
ANZ1AMJ. 45(2004), 443-456

HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY:
A BIOECONOMIC MODEL
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Abstract

A multispecies harvesting model with interference is proposed. The model is based on
Lotka-Volterra dynamics with two competing species which are affected not only by har-
vesting but also by the presence of a predator, the third species. In order to understand the
dynamics of this complicated system, we choose to model the simplest possible predator
response function in which the feeding rate of the predator increases linearly with prey
density. We derive the conditions for global stability of the system using a Lyapunov
function. The possibility of existence of a bioeconomic equilibrium is discussed. The
optimal harvest policy is studied and the solution is derived in the equilibrium case using
Pontryagin's maximal principle. Finally, some numerical examples are discussed.

1. Introduction

Bioeconomic modelling of the exploitation of biological resources such as fisheries and
forestries has gained importance in recent years. The techniques and issues associated
with the bioeconomic exploitation of these resources have been discussed in detail
by Clark [5, 6]. Since most marine fisheries are essentially multispecies in nature,
exploitation of mixed-species fisheries has started to draw attention from researchers.
Although numerous models on single species fisheries have so far appeared in the
fishery literature, no fully adequate studies on multispecies fisheries appear to exist.
It is very difficult to construct a realistic model of a multispecies community. Even if
we succeed in formulating such a model, it is quite likely that the model may not be
analytically tractable. Not every part of the catch is edible and harvesting harms some
of the marine species which live on the other species in the sea. Thus the predator
species are likely to become extinct with an indiscrete increase in the harvesting of prey
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species. Therefore, how best to harvest ecologically or economically interdependent
populations in the sense of maximising the present value of a stream of revenues from
them, while maintaining ecological balance, is an important optimal control problem
for fisheries. Clark [5] discussed an optimal equilibrium policy for the combined
harvesting of two ecologically independent species. Chaudhuri [1, 2] formulated
an optimal control problem for the combined harvesting of two competing species.
Models on the combined harvesting of a two-species prey-predator fishery have been
discussed by Chaudhuri and Saha Ray [4], Mesterton-Gibbons [7], Ragozin and
Brown [3] etc. Most of the mathematical models on the harvesting of a multispecies
fishery have so far assumed that the species are affected by harvesting only. To the
authors' knowledge, no attempt has yet been made to study a harvesting model of
two competing species in the presence of a predator, the third species which is not
harvested.

In this paper, we study the problem of harvesting two competing species in the
presence of a predator species which feeds on both the competing species. A combined
harvesting effort is devoted to the exploitation of the first two (prey) species while
the third (predator) species is not harvested. The problem is clearly stated in the
next section. We have analysed the existence and stability of the equilibria of the
system. We derive conditions for global stability of the system. Taking simple
economic considerations into account, we discuss the possibilities of the existence
of a bioeconomic equilibrium. The optimal policy of exploitation is derived using
Pontryagin's maximal principle. Last, some numerical illustrations are given.

2. Formulation of the problem

The ecological system is as follows. There are two fish species which compete
with each other for the use of a common resource and both of them are subjected to
continuous harvesting. There is a predator (for example a whale) feeding on both of
them. It is assumed that the predator population is not harvested (for example whale
harvesting has been prohibited). Thus the interaction between the harvesting agency
and the predator is through the third party, namely, the prey. Since we are not making
a case study in respect of a specific prey-predator community, we have opted for
the logistic growth function for both the prey species (that is, the population density
of each prey is resource limited) and for simplicity, the feeding rate of the predator
species is assumed to increase linearly with prey density.

The governing equations of the system can be written as

dxjdt = *i[A.i(l - x,/ h) - al2x2 - anx3] - qiExu

dx2/dt = x2[X2(l - x2/k2) - a2i-Xi — "23*3] - 92^2. (2.1)

+0*32*2 -x3],
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where A.i, A.2( ku k2, ct12, of13, a2l, 0123, a31 and a3 2 are positive rate constants. Specifi-
cally Xi, k2 are the bioticpotentials and k\, k2 are the environmental carrying capacities
of the two prey species; ai2, a2i are the coefficients of interspecific competition be-
tween the two prey species; au, a-a are the predation coefficients; a^, ai2 are the
conversion parameters; E is the harvesting effort; q\, q2 are the catchability coeffi-
cients of xi and x2 respectively. The catch-rate functions q\Ex\ and q2Ex2 are based
on the CPUE (catch-per-unit-effort) hypothesis [5].

3. The steady states

The steady states of the system (2.1) are P0(0, 0, 0), P, (0, x2, *3) , />2(x,, 0, x3) and
Pi(x*, x2, x%), where

. _ k2 - q2E _ _ ai2(k2 - q2E)
X2/k2 + aoc' 3

+ a3iai3 A.,//:, +

We assume here that the interior equilibrium point (x*, x2, x%) exists. There are also
three other equilibria in the x^-plane (JC3 = 0). But we are not interested in these
equilibria, since for ;c3 = 0, this is a two-species competitive model which has been
studied in depth by Chaudhuri [1].

The equilibrium point Pi exists if E < X2/q2, that is, if E < BTP^ and P2 exists
if E < ki/qi, that is, if E < BTPXl. The ratio (k/q) of the biotic potential (A.) to
the catchability coefficient (q) is known as the Biotechnical Productivity (BTP) of the
species [5].

4. Local stability

The eigenvalues of the variational matrix V(0, 0, 0) are 0,ki — q\E and k2 — q2E
(see Appendix A). Hence the integral curves terminate in a plane corresponding to
the steady state.

One of the eigenvalues of the variational matrix V(0, x2, x-$) is A,] — ct\2x2 — a^xi —
qx E (see Appendix B). This eigenvalue is negative or positive according to whether
ki/qi is less or greater than (012^2 + <*i3̂ 3)/<7i + E.

The other two eigenvalues are given by the roots of the following quadratic equation

ix2 + ix(k2x2/k2 + x^ + (A.2M2 + azian)x&3 = 0. (4.1)

In (4.1), the sum of the roots = —(k2x2/k2 + x3), which is always negative and the
product of the roots = (k2/k2 + a^a^x^, which is always positive.
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Therefore the roots of (4.1) are real and negative or complex conjugates having
negative real parts. Thus Pi is asymptotically stable only if

+ E.

We have already found that the steady state Pi exists if E < k2/q2. Hence the
condition for asymptotic stability of Pi becomes

X2
< E < — .

This defines a range in which the fishing effort must lie to ensure a stable equilib-
rium Pi.

One of the eigenvalues of the variational matrix V(x\, 0, *3) is X2 — a2\X\ — c*23-*3 —
q2E (see Appendix C). This eigenvalue is negative or positive according to whether
k2/q2 is less or greater than (a2i^i + ot2ix3)/q2 + E. The other two eigenvalues are
given by the roots of the quadratic equation

>i2 + (X,Jf ,/*, + x{)n, + (A,/*, + a3lal3)xix3 = 0. (4.2)

In (4.2), the sum of the roots = —(kixi/ki + .x3), which is always negative and the
product of the roots = (A.1/&1 + a^a^xix^, which is always positive.

Therefore the roots of (4.2) are real and negative or complex conjugates having
negative real parts. Thus P2 is asymptotically stable only if

A-2/92 < («2i^i + a23x3)/q2 + E.

Since P2 exists only if £ < X] Jq\, the condition for asymptotic stability of P2 becomes

The effort level must lie within this range for the existence of a stable steady
state P2. The characteristic equation for the variational matrix V(x*, x\, x\) is Z>3/x

3 +
b2^,2 + bifi + bo = 0 (see Appendix D).

Using the Routh-Hurwitz criteria [8], it can be shown that P3 is stable if

(i) ki/ki > a\2ai\/an and
(ii) \2/k2>a2ian/a3l.

5. Global stability

In this section, we shall prove the global stability of the system (2.1) by constructing
a suitable Lyapunov function.
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THEOREM 1. The interior equilibrium point P3 is globally asymptotically stable

if
(i) a13 = a3i, a23 = a32 and

(ii) 2

PROOF. Let us consider a suitable Lyapunov function

v(xux2, *3) = (xl - x*) - x* logC*,/*!*) + (x2 - x2) - x2

Obviously v is positive definite.
The time derivative of v along the solutions of (2.1), after a little simplification, is

given by

= [*,(*, -x\)2/kx + (x, -x*)(x2 -x*)(an + a21)

+ X2{x2 - x*2)
2/k2 + (x2 - **)(x3 - X3*)(a23 - a32)

+ (x3 - x*)2 + (x3 - **)(*, - x*)(a13 - o3,)]. (5.1)

The right-hand side of (5.1) can be written as — XTAX, where

and
k\/kx (a12 + a2,)/2 (aI3 - a31)/2"

A= (ai2 + or2,)/2 X2/^2 (or23 - a32)/2
_(an - a 3 ! ) / 2 ( a 2 3 - a 3 2 ) / 2 1

Therefore dv/dt < 0 if A is positive definite. The matrix A is positive definite if the
hypotheses of Theorem 1 are satisfied.

6. Bionomic equilibrium

The term bionomic equilibrium is an amalgamation of the concepts of biological
equilibrium as well as economic equilibrium. As we already saw, a biological equi-
librium is given by ii = 0, x2 = 0, i 3 = 0. The economic equilibrium is said to
be achieved when TR (the total revenue obtained by selling the harvested biomass)
equals TC (the total cost for the effort devoted to harvesting).

Let C = constant fishing cost per unit effort, p\ = constant price per unit biomass
of the first species, and p2 = constant price per unit biomass of the second species.
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The economic rent (net revenue) at any time is given by

TT(XUX2, xit E) = TR —TC = (piqiXi + p2q2x2 — C)E.

Now,

A., A, a12
X] = 0 =$ X] — 0 or E = X\ X2

n n , - "-1 "-1 "21 "Z3
x2 = 0 =>• x2 = 0 or E = ;c2 ATI

q2 k2q2 q2 q2

i 3 = O = * . r 3 = O or *3 = a-^xx + ai2x2.

Hence the nontrivial biological equilibrium solution occurs at a point on the line

- ct2X/q2)xx - (X2/q2 - ax2/q\)x2

- >>-\/q\) = 0, (6.1)

where 0 < xt < ku 0 < x2 < k2.
The equilibrium line (6.1) meets the plane X\ = 0 at (0, x2, ^3), where

(X2/k2q2 + a2iai2/q2) -

provided either

(a) A.2/92 > rnax(Ai/^!, k2a\2/qx) and 0^3/92 > "13/91 or
(b) A2/g2 < min(A.i/^|, k2ax2/qx) anda23/<72 < "13/91 hold.

Similarly, (6.1) meets the plane x2 = 0 at (xx, 0, i3) , where

(a2l/q2

provided either

(c) kx/qx > max(A.2/92, kxa2x/q2) and a,3/g, > a23/<72 or
(d) A,/<7, < min(A2/<?2. kxa2i/q2) and a,3/g, < a23/^2 hold.

The bionomic equilibrium R(xioo, x2oo, xioo) will be the point of intersection (if it
exists) of (6.1)and7r(;ti, x2, x3, E) — {.p\q\xx +p2q2x2 — C)E — 0 in the first octant.

After a little calculation, it is seen that xloo > 0 provided either
/ A2

92 9i 9i

> max
LPi9i

or

/of2[ QfB^i ^1 Qfi3a3i\ p2q2 / A 2 kxY\

\9i 92 ^i9i 9i / ' c \92 9i /J

https://doi.org/10.1017/S144618110001347X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110001347X


[7] A multispecies model 449

, a^o^, *, a13a3, \ p2q2 A 2 A.A1

qz *i<7i qx / c \q2 qx)\

/ A2

(J) I ~, 1
\k2q2 q2

< nun

holds.
When either (a) or (b) holds but neither (e) nor (f) holds, the xt-species faces

extinction in the bionomic equilibrium. Proceeding in a similar manner, one can
easily prove the possibility of extinction of the x2-species.

Thus the combined harvesting of two competing fish species in the presence of a
predator may drive one species to extinction while the bionomic equilibrium of the
open-access fishing continues with the support of the other species. This phenomenon
has been noticed by Clark [5] also in the case of combined harvesting of two eco-
logically independent species. Explicit biological or bioeconomic interpretations of
the conditions (a)-(f) seems to be difficult. These may simply be regarded as some
conditions to be satisfied by the biological, technical and economic parameters for the
existence of a bionomic equilibrium.

7. Optimal harvesting policy

The present value J of a continuous time-stream of revenues is given by

J — I e [piq1xl +p2q2x2 - C]Edt,
Jo

where 8 denotes the instantaneous annual rate of discount [10]. Our problem is to
maximise J subject to the state equations (2.1) by invoking Pontryagin's maximal
principle [9]. The control variable E(t) is subjected to the constraints 0 < E{t) <
Emu, so that V, = [0, fimax] is the control set.

The Hamiltonian for the problem is given by

H = e~u\p\q\X\ + p2q2x2 — C]E

— a ) 2 x i x 2 — 0*13X1X3 + X| (A., — <ji £ ) )

— Qf 2 |X|X 2 — ^23-^2-^3 ~^~ •^•2(^2 — ^2^))

-0:32X2X3), (7.1)

where /x,-(0. ' = 1. 2, 3, are the adjoint variables.
The adjoint equations are

dH
dt ~ dxt

= ~[e~!"p\qx £ - Mi (2kixx/k, + ai2x2 + 0,3X3 - (A., - qx E))

- H.2a2ix2 + niauX}], (7.2)
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dH

dt

dfJL,

17

dx2

= -[e-*P2q2

- / * , * * * , -

dH

~~~dT3

E - fj,2(2k2x2/k

| - /L i 3 a 3 2 j c 3 ] ,

a23x3 - (k2 - q2E))

] (7.3)

and

- a3Xxx - anx2)]. (7.4)

Here we deal with an optimal equilibrium solution. Since we are considering an
equilibrium solution, x\, x2 and x3 are to be treated as constants in the subsequent
steps.

Now, by eliminating /z, and /x2 from (7.2M7.4), we get a reduced differential
equation for /x3 as

(a3D3 + 3a2D
2 + 3a, D + ao)fx3 = M3e~Sl, (7.5)

where D = d/dt, a3 = 1, 3a2 = — (x3 + ^ ^ / ^ +

3a, = -1-— xxx2 + -^ x2x3 + - ^ x\x3 - a2xanxl
k {k2 k2 k\

k-, k,
7 - a,3a3i + — a32a23 -
k2 ki

- ( - a,3o;21

+ p2q2[ai3x]8 + (-a23al

The complete solution of (7.5) is

tx3 = Ale
m" + A2e

m2' + A3em" + {M3/N)e~s', (7.6)

where A, (i = 1, 2, 3) are arbitrary constants and m, (/ = 1, 2, 3) are the roots of the
auxiliary equations a3m

3+3'a2m
2+3aim+ao = Oand/V = 53 — 3a28

2—3ai<5—ao j=- 0.
It is clear from (7.6) that fx3 is bounded if and only if m, < 0, (1 = 1, 2, 3) or the

A,'s are identically equal to zero. It being very difficult to check whether w, < 0, we
take Ai = 0 (/ = 1, 2, 3). Then (x3 = M3e~s'/N.

By a similar process, we get /x2 = M2e'Sl/N and AM = M\e~St/N, where

and

a3xa23)x3x2]E

k2x2/k2)S + (k2/k2 + a32a23)x2xi\E.
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We find the shadow prices /Li,(r)eJ', i = 1,2,3, of the three fish species remain
bounded as t —• oo and hence satisfy the transversality condition at oo [5].

The Hamiltonian in (7.1) must be maximised for E e [0, E ^ . Assuming that
the control constraints 0 < E < E ^ are not binding (that is, the optimal equilibrium
does not occur either at E = 0 or E = £m M), we have singular control given by [5].
Therefore

fi J-l
— = e~*'(P\q\X\ + PiqiXi - C) - fiiqixi - n2q2x2 = 0 (7.7)
oh.

or e
This indicates that the total user cost of harvest per unit effort must be equal to the

discounted value of the future profit at the steady-state effort level [5].
Substituting /Xi and fi2 into (7.7) we get

xxqx(px - Mx/N)+x2q2(p2 - M2/N) = C. (7.8)

The value of E at the interior equilibrium given by

E = [A, (1 - xx/kx) - ax2x2 - anx^/qx

= [X2(l - x2/k2) - a2lxx - a23xi]/q2

is to be substituted in the expressions for Mt and M2. We may then solve (7.8) and
(6.1) to obtain the optimal equilibrium solution xx = xiS, x2 = xy,, x3 = xu for
a given value of 8. For different values of 8 we have different optimal equilibria.
When 8 -*• oo, (7.8) leads to the obvious result P]q\xioo + p2q2x2ao = C that implies

7T(^loo>^2oo.^2oo. £ ) = 0.

This shows that an infinite discount rate leads to complete dissipation of economic
revenue. This conclusion was also drawn by Clark [5] in the combined harvesting
of two ecologically independent populations and by Chaudhuri [1] in the combined
harvesting of two competing species.

Using (7.8), we have

M2q2x2)E
n = (p\q\xx + p2q2x2 - C)E =

N
Here we note that each of M, and M2 is O(82) where N is O(<53) so that n is 0 (6" ' ) .

Thus n is a decreasing function of 8 ( > 0). We therefore conclude that 5 = 0 leads to

maximisation of n.

8. Numerical examples

Let A., = 2.09, A.2 = 2.07, kx = 200, k2 = 300, g, = 0.04, q2 = 0.01, a]2 = 0.001,
a2i = 0.001,aI3 = 0.01,a3, = 0.30,a23 = 0.02, a32 = 0.3,p, = 6, p 2 = 8, E = 10,
C = 50 and 5 = 0.05.
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FIGURE 1. Variation of the populations against time, beginning with x\ = 150, JC 2 = 250 and x^ = 130.
Parameter values are the same as in Example 1.
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FIGURE 2. Phase-space trajectories corresponding to the optimal harvesting effort E = 11.43 units,
with reference to different initial levels. The trajectories clearly indicate that the optimal equilibrium
P(9\. 102, 58) is asymptotically stable.
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EXAMPLE 1. For the above parameter values, it is found that

(i) PQ(0, 0, 0) is unstable,
(ii) Pi (0, 153, 46) is unstable,

(iii) P2(162, 0, 48) is unstable,

but (iv) the only interior steady state Pj(96, 101, 59) is stable.

EXAMPLE 2. For the same parameter values as those used in Example 1 we find that
the bionomic equilibrium /?(184, 74, 77) and the optimal equilibrium (91, 102, 58)
both exist. We also find that the optimal harvesting effort, E, which leads the system
to the optimal equilibrium (91, 102, 58), is 11.43 units.

9. Concluding remarks

In this paper, we have attempted to study the effects of harvesting in a two-species
competitive system in the presence of a predator species. We have first studied the
existence and stability (local as well as global) of the possible steady states.

We then examined the possibilities of the existence of a bionomic (biological as
well as economic) equilibrium of the exploited system.

Next, the optimal harvest policy was discussed. The present value of a continuous
time-stream of revenues is maximised by invoking Pontryagin's maximum princi-
ple. The case of an optimal equilibrium solution is studied. It is found that the
shadow prices remain constant over time in optimal equilibrium when they satisfy
the transversality condition. Also the total user cost of harvest per unit effort equals
the discounted value of the future profit at the steady state effort level. It is proved
that zero discounting leads to maximisation of economic revenue and that an infinite
discount rate leads to complete dissipation of economic rent.

Last, some numerical examples are taken to obtain steady states, bionomic equi-
librium, optimal equilibrium etc. To get the numerical results, we used Lingo and
Matlab.

We have established the existence of an equilibrium solution that satisfies the
necessary conditions of the maximum principle. As pointed out by Clark [5], it
is extremely difficult to find an optimal approach path consisting of a combination
of bang-bang controls and non-equilibrium singular controls. It is also difficult to
carry out dynamic optimisation [2] taking the effort level £ to be a dynamic (that is,
time-dependent) variable. Due to these difficulties we have considered the optimal
equilibrium solution only. The model can also be improved by assuming that the
fishing effort E increases or decreases in proportion to the flow of net economic
revenue from the fishery. For such a dynamic reaction model ([3, 5]), one has to
introduce a fourth differential equation in (2.1) for dE/dt. It is quite likely that such
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a complicated system may prove to be too formidable to solve.

Appendix A.

The variational matrix of the system of equations (2.1) is

Vu

V(xux2,x3) - -a2ix2

. <*31*3

-a23x2

(or3ijc, + a32*2 - 2x3)

where

( 2Xi
A, - — x, -

V22 =
Ikj.

«12^2 - «13^3

- « 2 3 ^ 3

Therefore

V(0, 0, 0) =

The eigenvalues of this variational matrix are 0, ki — q\E and k2 — q2E.

'X\-qxE 0 0'
0 A.2 - q2E 0
0 0 0

Appendix B.

From (A.I), we have

V(O,X2,X3) =

The characteristic equation is

[(A-i — ai2^2 — Qti3Jc3 — q\ E)

0 0 '
-k2x2/k2 -a2ix2

y X2X3
j \- 0.

Appendix C.

From (A.I), we have

~(X\2X\

ai2x3

[12]

(A.I)
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The characteristic equation is

A multispecies model

- a2ixl - 0(23X3 - q2E -

/*2 + *W ^

455

j =0.

Appendix D.

From (A.I), we have

-VI
-«21
a3l*

* 2

-a l 2 j c*

-V27*2
«32^3*

- a i 3 * l * ~

-«23^2*
— r*

X3 .

The characteristic equation is

Xx T

-«13«21«32 + ^ «13«3I ) X\XlXi =

or biiu? + b2ix
2 + biix + b0 = 0, where fc3 = 1, Z?2 = X2

xi/k2 + k\xVk\ + xi>

bx = {X2/k2)x*2xl + a32a2lx*2x; + {XXX2/kxk2)x\x*2 + ( V * X * 3 *

b0 =
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