SMALL POSITIVE VALUES OF
INDEFINITE QUADRATIC FORMS
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1. Introduction. Let A denote the lattice of points

X = (x1, ...,X ) with integral coordinates. A basis of A is
n
a set of n points Xi’ ..., X of A such that every point of
n
n

/\ is expressible in the form Z u, X, where u, are integers.
1 1
i=1 b
It is easy to see that points X1, ..., X of A form a basis if,
n

and only if

det (X, ..., X)) = ,x(r)[ =*t1 (r,s =1,2, ...,n),
1 n s
n
et Q(X)= 2 a  x x, beany
n A 13 1)
i,j=1
indefinite quadratic form in the integer variables Xpp ooy X

() x)
A .

L]

where X =
r

n
with real coefficients a, of determinant d =d(Q) = la_, l + 0
1 1

(i, j=1, 2, ..., n). It is known that there is a constant kn >0,
depending only on n, such that to each Q(X) there corresponds
a basis satisfying ]Q(Xr)] gkn ldi“n, (r=1,2, ..., n); see
G. L. Watson [4]. Recently*, I showed that for a suitably large

constant k! > 0 , there is a basis satisfying 0 < Q(Xr) <k' ]d‘“n
n n = n

(r=1,2, ..., n).

ste

" See [1], Lemma 1 for a proof. An equivalent formulation is
stated in Lemma 2 (§2).
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Consider now the case when the form Q(X) represents
arbitrarily small non-zero values for integral X#0 . It has
been conjectured that every indefinite form Q(X) in n>5

variables with incommensurable coefficients a . satisfies this;
1)
so far [2], we know it to be true, provided that n >21 . In any

event, for forms Q(X) in at least 3 variables which represent
arbitrarily small non-zero values, it is easy to deduce from the

existence of k' that, to every ¢ > 0, there corresponds a
n
basis X , ..., X satisfying
1 n
0 F |Q(X )] <e (r=1, 2, ..., n).
r

The proof’w would, in addition, give Q(Xr) > 0 except in the

one case when the signature s(Q) =-(n-2). The purpose of
this note is to present a modification of the argument to secure
O<Q(Xr)<€ (r=1, 2, ..., n) in all cases. To avoid a

succession of constants in our inequalities it is convenient to
use the Vinogradov symbol <<, to indicate some implied
constant, depending only on n .

I acknowledge gratefully the useful comments of the
Referee.

2. Two Lemmas.

LEMMA 1. For any real « and 2a>0, b > 0, there is
an integer x such that

/2,

0<a (x+a/)2 -b < Z(ab)1 a (1)

Proof. Take x to be the integer for which

/2

w/a) % < x+ a < w/a)t /%41

o
See [1], Theorem 1.
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LEMMA 2. For n>2, let Q(xi, ..., x ) bean
= n —

indefinite quadratic form of determinant d $0 . Then Q is
equivalent, by an integral unimodular substitution on the o
variables Xi’ ..., X , toaform whose coefficients a
—_— n ij
satisfy
a >0, ,a >0
i1 nn (2)
1/n
a . << |d] / (i=1, 2, ..., n). (3)
11

Proof. See (1], Lemma 1.

3. THEOREM. (n2> 3) Let X1 be any primitive point

of A with Q(X )>0 and put @ :e(xi) = Q(X Hd{—x/n‘
- I - R i
Then there is a basis Xi’ Xn of A satisfying
(o
o " lal ', if 8 <1
0 < QX)) << Y (4)
i
le[d{ n if 8 >1,
‘s\ -
~-n+1 -2
where Vv 2(1—11.2I1 y (n-1) > 0.
— n
Proof. Since Xi is primitive, we may, after a suitable
integral unimodular substitution applied to Xi’ R xp,
suppose that X1 =(i, 0, ..., 0), whence
= { 5)
0 < a)H Q\Xi) (5)
ES o
Let Q (Y)= Z A y.y. denote the form, of determinant
i

i,j=1 7

-1 X . B3
d , adjoint to Q(X), and consider its section Q (0, Ve

This is a quadratic form in n-1 variables and has determinant
n-2 . .
a11 # 0. Now any real non-singular quadratic form f

1/s

in s variables represents a non-zero value << [d(f)| ", by

d
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classical inequalities (see e. g. H. Blaney, J. London Math. Soc.,
23 (1948), 153-160 for the case of indefinite forms, and J. F.
Koksma, Diophantische Approx., Kap II, §6 for the definite
case). Thus, in particular, there are relatively prime integers
y'z, cens y; such that

L 1)
0+|Q(0,y'2,...,y;1)f<< ]a d [

11 (6)

Applying an appropriate integral unimodular substitution to the

variables Yy cec0 ¥, o Wecan suppose, without loss of
n
generality, that (y‘z, e,y )y =(0, ..., 0, 1); whence
n
1/{n-1)

n_

0 A << d 7
+la l<<]a,, | (7)

In order to preserve the reciprocal relation between Q and Q(P,

we also apply the contravariant substitution to XZ; T

5

n
which is integral and unimodular, and, moreover, leaves the

2
coefficient of x, in Q(X) invariant. Thus we preserve the

relation (5). By completing the square on %, in Q(X), we may

write
Qx) (, + 2 )+ al ) (8)
- X y e e ey B
g TR T ARy “n
where ( 1 is a linear form in x (i >2) and q(xz, L... x ) is a
i = n
quadratic form of determinant d/a11 + 0. We now consider

two cases according as q(x ., X ) is indefinite or other-
n

2
wise. (In the latter case, it will be observed that q , being
non-singular, is negative definite, since Q(X) is indefinite,
by hypothesis.) We proceed by induction on n, assuming the
theorem to hold for indefinite forms in n-1 variables if n >4.

Case 1, Suppose that q(xz, ..., X ) is indefinite. Then
—_— n

Lemma 2 may be applied directly to -q(xZ, ..., X ). Hence
n
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{r (r)

there are integer sets (x_. ', ..., x '), r=2, ..., n with
n
lx(r)l =t 1 (r, s=2, ..., n), satisfying
s
(r) (r), _ 1/(n-1)
O<-q(x2 ,...,xn)_br<<|d/_a“| . (9)
For these values,
(r) (r), _ (r).2
Q(x1, x2 P X ) = aL“(x1+JZ1 ) -br, say, (10)
1/(n-1)
b << d
where 0<a b <<a, | /a“]
n-2
- 1 -1
«<a " Lq t/e-t) (11)

r
For each such r, we use Lemma 1 to select xi-—-x( ) say, giving

0<Q(x(1r), xflr)) «a +(a b)t?

11 11 r
)
< +a 2 'n-1 d 1/2(n-1)
117 %1 |d] ’
thus X, =(141, 0, ..., 0), X =(x(r), ey x(r)), r=2, ..., n
1 T 1 n
form a basis of A satisfying
14
1 2 n- 1
0<Q(Xr)<< 6 |d| /n+e n-1 |d] /n,
2=
o2 M e <,
<<
) |d|“n if 8 >1. (12)
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Obviously v < -;—(——i) for n>3 and so (4) is established in
n n- =

this case.

Case 2. Suppose that q(xz, ..., x ) is negative definite.
- n

Observe that for n=3,

Q(x1, x,0) =a (x +—x) + —x_ , (13)

where A33 < 0, by the hypothesis of this case. By Lemma 1,

2
we can select an integer X, ) such that

1/2
(2) IA33' /
s <
O<Q(x1 , 1, 0) <a“+ a“ 2
11
1/4
<< + d , 14
ag, t (e [d]) (14)
1 1 2 2
by (7). Hence if x( ):1, x( )=0, x( )=i, and x( ) is as
1 2 2 1
chosen above, we have
(r) (r) 1/4
0< s s << d
Q(x1 X, 0) a11-l-(a11 | {)
1/3 1/4 1
<< 0 |d]| /3 et |d| /3,

(r=1, 2) (15)
and Ix(sr)f =1. Now, more generally for n >4, we apply our
inductive hypothesis to Q(x‘, Lo, X v 0) which has deter-

1 n-
minant Ann 4:0 and clearly is indefinite. Since Q(1, 0, ..., 0)
=a,,» We may assume that there are n-1 integer sets
(r) (r) (r)
X = P = e . - i =T
r (Xi ) 3y Xn-'l’ O), (l' 1, 2, , n 1) with 'XS l - 1
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(1) (1)

d e, R
an (x1 , xn_1

0)=(1, 0, ..., 0) satisfying

1/{n-1)

' |A | if 8'>1
nn

0< Q(Xr) << (16)

if 8' <1 ,

and

)\n—il {1/n

=9 d ) (17)

-2 -
where X\ =(n-1) + (1 - (n-1) Z)V >v for n>4.
n-1 n-1 n =

Combining these inequalities, we see that if 8 >1, then
1 -1 1
/nge n ]d, /n’ since )\n 1 <1 for n>4, while if
= \ - ,
1 n-1 1
8 <1, we have e]dl /n<6 n |d| /n<9 n]dliln. Thus
Xr(r =1, 2, ..., n-1) satisfy (4) when n >4; moreover, since
1 1 -
v, =R <Z we see, by (15), that this is true when n =3. Thus,
for n 23, in completing our basis, we consider the point
(x(n), cee, x(n) , 1), where x(n)
1 n-1 r
arbitrary integers at our disposal. By a theorem of Miss

Foster [3] on polynomials Q(Xi’ ceea X 1) with an

0 |d]

(r=1, ..., n-1) are
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indefinite section Q(xi, ceen X 4o 0) we can ensure that
n-

(n) (n) 1/(n-1)
0<Q(x1 poeees X 1) << IAn-il
2—n+1 (n-i)vn
+]a | la 41
where
An—i B d(Q(Xi’ ’ Xn—i’ 0) = Ann ’
A = d(Q(x,, , %)) = d
n 1 n

Applying (7) to the right hand side of (18), we get

_ (n-1)v -n+1
a M. T me)f

nn nn

- +"
-2 v (n-2)v +27 %1
n

-2
a(n—i) nldl

“n-ZHn-i)
11

<< |d +a

11

(n-1>'2 t/n 1/n

=8 0

n
|d| |

d|

v 1
o Tla] " if e <1

<< 1/
oldal " if 6 >1.

(n) (n)
, e.., X ,

1 n-1

satisfies (4). The proof is now complete.

Thus X =(x 1) completes our basis and
n

In conclusion, it may be noted that the exponent v

in (4) could be improved if some better bound on the right of

(18) were known. It has been conjectured (see G. L. Watson,

Mathematika, 7 (1960), 141-144) that the term

Z-n+1 (n—i)vrl
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is superfluous. Indeed, for n >3 and for forms Q(X) which
assume arbitrarily small non-zero values for integral X $0,
he proves that the right of (18) may be replaced by any ¢ > 0.
On the other hand, since vn > 0, ‘the result (18) itself is suf-

ficient (for our purpose) to show that there is a basis with
0<Q(X)<e whenever n>3 and Q represents arbitrarily
i =

small non-zero values.
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Note added in Proofs.

Since the point X, of A can be selected to satisfy
1
0< Q(Xi) << |d] /n, our theorem may be regarded as a

stronger form of Lemma 2. Thus, the appeal to Lemma 2
(which occurs only in Case 1) could be avoided for n > 3
variables by replacing it by the more powerful inductive
hypothesis. Lemma 2, in the case of 2 variables, is classical
and several proofs are known. With this modification our proof
of the theorem is more self-contained and, incidentally, pro-
vides an alternative verification of Lemma 2 for 3 or more
variables.
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