=
∑
ξ∈Ĝ

f̂0(ξ)f̂1(−2ξ)f̂2(ξ)

relating the magnitude of Λ3,G(f0, f1, f2) with the size of the Fourier coefficients
of f0, f1, f2. Note that the heuristic (1.1) corresponds to the ξ = 0 term in this
sum; the point is that the nonzero frequencies ξ 6= 0 can also give a significant
contribution.

Using the above identity, one can eventually establish the Roth-type theorem

Λ3,G(1A, 1A, 1A)≥ c3(δ) (1.4)

for any 0 < δ ≤ 1, any finite abelian group G, and any subset A ⊂ G with
|A| ≥ δ|G|, where c3(δ) > 0 depends only on δ; see, for example, [29, Theorem
10.9]. In a similar vein, we have the deep theorem of Szemerédi [26], which
implies (strictly speaking, the original theorem of Szemerédi only treats the case
when G is a cyclic group, but subsequent proofs of Szemerédi’s theorem (such as
the hypergraph-based proofs in [11, 22, 23, 27]) allow for one to handle arbitrary
abelian groups G) the more general lower bound,

Λk,G(1A, . . . , 1A)≥ ck(δ), (1.5)

for all k ≥ 1 and 0 < δ ≤ 1, any finite abelian group G, and any A ⊂ G with
|A| ≥ δ|G|, where ck(δ) > 0 depends only on k and δ.

REMARK 1.1. More explicit bounds for c3(δ) are known. For general abelian
groups G, an argument of Bourgain [5] gives c3(δ) ≥ cδC/δ2

for some absolute
constants c,C > 0; see, for example, [29, Theorem 10.30]. In the case when
G is a cyclic group, the strongest bound to date is due to Sanders [24],
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who (in our notation) established that c3(δ) ≥ cδClog4(1/δ)/δ; on the other hand, in
this case one also has the upper bound c3(δ) ≤ Cδc log(1/δ) due to Behrend [3].
When G is a vector space over a fixed finite field F of odd order (such as
F3), the best bound is due to Bateman and Katz [2], who established c3(δ) ≥

exp(−Cδc−1) for some constants C, c > 0 depending only on F. For k > 3 and
for cyclic groups, the explicit bounds known are weaker: for k = 4, the results in
[13] give c4(δ) ≥ c exp(−Cδ−C log(1/δ)), while, for higher k, the results in [10]
give ck(δ) ≥ ck exp(exp(−Ckδ

−Ck)) for some constants ck,Ck > 0 depending
on k; in the other direction, a modification of the Behrend construction [21]
gives ck(δ) ≤ Ckδ

ck logck (1/δ). For general groups, explicit lower bounds on ck(δ)

are known thanks to the recent quantitative work on the density Hales–Jewett
theorem [19] or the hypergraph removal lemma [12, 22, 23, 27], but the bounds
are rather poor.

Now we turn to the case when G is not necessarily abelian, and in particular in
the quasirandom case in which G has no low-dimensional representations. More
precisely, following Gowers [12], call a finite group GD-quasirandom if the only
irreducible unitary representations ρ: G→ Ud(C) have dimension d greater than
or equal to D. A model example of quasirandom groups is provided by the special
linear groups over a finite field, as in the following proposition.

PROPOSITION 1.2 (Quasirandomness of special linear group). Let d ≥ 2 be an
integer, and let F be a finite field. Then the group SLd(F) of d×d matrices with
coefficients in F of determinant one is cd|F|d−1-quasirandom, for some cd > 0
depending only on d.

Proof. This follows from the results in [16]. The case when d = 2 and |F| has
prime order is classical, dating back to the work of Frobenius. Similar results
hold for other finite (almost) simple groups of Lie type and bounded rank;
see [16]. �

When D is large, one expects better mixing properties in the forms Λk,G. To
illustrate this, we introduce the variant expression

Λ∗k,G(f0, . . . , fk−1) := Eg∈G

∣∣∣∣Ex∈G

k−1∏
i=0

fi(xgi−1)−

k−1∏
i=0

EGfi

∣∣∣∣,
which controls the number of length k progressions for a single (generic) shift g,
as opposed to the average number over all such g. This expression vanishes for
k = 1, but can be nontrivial for k > 1. From the triangle inequality, we have∣∣∣∣Λk,G(f0, . . . , fk−1)−

k−1∏
i=0

EGfi

∣∣∣∣≤Λ∗k,G(f0, . . . , fk−1), (1.6)
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and so the heuristic (1.2) holds whenever Λ∗k,G(f0, . . . , fk−1) is small. However,
when one has a low-dimensional representation ρ: G→ Ud(C), it is possible for
Λ∗k,G(f0, . . . , fk−1) to be large even when (1.2) holds. Consider for instance the
k = 2 case, in which (1.2) holds exactly. If we let B be a small neighbourhood
of the identity in Ud(C) with preimage A := ρ−1(B) as before, and set A′ :=
ρ−1(B−1

· B), we see that 1A(x)1A(xg) vanishes whenever g 6∈ A′, and thus

Λ∗2,G(1A, 1A)= Eg∈G|Ex∈G1A(x)1A(xg)− (EG1A)
2
|

can be lower bounded by (EG1A)
2(1 − EG1A′), which can be somewhat large if

B is chosen small enough, and d is small.
As observed first by Gowers [12], though, Λ∗2,G becomes much smaller in the

quasirandom case. This is elegantly captured by the inequality

‖f1 ∗ f2‖L2(G) ≤ D−1/2
|G|‖f1‖L2(G)‖f2‖L2(G) (1.7)

of Babai et al. [1], for any D-quasirandom group G and any functions f1, f2: G→
C with at least one of f1, f2 having mean zero, where

‖f‖L2(G) := (Ex∈G|f (x)|
2)1/2

and ∗ denotes the discrete (ordinarily, one would normalize this convolution by
1/|G| for compatibility with the averaging in the L2(G) norm, but it will be
convenient to use the discrete normalization because we will be passing from
a group G to various subgroups of G in subsequent arguments) convolution

f1 ∗ f2(x) :=
∑
y∈G

f1(y)f2(y
−1x)=

∑
y∈G

f1(xy−1)f2(y);

see [1] or [4, Proposition 3]. Note that (1.7) is an improvement by a factor of
D−1/2 over the trivial bound of |G|‖f1‖L2(G)‖f2‖L2(G) arising from the Young and
Cauchy–Schwarz inequalities.

The estimate (1.7) has the following useful corollary.

LEMMA 1.3 (k = 2 mixing for quasirandom groups). If G is a D-quasirandom
group, then

Λ∗2,G(f1, f2)≤ D−1/2
‖f1‖L2(G)‖f2‖L2(G).

Proof. Observe that the expression Λ∗2,G(f1, f2) does not change if f1 or f2 is
modified by an additive constant. Thus we may normalize f1 and f2 to both have
mean zero. We can then write

Λ∗2,G(f1, f2)= Eg∈Gf0(g)Ex∈Gf1(x)f2(xg)
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for some function f0: G → C of magnitude 1. The right-hand side can be
rewritten, after a change of variables, as

1
|G|

Ey∈G(f0 ∗ f1)(y)f2(y).

The claim then follows from (1.7) and the Cauchy–Schwarz inequality. �

In [12], Gowers posed the question of whether results such as Lemma 1.3
could be extended to higher values of k, so that the heuristic (1.1) or (1.2) could
hold for sufficiently quasirandom groups. We were not able to settle this question
in general, but in the k = 3 case we can affirmatively answer the question for a
model class of quasirandom groups, namely the special linear groups SLd(F)
over a finite field F.

THEOREM 1.4. Let F be a finite field, and set G := SLd(F) for some d ≥ 2. Then
we have

|Λ∗3,G(f0, f1, f2)|�d |F|
−min(d−1,2)/8

2∏
i=0

‖fi‖L∞(G)

for all functions f0, f1, f2: G → C, where ‖f‖L∞(G) := supx∈G |f (x)|. Here and
in what follows we use Y�d X, X�d Y , or Y = Od(X) to denote the estimate
|Y| ≤ CdX for some Cd depending only on d, and similarly with d replaced by
other sets of parameters. In particular, from (1.6), one has

Λ3,G(f0, f1, f2)= (EGf0)(EGf1)(EGf2)+ Od

(
|F|−min(d−1,2)/8

2∏
i=0

‖fi‖L∞(G)

)
.

Theorem 1.4 is proven primarily through application of the Cauchy–Schwarz
inequality and Lemma 1.3; we give this proof in Sections 2–4. The key
point is that the nonabelian nature of G means that the application of the
Cauchy–Schwarz inequality creates more averaging than is seen in the abelian
case. The exponent min(d − 1, 2)/8 is unlikely to be optimal. By taking f0, f1, f2

to be constant on left cosets gH of a proper subgroup of H and of mean zero,
we see that one cannot replace the quantity |F|−min(d−1,2)/8 by anything much
smaller than |H|/|G|; in particular, if we take H to be the Borel subgroup of
upper-triangular matrices in G, we see that one cannot replace min(d − 1, 2)/8
by any exponent greater than (d(d − 1))/2. It is likely that one can extend
Theorem 1.4 to other finite simple groups (to be pedantic, SLd(F) is usually not
a simple group, due to its nontrivial centre; but it is a bounded cover of a finite
simple group, namely PSLd(F). Note that the results for SLd(F) in this paper
automatically descend to the quotient group PSLd(F) without difficulty) of Lie
type with bounded rank, but we will not do so here.
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Applying Theorem 1.4 to indicator functions f0 = 1A, f1 = 1B, f2 = 1C, and
using Markov’s inequality, we obtain in particular the ‘weak mixing’ bound

µ(A ∩ Bg ∩ Cg2)= µ(A)µ(B)µ(C)+ Od(|F|
−min(d−1,2)/16)

for a proportion 1 − Od(|F|−min(d−1,2)/16) of g ∈ G, where µ(A) := EG1A =

|A|/|G| denotes the density of A in G.
We conjecture that Theorem 1.4 can be extended to higher values of k than

k = 3 (possibly with a smaller exponent than min(d−1, 2)/8). Unfortunately, the
Cauchy–Schwarz argument does not seem to extend beyond k = 3; in contrast
to the abelian case, in the nonabelian setting it appears that when k > 3, each
application of the Cauchy–Schwarz inequality increases the complexity of the
resulting form, rather than decreasing it as in the abelian case. However, we are
able to establish the following weak partial result in the k = 4, d = 2 case, in
which the shift g is restricted to be diagonalizable.

THEOREM 1.5. Let F be a finite field, and set G := SL2(F). Let S denote all
the elements of G which are diagonalizable over F. Then, for all functions
f0, f1, f2, f3: G→ C, one has

Eg∈S

∣∣∣∣Ex∈G

3∏
i=0

fi(xgi−1)−

k−1∏
i=0

EGfi

∣∣∣∣= o|F|→∞

( 3∏
i=0

‖fi‖L∞(G)

)
,

where o|F|→∞(X) denotes a quantity bounded by c(|F|)X for some quantity c(|F|)
that goes to zero as |F| goes to infinity.

It is easy to show that, for large |F|, S has density about 1/2 in G; see
Section 6. The main reason why the shift g is restricted to S in our arguments
is in order to ensure that g is contained in a nontrivial metabelian subgroup
of G; for instance, if g is a diagonal matrix with entries in F, then it is
contained in the Borel subgroup B of upper-triangular matrices in G. The
argument is rather ad hoc in nature, combining the Cauchy–Schwarz inequality
and the abelian Fourier transform with some explicit nonabelian effects coming
from the algebraic structure of progressions in the Borel group. It also relies
on (a quantitative version of) the multidimensional Szemerédi theorem of
Furstenberg and Katznelson [8], which is the reason for the poor decay in |F|.
Finally, to pass from the Borel subgroup back to the full group, an expansion
result in SL2(F), related to the Bourgain–Gamburd expansion theory in this
group, is also required.

REMARK 1.6. The results in this paper concern the mixing properties of the
patterns (x, xg, xg2) and (x, xg, xg2, xg3) for an explicit class of quasirandom
groups, namely the special linear groups. In a recent paper with Bergelson [4],
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we also establish some mixing properties for the patterns (x, xg, gx) and
(g, x, xg, gx) in arbitrary quasirandom groups. While the end results of both
papers are superficially similar in nature, the proof techniques turn out to be
completely different, with the results in [4] relying on nonstandard analysis,
the triangle removal lemma from graph theory, and ergodic theorems involving
idempotent ultrafilters. In both cases, the methods are tailored to the specific
patterns being counted, and it appears we are still quite far from a general theory
that can cover all nonabelian patterns involving two or more variables such
as x, g.

We also remark that, in [28], some mixing properties of patterns of the form
(x, y,P(x, y)) were established when P: G × G→ G was a definable function
over a finite field of large characteristic. However, the arguments in that paper
(which also involve the Cauchy–Schwarz inequality, but applied in a slightly
different fashion) required {(P(x, y),P(x, y′),P(x′, y),P(x′, y′)) : x, y ∈ G} to be
sufficiently Zariski dense in G4. This is not the case for the pattern (x, xg, xg2)

(in which P(x, y) := yx−1y), since P(x, y) and P(x, y′) are necessarily conjugate
to each other.

2. A general bound for Λ3,G

Let us define the reduced spectral norm ‖µ‖S(G) of a function µ: G→ C to be
the best constant such that

‖f ∗ µ‖L2(G) ≤ ‖µ‖S(G)‖f‖L2(G) (2.1)

whenever f : G→ C has mean zero; thus

|Ez∈Gf1(z)(f2 ∗ µ)(z)| ≤ ‖µ‖S(G)‖f1‖L2(G)‖f2‖L2(G) (2.2)

for all f1, f2: G→ C, as can be seen by splitting f1, f2 into constant and mean zero
components, and noting that all cross terms vanish.

REMARK 2.1. From the Peter–Weyl theorem, one can also write ‖µ‖S(G) as

‖µ‖S(G) = sup
ρ

∥∥∥∥∑
g∈G

µ(g)ρ(g)

∥∥∥∥
op

,

where ρ: G→ U(V) ranges over all nontrivial irreducible finite-dimensional
unitary representations of G. We will not make much use of this representation-
theoretic interpretation of the reduced spectral norm here, although we remark
that this interpretation can be used to derive the basic quasirandomness
inequality (1.7) (or (2.4) below).
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The reduced spectral norm ‖µ‖S(G) is clearly a seminorm, and in particular it
obeys the triangle inequality. From Minkowski’s inequality, we have the crude
bound

‖µ‖S(G) ≤ ‖µ‖`1(G). (2.3)

From (1.7), we also have the more refined estimate

‖µ‖S(G) ≤ D−1/2
|G|1/2‖µ‖`2(G) (2.4)

when G is D-quasirandom. If we split µ into the region where µ(x) > C0/|G|,
and the region where µ(x)≤ C0/|G|, for some threshold C0 > 0, and apply (2.3)
to the latter and (2.4) to the former, we conclude that

‖µ‖S(G) ≤ C0D−1/2
+

∑
x∈G:µ(x)>C0/|G|

µ(x). (2.5)

By combining these estimates with the Cauchy–Schwarz inequality, we can
obtain the following general bound on the quantity Λ3(f0, f1, f2).

PROPOSITION 2.2. Let G = (G, ·) be a D-quasirandom group for some D ≥ 1.
Let C0 ≥ 1 be a parameter. Then we have

Λ∗3,G(f0, f1, f2)�

(
C0D−1/2

+ Eb,h∈G

∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y)

)1/4 2∏
i=0

‖fi‖L∞(G)

(2.6)

for all functions f0, f1, f2: G→ C, where, for each b, h ∈ G, µb,h: G→ C is the
function

µb,h := Eg∈GEc∈Z(b)δgc−1h−1g−1c−1h−1, (2.7)

where Z(b) := {c ∈ G : cb= bc} is the centralizer of b.

One can view µb,h as a probability measure on G, describing the distribution
of the random variable gc−1h−1g−1c−1h−1 when g is a randomly chosen element
of G and c is a random element commuting with b. The estimate (2.6) becomes
useful when µb,h is approximately uniformly distributed over G for typical b, h,
so that

∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y) is small.

Proof. When f0 is equal to a constant c, we have

Λ∗3,G(f0, f1, f2)= |c|Λ
∗

2,G(f1, f2),

and the claim then follows from Lemma 1.3. As Λ∗3,G is sublinear in each of the
three arguments, we may thus assume that f0 has mean zero. We then also assume
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that f0, f1, f2 are real valued, and normalize so that

‖f0‖L∞(G) = ‖f1‖L∞(G) = ‖f2‖L∞(G) = 1.

Our task is now to show that

|Λ∗3,G(f0, f1, f2)|
4
� C0D−1/2

+ Eb,h∈G

∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y).

Ever since the work of Gowers [9], it has been common to control expressions
such as Λ∗3,G(f0, f1, f2) via the Cauchy–Schwarz inequality. In the literature, this
was mostly performed in the abelian case, but one can obtain a useful estimate
via the Cauchy–Schwarz inequality in the nonabelian case too. First, we shift x
by g−1 to obtain

Λ∗3,G(f0, f1, f2)= Eg∈G|Ex∈Gf0(xg−1)f1(x)f2(xg)|

which we expand as

Λ∗3,G(f0, f1, f2)= Ex∈Gf1(x)(Eg∈Gf0(xg−1)f2(xg)f3(g))

for some (if one is only interested in bounding Λ3,G(f0, f1, f2) rather than
Λ∗3,G(f0, f1, f2), one can take f3 ≡ 1, and the reader may wish to do so initially in
the argument that follows in order to simplify the exposition) function f3: G→ C
bounded in magnitude by 1. Applying the Cauchy–Schwarz inequality in x to
eliminate f1, we obtain

Λ∗3,G(f0, f1, f2)≤ (Ex∈G|Eg∈Gf0(xg−1)f2(xg)f3(g)|
2)1/2.

We can expand the right-hand side as

(Ex,g,g′∈Gf0(xg−1)f0(x(g
′)−1)f2(xg)f2(xg′)f3(g)f3(g

′))1/2.

Making the change of variables (y, g, a) := (xg, g, g−1g′), this becomes

(Ey,g,a∈Gf0(yg−2)f0(yg−1a−1g−1)f2(y)f2(ya)f3(g)f3(ga))1/2.

If we define ∆af (y) := f (y)f (ya), this becomes

(Ey,a∈G∆af2(y)(Eg∈G∆ga−1g−1 f0(yg−2)∆af3(g)))
1/2.

Applying the Cauchy–Schwarz inequality in y, a to eliminate∆af2, we thus have

Λ∗3,G(f0, f1, f2)≤ (Ey,a∈G|Eg∈G∆ga−1g−1 f0(yg−2)∆af3(g)|
2)1/4.

The right-hand side can be expanded as

(Ey,a,g,g′∈G∆ga−1g−1 f0(yg−2)∆g′a−1(g′)−1 f0(y(g
′)−2)∆af3(g)∆af3(g

′))1/4.
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Making the change of variables (z, b, g, h) := (yg−2, ga−1g−1, g, g′g−1), we
conclude the inequality

|Λ3,G(f0, f1, f2)| ≤ (Ez,b,g,h∈G∆bf0(z)∆hbh−1 f0(zgh−1g−1h−1)

×∆g−1b−1gf3(g)∆g−1b−1gf3(hg))1/4.
(2.8)

The right-hand side of (2.8) can be viewed as a twisted weighted variant (indeed,
in the model case when f3 ≡ 1 and G is abelian, the right-hand side simplifies
to (Ez,b,h∈G∆bf0(z)∆bf0(zh−2))1/4, which (in the case that G has odd order) is
precisely the Gowers norm ‖f0‖U2(G)) of the Gowers U2 norm [9]. To control it,
we begin by observing the self-averaging identity

Eh∈GF(h)= Eh∈GEc∈CF(hc)

for any nonempty set C and any function F: G→ C. We apply this identity
with C equal to the centralizer Z(b) := {c ∈ G : cb = bc} of b and F equal to
the expression being averaged on the right-hand side of (2.8); the point of this
averaging is to exploit the trivial observation that the function ∆hbh−1 f0 does not
change if one replaces h by hc for an arbitrary c ∈ Z(b). We conclude that

|Λ3,G(f0, f1, f2)| ≤ (Ez,b,g,h∈GEc∈Z(b)∆bf0(z)∆hbh−1 f0(zgc−1h−1g−1c−1h−1)

×∆g−1b−1gf3(g)∆g−1b−1gf3(hcg))1/4.

We can rewrite the right-hand side as

|Eb,h∈GEz∈G∆bf0(z)(∆hbh−1 f0 ∗ µ̃b,h)(z)|
1/4, (2.9)

where µ̃b,h is a weighted version (Returning to the model case when f3 ≡ 1 and G
is an abelian group of odd order, we have in this case that µ̃b,h ≡ 1/|G|, and (2.9)
is again just the Gowers norm ‖f0‖U2(G). The point is that for certain nonabelian
groups G, one can still obtain some sort of equidistribution control on µ̃b,h that
makes it behave roughly like the uniform distribution 1/|G|.) of µb,h:

µ̃b,h := Eg∈GEc∈Z(b)δgc−1h−1g−1c−1h−1∆g−1b−1gf3(g)∆g−1b−1gf3(hcg).

Our task is now to show that

|Eb,h∈GEz∈G∆bf0(z)(∆hbh−1 f0 ∗ µ̃b,h)(z)|

� C0D−1/2
+ Eb,h∈G

∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y). (2.10)

From (2.2), we see that

|Ez∈G∆bf0(z)(∆hbh−1 f0 ∗ µ̃b,h)(z)| ≤ ‖µ̃b,h‖S(G) + |Ez∈G∆bf0(z)|

https://doi.org/10.1017/fms.2013.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.2


T. Tao 12

(by splitting ∆bf0 into constant and mean zero components). We may thus upper
bound the left-hand side of (2.10) by

Eb,h∈G‖µ̃b,h‖S(G) + Eb∈G|Ez∈G∆bf0(z)|.

The second term is equal to Λ∗2,G(f0, f0), which by Lemma 1.3 is bounded
by D−1/2. As for the first term, we see from (2.5) and the pointwise bound
|µ̃b,h(x)| ≤ µb,h(x) that

‖µ̃b,h‖S(G) ≤ C0D−1/2
+ Eb,h∈G

∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y)

for each b, h. The claim follows. �

3. The case of SL2

We can now establish the d = 2 case of Theorem 1.4, which serves as a
simplified model for the general d case. From Propositions 1.2 and 2.2, it will
suffice to show that

Eb,h∈G

∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y)� |F|
−1 (3.1)

for some absolute constant C0 ≥ 1, where µb,h was defined in (2.7).
We now need to understand the distribution of µb,h. Call an element b of

SL2(F) regular semisimple if its two eigenvalues (in the algebraic closure F)
are distinct, or equivalently if trace b 6= ±2. It is easy to see that all but O(|F|2)
elements of G are regular semisimple. Since G has cardinality comparable to
|F|3, and each of the µb,h is normalized in `1, we thus see that the contribution of
the nonregular semisimple b to (3.1) is O(|F|−1), which is acceptable. Thus we
may restrict attention to the regular semisimple b.

Now we study the quantityµb,h(y). It is a classical fact that |F| � |Z(b)| � |F|
(this also follows from the Lang–Weil bound, Proposition A.3). As such, we have

µb,h(y)� |F|
−4
|{(g, c) ∈ G× Z(b) : gc−1h−1g−1c−1h−1

= y}|,

which we rewrite as

µb,h(y)� |F|
−4
|{(g, c) ∈ G× Z(b) : gc−1h−1g−1

= yhc}|.

If c−1h−1 is central (that is equal to ±1), then y = 1, and the contribution to
µb,h(1) of this case is O(|F|−1). Now we consider the contribution of those c for
which c−1h−1 is not central. Then the centralizer of c−1h−1 has cardinality�|F|,
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and so every element k of SL2(F) of the same trace as c−1h−1 has O(|F|)
representations of the form gc−1h−1g−1. Of course, if k does not have the same
trace as c−1h−1, it has no such representations. We conclude that

µb,h(y)� |F|
−1δy=1 + |F|

−3
|{c ∈ Z(b) : trace(yhc)= trace(c−1h−1)}|.

For a ∈ SL2(F), we see from direct computation (or the Cayley–Hamilton
theorem) that trace(a−1) = trace(a). We thus have µb,h(y)� |F|−1 for y = 1,
and for y 6= 1 we have

µb,h(y)� |F|
−3
|{c ∈ Z(b) : trace(yhc)= trace(hc)}|.

The centralizer Z(b) is the set of F-points of the algebraic variety Z(b) :=
{c ∈ SL2(F) : cb = bc}, which is a curve of complexity (the complexity of an
algebraic variety is defined in Definition A.1) O(1). From Bezout’s theorem, we
conclude that the quantity |{c ∈ Z(b) : trace(yhc) = trace(hc)}| is bounded by
O(1) unless the equation trace(yhc)= trace(hc) holds for all c ∈ Z(b), in which
case this quantity is bounded instead by |F|. For C0 a sufficiently large absolute
constant, we thus have∑

y∈G:µb,h(y)≥C0/|G|

µb,h(y)� |F|
−1
+ |F|−2

|Yb,h|,

where Yb,h is the set of all y ∈ G such that trace(yhc)= trace(hc) for all c ∈ Z(b).
It will thus suffice to show that

|Yb,h| � |F|

whenever b is regular semisimple.
Fix such a b. We may find a basis of F

2
over F that makes b diagonal. As b is

also regular semisimple, we conclude that

Z(b)=

{(
t 0

0 t−1

)
: t ∈ F\0

}
in this basis, and so the constraint trace(yhc) = trace(hc) for all c ∈ Z(b)
is equivalent to the requirement that yh − h vanishes on the diagonal. This
constrains Yb,h to a two-dimensional subspace of the four-dimensional vector
space Mat2×2(F) of 2 × 2 matrices; as y also needs to have determinant 1, we
conclude that Yb,h is constrained to a complexity O(1) curve in this plane. By the
Schwarz–Zippel lemma (see Proposition A.2), we conclude that |Yb,h| � |F|, as
required.
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4. The case of SLd

Now we turn to the general case of Theorem 1.4. This will basically be a
reprise of the arguments in the preceding section, but with a heavier reliance on
algebraic geometry in place of ad hoc computations.

We allow all implied constants to depend on d. As before, by Propositions 1.2
and 2.2, it suffices to establish the bound (3.1). We may assume that |F| is
sufficiently large depending on d, as the claim is trivial otherwise.

Again, call b ∈ SLd(F) regular semisimple if it is diagonalizable in F with
distinct eigenvalues. A well-known computation gives

|GLd(F)| =
d−1∏
i=0

(|F|d − |F|i)= (1+ O(|F|−1))|F|d
2
;

since |G| = |GLd(F)|/|F×|, we conclude in particular that

|F|d
2
−1
� |G| � |F|d

2
−1 (4.1)

(this also follows from the Lang–Weil estimate, Proposition A.3). If b is not
regular semisimple, then its characteristic polynomial has a repeated root. This
constrains b to an algebraic hypersurface of SLd(F) of complexity O(1). This
hypersurface has dimension d2

− 2, so, by the Schwarz–Zippel lemma (see
Proposition A.2), we have that at most O(|F|d

2
−2) elements of G are not regular

semisimple. This is only O(|F|−1) of the elements of G, so to prove (3.1) it
suffices as before to consider the contribution of the regular semisimple b.

If b is regular semisimple, then the centralizer Z(b) of b consists of the
F-points of a d − 1-dimensional torus Z(b) in SLd(F), of complexity O(1),
defined over F. By the Lang–Weil bound (Proposition A.3), we have |F|d−1

�

|Z(b)| � |F|d−1. Arguing as in the previous section, we thus have

µb,h(y)� |F|
−d2
−d+2
|{(g, c) ∈ G× Z(b) : gc−1h−1g−1c−1h−1

= y}|. (4.2)

Let φb,h : SLd(F)× Z(b)→ SLd(F) be the map

φb,h(g, c) := gc−1h−1g−1c−1h−1. (4.3)

This is a regular map of complexity O(1) from the d2
+ d − 2-dimensional

irreducible variety SLd(F)× Z(b) to the d2
− 1-dimensional variety SLd(F).

Suppose that (b, h) is such that the map φb,h is dominant. Applying
Proposition A.5, we see that there exists a subset Σ of SLd(F) × Z(b) which
can be covered by O(1) varieties of complexity O(1) and dimension at most
d2
+ d − 3, such that, for each y ∈ SLd(F), the set

|{(g, c) ∈ (SLd(F)× Z(b))\Σ : φb,h(g, c)= y}
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is covered by O(1) varieties of complexity O(1) and dimension at most d − 1.
Applying the Schwarz–Zippel bound (Proposition A.2), we conclude that

|{(g, c) ∈ (SLd(F)× Z(b))\Σ : φb,h(g, c)= y}| � |F|d−1

for all y ∈ G, and thus by (4.2) one has

µb,h(y)� |F|
−d2
+1
+ |F|−d2

−d+2

× |{(g, c) ∈ (G× Z(b)) ∩Σ : gc−1h−1g−1c−1h−1
= y}|.

By (4.1), we conclude (for C0 large enough) that∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y)

� |F|−d2
−d+2

∑
y∈G

|{(g, c) ∈ (G× Z(b)) ∩Σ : gc−1h−1g−1c−1h−1
= y}|

= |F|−d2
−d+2
|(G× Z(b)) ∩Σ |,

and hence, by another application of the Schwarz–Zippel bound, we have∑
y∈G:µb,h(y)≥C0/|G|

µb,h(y)� |F|
−1

when φb,h is dominant. On the other hand, when φb,h is not dominant, we may
crudely bound ∑

y∈G:µb,h(y)≥C0/|G|

µb,h(y)≤
∑
y∈G

µb,h(y)= 1.

To establish (3.1), it thus suffices to show that there are at most O(|F|−1
|G|2)

pairs (b, h) ∈ G× G with b regular semisimple and φb,h not dominant.
Fix b to be a regular semisimple element. It suffices to show that φb,h is

dominant for all but at most O(|F|−1
|G|) values of h ∈ G; by the Schwarz–Zippel

bound (Proposition A.2), it suffices to show that φb,h is dominant for all h ∈
SLd(F) lying outside of O(1) algebraic varieties of positive codimension and
complexity O(1). As this assertion only involves F and not F, we may now
diagonalize b over F, and work in a basis in which b is diagonal (with coefficients
in F rather than in F). The torus Z(b) is now the group T(F) of diagonal matrices
in SLd(F). It now suffices to establish the following claim.

PROPOSITION 4.1 (Quantitative generic nondegeneracy). Let k be an alge-
braically closed field, and let d ≥ 1; we allow all implied constants to depend
on d. Then, for all h ∈ SLd(k) outside of O(1) algebraic varieties of positive
codimension and complexity O(1), the map φ̃h: SLd(k) × T(k) → SLd(k)
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defined by

φ̃h(g, c) := gc−1h−1g−1c−1h (4.4)

is dominant, where T(k) denotes the group of diagonal matrices in SLd(k).

Indeed, by setting k equal to the algebraic closure F of F, and noting that
φb,h = φ̃hh−2, the claim follows. (We have shifted φ̃h in order to map the identity
(1, 1) to the identity 1.)

It turns out that, by using an ultraproduct argument, one can show that
Proposition 4.1 is implied by the following, seemingly weaker, qualitative variant
of that proposition, in which the uniform bounds on the exceptional set are
dropped.

PROPOSITION 4.2 (Qualitative generic nondegeneracy). Let k be an alge-
braically closed field, and let d ≥ 1. Then, for generic h ∈ SLd(k) (that is, for
all h outside of a finite union of varieties of positive codimension), the map
φ̃h: SLd(k)× T(k)→ SLd(k) defined by (4.4) is dominant.

Indeed, if Proposition 4.1 failed, then one could find d ≥ 1 and a sequence kn of
algebraically closed fields such that the set of h ∈ SLd(kn) for which φ̃h fails to be
dominant cannot be covered by n algebraic varieties of positive codimension and
complexity at most n. Performing an ultraproduct with respect to a nonprincipal
ultrafilter on the natural numbers (see [7, Appendix A]), we then obtain a
new (and much larger) algebraically closed field k, with the property that the
set of h ∈ SLd(k) for which φ̃h fails to be dominant cannot be covered by
any finite number of algebraic varieties of positive codimension, contradicting
Proposition 4.2. (Here, we use the continuity of irreducibility and dominance
with respect to ultraproducts; see [7, Lemma A.2] and [7, Lemma A.7].)

It remains to prove Proposition 4.2. By the irreducibility of SLd(F), it suffices
to show that the derivative map

Dφ̃h(1, 1): sld(k)× t(k)→ sld(k)

is full rank for generic h ∈ SLd(k), where sld(k) is the vector space of trace zero
d × d matrices over k, and t(k) is the subspace of sld(k) consisting of diagonal
matrices over k of trace zero. From the product rule and (4.4), we may evaluate
Dφ̃h(1, 1) explicitly as

Dφ̃h(1, 1)(X,Y)= X − h−1Xh− Y − h−1Yh

for X ∈ sld(k) and Y ∈ t(k).
We may restrict attention to those h which are regular semisimple (or,

equivalently, those h whose characteristic polynomial has no repeated roots),

https://doi.org/10.1017/fms.2013.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.2


Mixing for progressions in nonabelian groups 17

as the complement of this set is certainly contained in a finite number of algebraic
varieties of positive codimension. We may thus diagonalize h= ADA−1 for some
A ∈ SLd(k) and diagonal D with distinct diagonal entries. Then we have

Dφ̃h(1, 1)(X,Y)= A(X′ − D−1X′D− Y ′ − D−1Y ′D)A−1,

where X′ := A−1XA and Y ′ := A−1YA. We thus see that Dφ̃h(1, 1) is full rank if
and only if the map

(X′,Y ′) 7→ X′ − D−1X′D− Y ′ − D−1Y ′D

is a full rank map from sld(F)× A−1t(F)A to sld(F). It thus suffices to show that
this map is full rank for generic A ∈ SLd(k) and D ∈ T(k).

As D is a diagonal matrix with distinct diagonal entries, we see that the image
of sld(k) under the map X′ 7→ X′ − D−1X′D is the space of all matrices that
vanish on the diagonal. To show that Dφ̃h(1, 1) has full rank, it thus suffices to
show that the map Y ′ 7→ diag(Y ′+D−1Y ′D) has full rank from A−1t(F)A to t(F).
Since diag(Y ′ + D−1Y ′D)= 2 diag(Y ′), it suffices to show that the diagonal map
Y ′ 7→ diag(Y ′) has full rank from A−1t(F)A to t(F) for generic A ∈ SLd(k). As
this is clearly a Zariski-open algebraic constraint, and contains the case A = 1,
we conclude that one has full rank for generic A, and the claim follows.

5. Expansion

In the remarkable paper of Bourgain and Gamburd [6], the quasirandomness
properties of SL2(F), combined with the product theory in such groups
(see [14]), were used to establish spectral gaps for the generators of various
Cayley graphs. In our notation, the results of [6] established spectral gap results,
a typical one of which is the assertion that, with probability 1 − op→∞(1), one
has ∥∥∥∥1

4
(δa + δb + δa−1 + δb−1)

∥∥∥∥
S(SL2(Fp))

≤ 1− c

for some absolute constant c > 0, where Fp is a finite field of prime order and
a, b are chosen uniformly at random from SL2(Fp). This result has since been
generalized in a number of different directions; see [18] for a survey.

In this section, we establish some related expansion results, but, instead of a
probability measure (such as 1

4 (δa + δb + δa−1 + δb−1)) supported on a small
number of points, we will establish spectral bounds on (quasi)probability
measures distributed more or less uniformly on subvarieties V of SLd; this will
play an important role in the proof of Theorem 1.5 in later sections. The main
result is that, as long as V is not ‘trapped’ in an algebraic subgroup of SLd

https://doi.org/10.1017/fms.2013.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.2


T. Tao 18

(or a coset thereof), there is a spectral norm bound which gains a power of |F|
over the trivial bound. The arguments are very much in the spirit of Bourgain
and Gamburd [6], with the main ingredients being ‘escape from subvarieties’,
quasirandomness, and some basic algebraic geometry. However, due to the
algebraic structure of the measures being studied, combinatorial tools such as
the product theorem of Helfgott [14] are not required in this argument (though
they could certainly be deployed in order to prove more general results, in which
the measure in question is not assumed to be adapted to an algebraic subvariety).

More precisely, we will establish the following result.

PROPOSITION 5.1 (Expansion from subvarieties). Let k be an algebraically
closed field, and let F be a finite subfield of k. Let V ⊂ SLd(k) be an irreducible
algebraic variety defined over k of complexity at most M. Suppose that V is not
contained in any coset Hg of a proper algebraic subgroup H of SLd(k). Then
one has

‖µ‖S(SLd(F))�d,M |F|
dim(V)−c

‖µ‖L∞(V∩SLd(F))

for all µ: SLd(F)→ C supported on V ∩ SLd(F), where c> 0 depends only on
d.

Recall that ‖‖S(G) is the reduced spectral norm, defined in (2.1).

Proof. We perform a downward induction on dim(V), which is an integer
between 0 and dim(SLd)= d2

−1. When dim(V)= dim(SLd), the claim follows
from (2.4), (4.1), and Proposition 1.2. Now suppose that dim(V) < dim(SLd),
and that the claim has already been proven for all larger values of dim(V).

We normalize ‖µ‖L∞(V∩SLd(F)) := |F|
−dim(V), and allow all implied constants to

depend on d and M, so our task is now to show that

‖µ‖S(SLd(F))� |F|
−c.

Recall the TT∗ identity

‖TT∗‖op = ‖T‖
2
op

whenever T is a bounded linear operator between Hilbert spaces. Applying this
to the convolution operator f 7→ f ∗µ on the Hilbert space of mean zero functions
on L2(G), we conclude that

‖µ ∗ µ̃‖S(SLd(F)) = ‖µ‖
2
S(SLd(F))

,

where µ̃: G→ C is the function µ̃(g) := µ(g−1). It will thus suffice to show that

‖µ ∗ µ̃‖S(SLd(F))� |F|
−c
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for some c > 0 depending only on m, d. (Note that, as there are only O(1)
different values of dim(V), we may allow the value of the constant c to change
with each step of the induction.)

We consider the product map φ: V × V→ SLd(k) given by φ(v,w) := vw−1,
and let W ′ be the Zariski closure of φ(V × V). As V × V is irreducible, W ′ is
also irreducible. As W ′ contains a translate of V , we have dim(W ′) ≥ dim(V).
We claim that we in fact have strict inequality dim(W ′) > dim(V). To see this,
suppose for contradiction that dim(W ′) = dim(V). Then, for each w ∈ V , Vw−1

is contained in the irreducible variety W ′, and has the same dimension as W ′, and
so Vw−1

=W ′ for all w ∈ V . This implies that W ′(W ′)−1
= φ(V × V) ⊂W ′, or

in other words that W ′ forms a group, and is thus a proper algebraic subgroup of
SLd(k). But V is contained in a coset of W, contradicting the hypothesis on V .
Thus we have dim(W ′) > dim(V).

We now apply Proposition A.5, to conclude that W ′ has complexity O(1), and
that there is a subset Σ of V × V covered by O(1) varieties of complexity O(1)
and dimension strictly less than 2 dim(V), such that, for each w ∈ W ′, the set
{(v, v′) ∈ V × V\Σ : φ(v, v′)= w} is contained in O(1) varieties of complexity
O(1) and dimension at most 2 dim(V)−dim(W ′). Applying the Schwarz–Zippel
bound (Proposition A.2), we conclude that

|Σ ∩ (G× G)| � |F|2 dim(V)−1 (5.1)

and

|{(v, v′) ∈ ((V × V) ∩ (G× G))\Σ : φ(v, v′)= w}| � |F|2 dim(V)−dim(W′). (5.2)

Next, we expand

µ ∗ µ̃(w)=
∑

(v,v′)∈(V×V)∩(G×G):φ(v,v′)=w

µ(v)µ(v′),

and then decompose

µ ∗ µ̃= µ1 + µ2,

where

µ1(w) :=
∑

(v,v′)∈Σ∩(G×G):φ(v,v′)=w

µ(v)µ(v′)

and

µ2(w) :=
∑

(v,v′)∈((V×V)∩(G×G))\Σ :φ(v,v′)=w

µ(v)µ(v′).
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As ‖µ‖L∞(V) = |F|−dim(V), we see that

‖µ1‖`1(G) ≤

∑
(v,v′)∈Σ∩(G×G)

|F|−dim(V)
|F|−dim(V)

� |F|−1,

(5.3)

thanks to (5.1). By (2.3), we thus have

‖µ1‖S(G)� |F|
−1.

Next, from (5.2) and the normalization ‖µ‖L∞(V) = |F|−dim(V), we have

µ2(w)� |F|
2 dim(V)−dim(W′)

|F|−dim(V)
|F|−dim(V)

= |F|−dim(W′)

for all w ∈ G. As µ2 is supported on W ′, we conclude from the induction
hypothesis that

‖µ2‖S(G)� |F|
−c

for some c > 0 depending only on d, and the claim follows. (Note that, as W ′

contains a translate of V , it cannot itself be contained in a coset of a proper
algebraic subgroup of G.) �

We remark that the above proof in fact allows one to take c := 2−2dim(V)−d
.

We will apply Proposition 5.1 in the case of a function µ supported on a
conjugacy class, as in the following corollary.

COROLLARY 5.2. Let F be a finite field, let d ≥ 2, and let a ∈ SLd(F) be
noncentral (that is, a is not a multiple of the identity). Let C(a) := {gag−1

: g ∈
SLd(F)} be the conjugacy class of a. Then

‖1C(a)‖S(SLd(F))�d |F|
−c
|C(a)|

for some c> 0 depending only on d.

Proof. We allow all implied constants to depend on d. We apply Proposition 5.1
with k equal to the algebraic closure of F, and V equal to the closed conjugacy
class C(a) := {gag−1 : g ∈ SLd(k)}. It is clear that V is an irreducible algebraic
variety defined over k of complexity O(1); the irreducibility follows since SLd(k)
is irreducible and the map g 7→ gag−1 is algebraic. Proposition 5.1 will give
the desired claim unless C(a) is contained in a coset Hg of a proper algebraic
subgroup H of SLd(k). But this implies that H contains C(a) · C(a)

−1
, which

implies that the group N generated by C(a) · C(a)
−1

is a proper subgroup of
SLd(k). But this group is conjugation invariant, and thus normal. It is a classical
fact (see for example [15]) that the algebraic group SLd(k) is almost simple, in
the sense that the only normal subgroups are finite (in fact, the maximal normal
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subgroup is the center, or equivalently the quotient PSLd(k) is simple). This
implies that C(a) is finite. But this contradicts the hypothesis that a is not central,
and the claim follows. �

REMARK 5.3. A standard application of Schur’s lemma gives the identity

Eb∈C(a)ρ(b)=
1

dim(V)
(trace ρ(a))IV

for any nontrivial irreducible unitary representation ρ: SLd(F)→ U(V), where
IV denotes the identity operator on V . From this and Remark 2.1 we see that
Corollary 5.2 is equivalent to the assertion that |trace ρ(a)|�d |F|−c dim(V) for
any nontrivial irreducible representation ρ: SLd(F)→ U(V) and any noncentral
a. It is likely that this result could also be established directly (with an optimal
value of c) from the representation theory of SLd(F), but we will not do so here.

6. A reduction to a Borel group

We will abbreviate o|F|→∞() as o() throughout the rest of this paper.
We now begin the proof of Theorem 1.5 by making some reductions. The first

is to use the Cauchy–Schwarz inequality to reduce Theorem 1.5 to a seemingly
weaker statement in which the absolute values have been moved outside of the
g averaging. In other words, we will deduce Theorem 1.5 from the following
statement.

THEOREM 6.1. Let F be a finite field, and set G := SL2(F). Let S denote the set
of all elements of SL2(F) that are diagonalizable over F. Then, for any functions
f0, f1, f2, f3: G→ C, we have∣∣∣∣Eg∈SEx∈G

3∏
i=0

fi(xgi−1)−

3∏
i=0

EGfi

∣∣∣∣� o

( 3∏
i=0

‖fi‖L∞(G)

)
.

Let us assume Theorem 6.1 for now, and see how it implies Theorem 1.5. If f3

is constant, then the claim follows from Theorem 1.4, so we may assume without
loss of generality that f3 has mean zero. We may take the fi to be real valued, and
also normalize ‖fi‖L∞(G) = 1 for each i. Our task is now to show that

Eg∈S

∣∣∣∣Ex∈G

3∏
i=0

fi(xgi−1)

∣∣∣∣= o(1).

By the Cauchy–Schwarz inequality, it suffices to show that

Eg∈S

∣∣∣∣Ex∈G

3∏
i=0

fi(xgi−1)

∣∣∣∣2 = o(1),

https://doi.org/10.1017/fms.2013.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2013.2


T. Tao 22

which we square as

Eg∈SEx,y∈G

3∏
i=0

fi(xgi−1)fi(ygi−1)= o(1).

Substituting y= hx, we can rewrite the left-hand side as

Eh∈GEg∈SEx∈G

3∏
i=0

fi(xgi−1)fi(hxgi−1).

Applying Theorem 6.1, we have

Eg∈SEx∈G

3∏
i=0

fi(xgi−1)fi(hxgi−1)=

3∏
i=0

Ex∈Gfi(x)fi(hx)+ o(1)

for each h ∈ G, so it suffices to show that∣∣∣∣Eh∈G

3∏
i=0

Ex∈Gfi(x)fi(hx)

∣∣∣∣= o(1).

We can bound the left-hand side in magnitude by

Eh∈G|Ex∈Gf3(x)f3(hx)|,

and the claim now follows from Lemma 1.3 (applied to the reversed function
x 7→ f3(x−1)).

It remains to establish Theorem 6.1. We will deduce it from the following
variant theorem on the standard Borel subgroup B of SLd(F).

THEOREM 6.2. Let F be a finite field, and let B be the subgroup of matrices
in SL2(F) which are upper triangular. Let U be the normal subgroup of B
consisting of matrices which are equal to the identity matrix except possibly at
the upper right entry. Let f0, . . . , f3: B→ C. Then

Λ4,B(f0, . . . , f3)=Λ4,B(f0 ∗ µU, . . . , f3 ∗ µU)+ o(‖f0‖L∞(B) . . . ‖f3‖L∞(B)),

where µU := (1/|U|)1U .

Let us assume Theorem 6.2 for now, and show how it implies Theorem 6.1.
We may again assume that f3 has mean zero, and that the fi are real valued with
‖fi‖L∞(G) = 1 for each i. Our task is to show that∣∣∣∣Eg∈SEx∈G

3∏
i=0

fi(xgi−1)

∣∣∣∣= o(1).

The first task is to replace the set S by the set B as follows. Observe that B is the
space of all matrices in SL2(F) that fix the span span(e2) of the second vector e2
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of the standard basis e1, e2 of F2. Any conjugate gBg−1 of B, where g ∈ SL2(F),
would fix another line; this new line would be identical to the original line
span(e2) precisely when g ∈ B, so the total number of such conjugates is

|SL2(F)|/|B| = (1+ O(|F|−1))|F|.

If g ∈ S is regular semisimple, then it has two distinct one-dimensional
eigenspaces in F, and thus preserves 2! = 2 distinct lines. As such, it lies in gBg−1

for 2|B| different values of B. We thus see that the number of regular semisimple
elements of S is equal to |G|/2|B| times the number of regular semisimple
elements of B. An element of B is regular semisimple if and only if its diagonal
entries are distinct, so we see that the proportion of elements of B that are regular
semisimple is 1−O(|F|−1). We conclude that there are ( 1

2+O(|F|−1))|G| regular
semisimple elements of S. As all but O(|F|−1

|G|) elements of G (and hence of S)
are regular semisimple, we thus see that

Eg∈Sf (g)= Eg∈GEh∈gBg−1 f (h)+ O(|F|−1)

for any function f : G→ C of magnitude O(1). It will thus suffice to show that

Eg∈GEh∈gBg−1Ex∈G

3∏
i=0

fi(xhi−1)= o(1).

Fix g ∈ G. By foliating G into left cosets agBg−1 of gBg−1, and applying
Theorem 6.2 (conjugated by g) to each coset, we see that

Eh∈gBg−1Ex∈agBg−1

3∏
i=0

fi(xhi−1)= Eh∈gBg−1Ex∈agBg−1

3∏
i=0

(fi ∗ µgUg−1)(xhi−1)+ o(1)

for each a. It thus suffices to show that

Eg∈GEh∈gBg−1Ex∈G

3∏
i=0

(fi ∗ µgUg−1)(xhi−1)= o(1).

Applying the crude bound∣∣∣∣Eh∈gBg−1Ex∈G

3∏
i=0

(fi ∗ µgUg−1)(xhi−1)

∣∣∣∣≤ Ex∈G|f3 ∗ µgUg−1(x)|,

it suffices to show that

Eg∈GEx∈G|f3 ∗ µgUg−1(x)| = o(1).

By the Cauchy–Schwarz inequality, it suffices to show that

Eg∈GEx∈G|f3 ∗ µgUg−1(x)|2 = o(1).
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From the identity

Ex∈G|f3 ∗ µgUg−1(x)|2 = Ex∈Gf3(x)(f3 ∗ µgUg−1)(x),

it suffices to show that

|Eg∈GEx∈Gf3(x)(f3 ∗ µgUg−1)(x)| = o(1).

By definition of the reduced spectral norm, the left-hand side is bounded by

‖Eg∈GµgUg−1‖S.

Observe that

Eg∈GµgUg−1 = Eu∈UEg∈Gδgug−1 = Eu∈U
1
|C(u)|

1C(u),

and so, by Minkowski’s inequality,

‖Eg∈GµgUg−1‖S ≤ Eu∈U
1
|C(u)|

‖1C(u)‖S.

By Corollary 5.2, we may bound (1/|C(u)|)‖1C(u)‖S by |F|−c for some c > 0
depending only on d, except when u is the identity element, in which case we
have the trivial bound of 1. As U has cardinality |F|, we obtain a net bound of
O(|F|−1

+ |F|−c), and the claim follows.
It remains to establish Theorem 6.2. This is the purpose of the remaining

sections of the paper.

7. Progressions in a Borel group

We now prove Theorem 6.2.
By splitting each function fi into functions that are constant along cosets of U,

or have mean zero along cosets of U, we see that it suffices to show that

Λ4,B(f0, . . . , f3)= o(‖f0‖L∞(B) . . . ‖f3‖L∞(B))

whenever at least one of f0, f1, f2, f3 has mean zero along cosets of U. By the
symmetry

Λ4,B(f0, . . . , f3)=Λ4,B(f3, . . . , f0),

we may assume that fi0 has mean zero along cosets of U for some i0 ∈ {2, 3}. We
may also take f0, f1, f2, f3 to be real valued with L∞(B) norm of 1, so our task is
to show that

Ex,g∈Bf0(x)f1(xg)f2(xg2)f3(xg3)= o(1).

We will take advantage of the short exact sequence

0→ F→ B→ F×→ 0
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between the additive group F = (F,+), the Borel group B, and the multiplicative
group F× := (F\{0}, ·), given by the inclusion map ψ : F→ B and the projection
map π : B→ F× defined by the formulae

ψ(a) :=

(
1 a

0 1

)
and

π

((
t a

0 t−1

))
= t−1.

For any a, b ∈ F, we can make the change of variables (x, g) 7→ (ψ(a)x, ψ(b)g),
and write

Ex,g∈Bf0(x)f1(xg)f2(xg2)f3(xg3) = Ex,g∈Bf0(ψ(a)x)f1(ψ(a)xψ(b)g)

× f2(ψ(a)xψ(b)gψ(b)g)

× f3(ψ(a)xψ(b)gψ(b)gψ(b)g).

By using the identity

xψ(b)= ψ(π(x)2b)x

for any x ∈ B and b ∈ F, we can rewrite the above identity as

Ex,g∈Bf0(x)f1(xg)f2(xg2)f3(xg3)

= Ex,g∈Bf0(ψ(a)x)f1(ψ(a+ π(x)
2b)xg)f2(ψ(a+ π(x)

2b+ π(xg)2b)xg2)

× f3(ψ(a+ π(x)
2b+ π(xg)2b+ π(xg2)b)xg3).

On averaging in a, b, we conclude that

Ex,g∈Bf0(x)f1(xg)f2(xg2)f3(xg3) = Ex,g∈BEa,b∈Ff0,x(a)f1,xg(a+ π(x)
2b)

× f2,xg2(a+ π(x)2b+ π(xg)2b)

× f3,xg3(a+ π(x)2b+ π(xg)2b+ π(xg2)2b),

where fi,x: F→ R are the functions

fi,x(a) := fi(ψ(a)x).

By dilating b by π(x)2, we may simplify the above expression slightly as

Ex,g∈BEa,b∈Ff0,x(a)f1,xg(a+ b)

× f2,xg2(a+ (1+ π(g)2)b)f3,xg3(a+ (1+ π(g)2 + π(g)4)b).

As is well known, the inner average has too high a ‘complexity’ to be directly
treated by Fourier analysis. However, following Gowers [9], we may reduce it to
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a form that is tractable to Fourier analysis after applying the Cauchy–Schwarz
inequality. Indeed, from that inequality we can bound the preceding expression
in magnitude by

(Ex,g∈BEa∈F|Eb∈Ff1,xg(a+ b)f2,xg2(a+ (1+ π(g)2)b)

×f3,xg3(a+ (1+ π(g)2 + π(g)4)b)|2)1/2.

We may expand this expression as

(Ex,g∈BEa,b,b′∈Ff1,xg(a+ b)f1,xg(a+ b′)

× f2,xg2(a+ (1+ π(g)2)b)f2,xg2(a+ (1+ π(g)2)b′)

×f3,xg3(a+ (1+ π(g)2 + π(g)4)b)f3,xg3(a+ (1+ π(g)2 + π(g)4)b′))1/2.

Writing b′ = b+ h and shifting x by g, this becomes

(Ex,g∈BEh∈FEa,b∈F∆h f1,x(a+ b)∆(1+π(g)2)hf2,xg(a+ (1+ π(g)2)b)

×∆(1+π(g)2+π(g)4)hf3,xg2(a+ (1+ π(g)2 + π(g)4)b))1/2,

where ∆hf (a) := f (a)f (a+ h).
Shifting a by b, then dilating b by π(g)−2, we may simplify this slightly as

(Ex,g∈BEh∈FEa,b∈F∆h f1,x(a)∆(1+π(g)2)h f2,xg(a+ b)

×∆(1+π(g)2+π(g)4)hf3,xg2(a+ (1+ π(g)2)b))1/2,

and so our task is now to show that

Ex,g∈BEh∈FEa,b∈F∆h f1,x(a)∆(1+π(g)2)h f2,xg(a+ b)

×∆(1+π(g)2+π(g)4)hf3,xg2(a+ (1+ π(g)2)b)= o(1).
(7.1)

The next step is Fourier expansion. Consider the trilinear form

Ea,b∈FH1(a)H2(a+ b)H3(a+ (1+ π(g)2)b)

for some functions H1,H2,H3: F → C. Using some arbitrary nondegenerate
bilinear form · : F × F→ R/Z, we can form the Fourier series

Hi(a)=
∑
ξ∈F

Ĥi(ξ)e(ξ · a)

for i= 1, 2, 3, where e(x) := e2π ix and

Ĥi(ξ)= Ea∈FHi(a)e(−ξ · a).

Inserting these Fourier series and simplifying, we arrive at the identity

Ea,b∈FH1(a)H2(a+ b)H3(a+ (1+ π(g)2)b)

=

∑
ξ∈F

Ĥ1(ξ)Ĥ2(−(1+ π(g)−2)ξ)Ĥ3(π(g)
−2ξ).
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We may thus write the left-hand side of (7.1) as

Ex,g∈BEh∈F

∑
ξ∈F

(∆h f1,x)
∧(ξ)(∆(1+π(g)2)h f2,xg)

∧(−(1+ π(g)−2)ξ)

× (∆(1+π(g)2+π(g)4)h f3,xg2)
∧(π(g)−2ξ).

Splitting off the ξ = 0 and ξ 6= 0 terms, we see that, to prove (7.1), it will suffice
to establish the bounds

Ex,g∈BEh∈F(∆h f1,x)
∧(0)(∆(1+π(g)2)h f2,xg)

∧(0)(∆(1+π(g)2+π(g)4)h f3,xg2)
∧(0)= o(1)

(7.2)

and

Ex,g∈BEh∈F

∑
ξ∈F×

|(∆h f1,x)
∧(ξ)||(∆(1+π(g)2)hf2,xg)

∧(−(1+ π(g)−2)ξ)|

× |(∆(1+π(g)2+π(g)4)hf3,xg2)
∧(π(g)−2ξ)| = o(1).

(7.3)

7.1. The contribution of the zero frequency. We now prove (7.2). We have

(∆h f1,x)
∧(0)= Ea∈Ff1,x(a)f1,x(a+ h),

and thus, by Fourier expansion,

(∆h f1,x)
∧(0)=

∑
ξ1∈F

|f̂1,x(ξ1)|
2e(ξ1 · h).

Similarly we have

(∆(1+π(g)2)h f2,xg)
∧(0)=

∑
ξ2∈F

|f̂2,xg(ξ2)|
2e((1+ π(g)2)∗ξ2 · h)

and

(∆(1+π(g)2+π(g)4)h f2,xg)
∧(0)=

∑
ξ3∈F

|f̂3,xg2(ξ3)|
2e((1+ π(g)2 + π(g)4)

+ ρ(xg2x−1)∗ξ3 · h).

Inserting these identities and performing the h averaging, we conclude that the
left-hand side of (7.2) can be rewritten as

Ex,g∈B

∑
ξ1,ξ2,ξ3∈F:ξ1+(1+π(g)2)ξ2+(1+π(g)2+π(g)4)ξ3=0

|f̂1,x(ξ1)|
2
|f̂2,xg(ξ2)|

2
|f̂3,xg2(ξ3)|

2.

Recall that fi0 was assumed to have mean zero on cosets of H, which implies that
we may restrict ξi0 to be nonzero. We note that the quantity |f̂i,x(ξ)|

2 is unchanged
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if one multiplies x on the left (or right) by an element of U, and so we may write

|f̂i,x(ξ)|
2
= µi,π(x)(ξ)

for some nonnegative quantity µi,t(ξ), defined for i= 1, 2, 3, t ∈ F×, and ξ ∈ F.
We can then simplify the previous expression as

Es,t∈F×

∑
ξ1,ξ2,ξ3∈F:ξ1+(1+t2)ξ2+(1+t2+t4)ξ3=0;ξi0 6=0

µ1,s(ξ1)µ2,st(ξ2)µ3,st2(ξ3). (7.4)

To show that this expression is o(1), it will suffice to establish the combinatorial
bound

Es,t∈F×1η1(s)+(1+t2)η2(st)+(1+t2+t4)η3(st2)=0 = o(1) (7.5)

for any choice of functions ηi: F×→ F for i= 1, 2, 3, with ηi0 nonzero. Indeed,
by the Plancherel identity, we have∑

ξ

µi,s(ξ)≤ 1

for all i= 1, 2, 3 and s ∈ F×, with µi0,s(0)= 0, so we may find random functions
ηi: F×→ F with ηi0 nowhere vanishing, and with the property that

µi,s(ξ)≤ P(ηi(s)= ξ)

for all i = 1, 2, 3 and s ∈ F×. Applying (7.5) with these functions, and taking
expectations, we conclude that the quantity (7.4) is o(1), as desired.

It remains to establish (7.5), which is a bound of ‘sum-product’ type, in that
it is asserting a certain combinatorial incompatibility between the multiplicative
and additive structures on F. Assume for contradiction that we can find arbitrarily
large finite fields F and functions η1, η2, η3: F×→ F with ηi0 nowhere vanishing,
for which

Es,t∈F×1η1(s)+(1+t2)η2(st)+(1+t2+t4)η3(st2)=0� 1.

Fix F, η1, η2, η3. Let A⊂ (F×)2 be the set of all pairs (s, t) for which

η1(s)+ (1+ t2)η2(st)+ (1+ t2
+ t4)η3(st2)= 0,

and thus |A| � |F×|2. Applying the multidimensional Szemerédi theorem
(Theorem B.1) to the multiplicative group F×, we conclude that there are�|F|3

triples (s, t, r) with the property that (sri, trj) ∈ A for all−100≤ i, j≤ 100 (say),
and thus

η1(sri)+ (1+ r2jt2)η2(stri+j)+ (1+ r2jt2
+ r4jt4)η3(st2ri+2j)= 0 (7.6)

for all −100 ≤ i, j ≤ 100. We will eliminate the ηi terms from (7.6) (taking
advantage of the nonvanishing nature of ηi0) to obtain a nontrivial algebraic
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constraint on s, t, r, which will contradict the assertion that�|F|3 triples (s, t, r)
exist with this property if |F| is large enough.

We turn to the details. Fix s, t, r obeying (7.6). If we abbreviate ηk(stk−1ri) as
ck(i), and also write αj := 1+ r2jt2 and βj := 1+ r2jt2

+ r4jt4, we have

c1(i)+ αjc2(i+ j)+ βjc3(i+ 2j)= 0

for all −100 ≤ i, j ≤ 100. In particular, applying this identity for j and j+ 1 and
subtracting, we have

αj+1c2(i+ j+ 1)− αjc2(i+ j)= βjc3(i+ 2j)− βj+1c3(i+ 2j+ 2)

for all −90≤ i, j≤ 90 (say). Replacing (i, j) by (i− 2, j+ 2), (i+ 2, j− 1), and
(i, j+ 1), we obtain the system of four equations

αj+1c2(i+ j+ 1)− αjc2(i+ j) = βjc3(i+ 2j)− βj+1c3(i+ 2j+ 2) (7.7)

αj+3c2(i+ j+ 1)− αj+2c2(i+ j) = βj+2c3(i+ 2j+ 2)− βj+3c3(i+ 2j+ 4)

(7.8)

αjc2(i+ j+ 2)− αj−1c2(i+ j+ 1) = βj−1c3(i+ 2j)− βjc3(i+ 2j+ 2) (7.9)

αj+2c2(i+ j+ 2)− αj+1c2(i+ j+ 1) = βj+1c3(i+ 2j+ 2)− βj+2c3(i+ 2j+ 4)

(7.10)

for all −80≤ i, j≤ 80 (say).
We now eliminate the various c2 factors in this system to obtain a linear

recurrence in the cj. Multiplying (7.7) by αj+2 and (7.8) by αj, and subtracting
to eliminate the c2(i+ j) term, we conclude that

(αj+1αj+2 − αj+3αj)c2(i+ j+ 1)

= βjαj+2c3(i+ 2j)− (βj+1αj+2 + βj+2αj)

× c3(i+ 2j+ 2)+ βj+3αjc3(i+ 2j+ 4).

(7.11)

Similarly, if we multiply (7.9) by αj+2 and (7.10) by αj, and subtract to eliminate
the cj(i+ j+ 2) term, we have

(αjαj+1 − αj−1αj+2)c2(i+ j+ 1) = βj−1αj+2c3(i+ 2j)− (βjαj+2 + βj+1αj)

× c3(i+ 2j+ 2)+ βj+2αjc3(i+ 2j+ 4).

A brief calculation reveals that

αj+1αj+2 − αj+3αj = r2(αjαj+1 − αj+2αj−1),

and so we may also eliminate c2(i+ j+ 1) and conclude that

β ′jαj+2c3(i+ 2j)− (β ′j+1αj+2 + β
′

j+2αj)c3(i+ 2j+ 2)+ β ′j+3αjc3(i+ 2j+ 4)= 0

(7.12)
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for all −80≤ i, j≤ 80, where

β ′j := βj − r2βj−1 = (1− r−2)(r4jt4
− r2).

We continue the elimination process. Applying (7.12) with (i, j) replaced by
(i+ 2, j− 1), we conclude that

β ′j−1αj+1c3(i+ 2j)− (β ′jαj+1 + β
′

j+1αj−1)c3(i+ 2j+ 2)

+β ′j+2αj−1c3(i+ 2j+ 4)= 0

for all −70 ≤ i, j ≤ 70 (say). Multiplying this equation by β ′j+3αj and (7.12) by
β ′j+2αj−1, and subtracting, we conclude that

(β ′j−1β
′

j+3αjαj+1 − β
′

jβ
′

j+2αj−1αj+2)c3(i+ 2j)

= (β ′jβ
′

j+3αjαj+1 + β
′

j+1β
′

j+3αj−1αj − β
′

j+1β
′

j+2αj−1αj+2

− (β ′j+2)
2αj−1αj)c3(i+ 2j+ 2)

for all −70≤ i, j≤ 70.
We apply this with (i, j) replaced by (i− 2, 1) and (i− 4, 2) to conclude that

(β ′0β
′

4α1α2 − β
′

1β
′

3α0α3)c3(i)

= (β ′1β
′

4α1α2 + β
′

2β
′

4α0α1 − β
′

2β
′

3α0α3 − (β
′

3)
2α0α1)c3(i+ 2)

and

(β ′1β
′

5α2α3 − β
′

2β
′

4α1α4)c3(i)

= (β ′2β
′

5α2α3 + β
′

3β
′

5α1α2 − β
′

3β
′

4α1α3 − (β
′

4)
2α1α2)c3(i+ 2)

for all −60 ≤ i ≤ 60 (say). Eliminating c3(i + 2), we conclude that either c3(i)
vanishes for all −60≤ i≤ 60, or else we have the constraint

(β ′0β
′

4α1α2 − β
′

1β
′

3α0α3)(β
′

2β
′

5α2α3 + β
′

3β
′

5α1α2 − β
′

3β
′

4α1α3 − (β
′

4)
2α1α2)

= (β ′1β
′

5α2α3 − β
′

2β
′

4α1α4)(β
′

1β
′

4α1α2 + β
′

2β
′

4α0α1

−β ′2β
′

3α0α3 − (β
′

3)
2α0α1).

After eliminating some factors of (1 − r−2), this is a polynomial constraint
between r and t of bounded degree. One can easily verify that the constraint
is not a tautology (for instance, setting r = 2 and t = 2, the left-hand side
is approximately −1.96 × 1024 and the right-hand side is approximately
3.61×1032). Thus, by the Schwarz–Zippel lemma, there are only O(|F|) possible
pairs (r, t), and thus O(|F|2) triples (r, s, t), that obey this constraint. Outside
of those exceptional triples, we thus have c3(i) vanishing for all −60 ≤ i ≤
60. Applying (7.11), we conclude that c2(0) vanishes as well, unless α1α2 −

α3α0 vanishes. The latter possibility is also a bounded degree nontautological
constraint on r, t, and so it also only occurs for O(|F|2) triples (r, s, t).
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Thus we see that c3(0) and c2(0) both vanish outside of these exceptional triples.
But this contradicts the assumption that ηi0 never vanishes (recall that i0 is either
2 or 3). We have thus demonstrated that there are at most O(|F|2) triples (r, s, t)
for which (7.6) holds for all −100 ≤ i, j ≤ 100. But we also know that there
are �|F|3 such triples, leading to a contradiction for |F| sufficiently large, as
required.

7.2. The contribution of the nonzero frequencies. Finally, we prove (7.3).
This will be done by a variant of the Cauchy–Schwarz arguments used to
establish Theorem 1.4. Observe that one multiplies x ∈ G on the left by some
element ψ(k) of U; then fi,x and ∆hfi,x become translated by k, and the quantity
|∆̂h fi,x(ξ)| is unchanged. Thus, for any i= 1, 2, 3, x ∈ G, h ∈ F, and ξ ∈ F×, we
may write

|∆̂h fi,x(ξ)| = Hi,h,π(x)(ξ) (7.13)

for some function Hi,h,π(x): F× → R+ depending on h and π(x). We may thus
rewrite (7.3) as

Es∈F×Eh∈F

∑
ξ∈F×

H1,h,s(ξ)Et∈F×H2,(1+t4)h,st(−(1+ t−4)ξ)H3,(1+t4+t8)h,st2(t
−4ξ)

= o(1).

From Plancherel’s theorem we have∑
ξ∈F×

H1,h,s(ξ)
2
≤ 1

for all s ∈ F× and h ∈ F, so by the Cauchy–Schwarz inequality it suffices to show
that

Es∈F×Eh∈F

∑
ξ∈F×

|Et∈F×H2,(1+t4)h,st(−(1+ t−4)ξ)H3,(1+t4+t8)h,st2(t
−4ξ)|2 = o(1),

which we expand as

Es,t,u∈F×Eh∈F

∑
ξ∈F×

H2,(1+t4)h,st(−(1+ t−4)ξ)2H3,(1+t4+t8)h,st2(t
−4ξ)2

×H2
2,(1+u4)h,su(−(1+ u−4)ξ)H2

3,(1+u4+u8)h,su2(u
−4ξ)= o(1).

By another Cauchy–Schwarz inequality and symmetry, it thus suffices to show
that

Es,t,u∈F×Eh∈F

∑
ξ∈F×

H4
2,(1+t4)h,st(−(1+ t−4)ξ)H4

3,(1+u4+u8)h,su2(u
−4ξ)= o(1).
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There are at most four values of t for which t4
= −1, and each of these

values of t contributes O(|F|−1) to the above sum (using Plancherel’s theorem∑
ξ Hi,h,s(ξ) ≤ 1 and the trivial bound Hi,h,s(ξ) ≤ 1), and may be discarded.

Dilating h, s, ξ by (1 + t4)−1, t−1, −(1 + t−4), respectively, we rewrite the
remaining component of the above estimate as

Es,t,u∈F×Eh∈F

∑
ξ∈F×

1t4 6=−1H4
2,h,s(ξ)H

4
3,(1+u4+u8)(1+t4)−1h,st−1u2(−(1+ t−4)−1u−4ξ)

= o(1).

Making the change of variables (s, u, v) := (s, u, st−1u2), so that t = su2v−1, this
becomes

Es,u,v∈F×Eh∈F

∑
ξ∈F×

1s4u8v−4 6=−1H4
2,h,s(ξ)H

4
3,(1+u4+u8)(1+s4u8v−4)−1h,v

× (−(1+ s−4u−8v4)−1u−4ξ)= o(1).

From Plancherel’s theorem and the trivial bound H2,h,s(ξ)≤ 1, we have∑
ξ∈F×

H4
2,h,s(ξ)≤ 1

for each h ∈ F and s ∈ F×. It will thus suffice to establish the bound

Eu∈F×1s4u8v−4 6=−1H4
3,(1+u4+u8)(1+s4u8v−4)−1h,v(−(1+ s−4u−8v4)−1u−4ξ)= o(1)

for all ξ ∈ F×, and all but at most o(|F|3) choices of (s, v, h) ∈ F× × F× × F.
Fix s, v, h. Our task is to show that, for all but o(|F|3) choices of (s, v, h), one

has

Eu∈F1A(u)H
4
3,φ(u),v(η(u))|

4
= o(1), (7.14)

where A := {u ∈ F× : s4u8v−4
6= −1},

φ(u) := (1+ u4
+ u8)(1+ s4u8v−4)−1h,

and

η(u) := −(1+ s−4u−8v4)−1u−4ξ.

We may assume that h is nonzero, as this only excludes O(|F|2)= o(|F|3) values
of (s, v, h).

If we write f := f3,g for some g ∈ π−1(v) and expand the definition (7.13) of
H3,h,s, we may rewrite (7.14) as

Eu∈F1A(u)|∆̂φ(u)f (η(u))|
4
= o(1). (7.15)
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The next step is to apply the Cauchy–Schwarz inequality again, in the spirit of
the work of Gowers [9]. First, to show (7.15), it will suffice to show (using the
trivial bound |∆̂hf (η)| ≤ 1) that

Eu∈F1A(u)|∆̂φ(u)f (η(u))| = o(1),

or equivalently that

Eu∈Fb(u)∆̂φ(u)f (η(u))= o(1)

for any function b: F→ R supported on A with |b(u)| ≤ 1 for all u. We can
expand the left-hand side as

Ex,u∈Fb(u)f (x)f (x+ φ(u))e(−η(u) · x),

and rearrange this as

Ex,y∈Ff (x)f (y)K(x, y),

where

K(x, y) :=
∑

u∈F:φ(u)=y−x

b(u)e(−η(u) · x).

Applying the Cauchy–Schwarz inequality twice, and using the boundedness of f ,
we have

|Ex,y∈Ff (x)f (y)K(x, y)|4 ≤ Ex,y,x′,y′∈FK(x, y)K(x, y′)K(x′, y)K(x′, y′),

so it will suffice to show that

Ex,y,x′,y′∈FK(x, y′)K(x′, y)K(x′, y′)= o(1).

The left-hand side may be expanded as

|F|−4
∑

u1,u2,u3,u4∈A

b(u1)b(u2)b(u3)b(u4)

×

∑
x,y,x′,y′∈F:φ(u1)=x−y,φ(u2)=x−y′,φ(u3)=x′−y,φ(u4)=x′−y′

× e(−(η(u1)− η(u2)− η(u3)+ η(u4)) · x)e((η(u3)− η(u4)) · (x
′
− x)).

The quantity x′ − x in the summand is equal to φ(u3) − φ(u1), and so this
phase is constant over the inner summation. By Fourier analysis, we see that
the inner summation is thus O(|F|) when η(u1) + η(u4) = η(u2) + η(u3) and
φ(u1)+ φ(u4)= φ(u2)+ φ(u3), and zero otherwise. It thus suffices to show that

|{(u1, u2, u3, u4) ∈ A4
: η(u1)+ η(u4)= η(u2)+ η(u3);φ(u1)+ φ(u4)

= φ(u2)+ φ(u3)}| = o(|F|3).
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Canceling out the nonzero h and ξ factors, and replacing each of the ui by their
fourth powers (at the cost of paying O(1) in the cardinality bound), this becomes

|{(u1, u2, u3, u4) ∈ A4
:Φ(u1)+Φ(u4)=Φ(u2)+Φ(u3)}| = o(|F|3),

where Φ : F→ F2 is the rational function

Φ(u) := ((1+ u+ u2)(1+ ku2)−1, (1+ k−1u−2)−1u−1)

and k := s4v−4. We can simplify (1 + k−1u−2)−1u−1 as ku(1 + ku2)−1 and
(1 + u + u2)(1 + ku2)−1 as k−1

+ (1 − k−1
+ u)(1 + ku2)−1, so, after excluding

the O(|F|2)= o(|F|3) triplets (s, v, h) for which k = 1, we may replace Φ by

Φ̃(u) := ((1+ ku2)−1, u(1+ ku2)−1).

This function takes values in the conic section

C := {(x, y) ∈ F : x2
+ ky2

= x}

with each point in C arising from at most two values of u, and so it suffices to
show that

|{(p1, p2, p3, p4) ∈ C4
: p1 + p4 = p2 + p3}| = o(|F|3).

But from Bezout’s theorem we see that each point in F2 can be expressed in at
most two ways as the sum of two elements in C, and so the left-hand side is
O(|F|2), and the claim follows.

REMARK 7.3. The above argument in fact allows us to replace o(1) by O(|F|−c)

for some absolute constant c> 0, for the contribution of the nonzero frequencies
ξ . Unfortunately, due to the reliance on the multidimensional Szemerédi
theorem, we are unable to obtain a similarly strong bound for the contribution of
the zero frequencies.
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Appendix A. Some algebraic geometry

Throughout this appendix, k is an algebraically closed field, and F is a finite
subfield of k. The purpose of this appendix is to review some basic algebraic
geometry regarding varieties and regular maps over k.
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We begin with the definition of a variety. For the purposes of this paper, we
may restrict attention to affine varieties for simplicity, but most of the results here
can be extended to other types of variety (projective, quasiprojective, and so on).

DEFINITION A.1 (Varieties). An (affine) variety defined over k is a subset V ⊆
kn of the form

V = {x ∈ kn
: P1(x)= · · · = Pm(x)= 0},

where n,m are natural numbers, and P1, . . . ,Pm : kn
→ k are polynomials. We

say that the variety has complexity at most M if n,m are at most M, and all the
degrees of P1, . . . ,Pm are at most M. If, furthermore, the polynomials P1, . . . ,Pm

have coefficients defined over F, we say that V is defined overF (with complexity
at most M). A variety is (geometrically) irreducible if it cannot be expressed as
the union of two strictly smaller subvarieties.

The Zariski closure of a subset E of kn is defined to be the intersection of all
the varieties in kn that contain E.

The dimension of a nonempty variety V ⊂ kn is the largest natural number d
for which one has a chain

∅( V0 ( · · ·( Vd ⊂ V

of irreducible varieties V0, . . . ,Vd. We adopt the convention that the empty set
has dimension −∞.

We have the following basic upper bound for the number of F-points on a
variety.

PROPOSITION A.2 (Schwarz–Zippel bound). Let V ⊂ km be an affine variety
defined over k of complexity at most M and dimension d. Then

|V ∩ Fm
|�m,M |F|

d.

Proof. See for instance [17, Lemma 1]. One can make the implied constant
depend linearly on the degree of V , but we will not need this refinement
here. �

In the case that V is irreducible and defined over F, we have the following
well-known refinement of Proposition A.2.

PROPOSITION A.3 (Lang–Weil bound). Let V ⊂ km be a geometrically
irreducible affine variety defined over F of complexity at most M and dimension
d. Then

|V ∩ Fm
| = (1+ Om,M(|F|

−1/2))|F|d.
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In particular, if |F| is sufficiently large depending on m,M, one has

|F|d� |V ∩ Fm
| � |F|d.

Proof. See [17, Theorem 1]. Again, more precise versions of the error term are
available, but we will not need them here. �

Now we recall the notions of regular and dominant maps between varieties.
Our definition will be somewhat complicated due to the need to assign
quantitative complexities to such maps.

DEFINITION A.4 (Regular map). Let V ⊂ kn and W ⊂ km be affine varieties,
and let M ≥ 1. A map f : V→W is said to be regular with complexity at most
M if V,W are individually of complexity at most M, and if one can cover V
by some varieties V1, . . . ,Vr of complexity at most M for some r ≤ M such
that, for each 1 ≤ j ≤ r, the map f |Vj has the form (Pj,1/Qj,1, . . . ,Pj,m/Qj,m),
where the Pj,l,Qj,l are homogeneous polynomial maps from kn+1 to k with
deg(Pj,l)= deg(Qj,l)≤M, and the Qj,l are nonvanishing on Vj.

A regular map φ: V→W is dominant if V is irreducible and φ(V) is Zariski
dense in W.

The following proposition asserts (in a certain technical quantitative sense)
that regular maps are always ‘essentially dominant’ after a reduction in the range,
and that the fibres of such maps usually have the expected dimension.

PROPOSITION A.5 (Quantitative dominance). Let V ⊂ km,W ⊂ kn be algebraic
varieties defined over k of complexity at most M, with V irreducible, and let
φ: V→W be a regular map of complexity at most M. Then there exists a subset
V ′ of V and an irreducible subvariety W ′ of W of complexity OM(1), with the
following properties.

(i) (Zariski density) V\V ′ can be covered by the union of OM(1) varieties of
complexity OM(1) and dimension strictly less than dim(V).

(ii) (Controlled image) W ′ is equal to the Zariski closure of φ(V); in particular,
φ: V→W ′ is a dominant map.

(iii) (Controlled fibres) For each w ∈ W ′, the set {v ∈ V ′ : φ(v) = w} can be
covered by the union of OM(1) varieties of complexity OM(1) and dimension
at most dim(V)− dim(W ′).

Proof. This follows from [7, Lemma 3.7]. �
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Appendix B. A quantitative multidimensional Szemerédi theorem

The purpose of this section is to establish the following multidimensional
Szemerédi theorem.

THEOREM B.1 (Multidimensional Szemerédi theorem). Let G = (G,+) be an
additive group, let k,m≥ 1 be integers, and let A⊂ Gm be a set with |A| ≥ δ|G|m.
Then there are�k,m,δ|G|m+1 tuples (a1, . . . , am, r) ∈ Gm+1 with the property that

(a1 + i1r, . . . , am + imr) ∈ A

for all integers i1, . . . , im ∈ {−k, . . . , k}.

This is a variant of the multidimensional Szemerédi theorem of Furstenberg
and Katznelson [8]. There are now many techniques to establish such results;
we will derive Theorem B.1 from the hypergraph removal lemma established in
[11, 22, 23, 27].

We first observe that Theorem B.1 may be deduced via a lifting trick from the
following apparently weaker version.

THEOREM B.2 (Multidimensional Szemerédi theorem, again). Let G = (G,+)
be an additive group, let m ≥ 1 be integers, and let A ⊂ Gm be a set with
|A| ≥ δ|G|m. Then there are�m,δ|G|m+1 tuples (a, r) ∈ Gm

×G with the property
that

a+ re1, . . . , a+ rem ∈ A

where we adopt the notation that g(n1, . . . , nm) := (n1g, . . . , nmg) whenever
g ∈ G and n1, . . . , nm are integers, and e1, . . . , em is the standard basis of Zm.

Indeed, to deduce Theorem B.1 from Theorem B.2, let K := (2k+1)m, and let
v1, . . . , vK be an enumeration of the Km-tuples in {−k, . . . , k}m. If A ⊂ Gm, we
let Ã⊂ Gm+K be the set

Ã := {(a, b1, . . . , bK) ∈ Gm
× GK

: a+ b1v1 + · · · + bKvK ∈ A}.

If |A| ≥ δ|G|m, then it is clear (by freezing b1, . . . , bK) that |Ã| ≥ δ|G|m+K .
Applying Theorem B.2, we see that there are �k,m,δ tuples (a, b1, . . . , bK, r) ∈
Gm+K+1 such that

(a, b1, . . . , bi−1, bi + r, bi+1, . . . , bK) ∈ Ã

for all 1≤ i≤ K, which by the definition of Ã implies that

a′ + rvi ∈ A (B 1)

for all i= 1, . . . ,K, where a′ := a+b1v1+· · ·+bKvK . Since each a′ ∈ Gm arises
from at most |G|K tuples (a, b1, . . . , bK), we conclude that there are�k,m,δ tuples
(a′, r) ∈ Gm+1 such that (B 1) holds for all i= 1, . . . ,K, and the claim follows.
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We now establish Theorem B.2. Let G,A,m be as in that theorem. For each
i = 1, . . . ,m, we introduce a set Ei ⊂ Gm+1, defined as the set of all tuples
(a1, . . . , am, s) ∈ Gm+1 with the property that

(a1, . . . , ai−1, s− a1 − · · · − ai−1 − ai+1 − · · · − am, ai+1, . . . , am) ∈ A.

Observe that, if (a1, . . . , am, s) lies in the intersection
⋂m

i=1 Ei of all the Ei,
then, by setting r := s − a1 − · · · − am, we have (a1, . . . , am) + rei ∈ A for all
i= 1, . . . ,m. Thus it will suffice to show that∣∣∣∣ m⋂

i=1

Ei

∣∣∣∣�m,δ|G|
m+1.

Let ε > 0 be a sufficiently small quantity depending on m, δ to be chosen later.
Suppose for sake of contradiction that∣∣∣∣ m⋂

i=1

Ei

∣∣∣∣< ε|G|m+1.

Observe that each Ei is i-invariant in the sense that the assertion that a given
tuple (a1, . . . , am, s) ∈ Gm+1 lies in Ei does not depend on the ith coordinate ai.
Because of this, we may apply the hypergraph removal lemma (see for example
[27, Theorem 1.13]) and conclude (if ε is small enough depending on m, δ) that
there exist i-invariant perturbations E′i of Ei with

|E′i∆Ei|<
δ

m
|G|m+1 (B 2)

such that
m⋂

i=1

E′i = ∅. (B 3)

We now intersect Ei, E′i with the hyperplane

Σ := {(a1, . . . , am, a1 + · · · + am) : a1, . . . , am ∈ G}.

As this hyperplane sits transversely with respect to the i-invariant set E′i∆Ei, we
conclude from (B 2) that

|(E′i∆Ei) ∩Σ |<
δ

m
|G|m,

and hence, from the union bound and (B 3),∣∣∣∣ m⋂
i=1

Ei ∩Σ

∣∣∣∣< δ|G|m.
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On the other hand, since (a1, . . . , am, a1 + · · · + am) ∈
⋂m

i=1 Ei ∩ Σ whenever
(a1, . . . , am) ∈ A, we have∣∣∣∣ m⋂

i=1

Ei ∩Σ

∣∣∣∣≥ |A| ≥ δ|G|m,
giving the desired contradiction. This completes the proof of Theorem B.2, and
hence Theorem B.1.
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[10] W. T. Gowers, ‘A new proof of Szemerédi’s theorem’, Geom. Funct. Anal. 11(3) (2001),
465–588.

[11] W. T. Gowers, ‘Hypergraph regularity and the multidimensional Szemerédi theorem’, Ann.
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