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ON CERTAIN CLASSES OF BOUNDED
LINEAR OPERATORS

BY
C-S LIN

1. Let T'—c be a Fredholm operator, where T is a bounded linear operator on a
complex Banach space and ¢ is a scalar, the set of all such scalars is called the
®-set of T'[2] and was studied by many authors. In this connection, the purpose of
the present paper is to investigate some classes (V) of all such operators for any
subset V of the complex plane.

2. Let X be a Banach space over the field C of complex numbers with dim X =oo0,
unless otherwise stated, B(X) the Banach algebra of all bounded linear operators
and K(X) the closed two-sided ideal of all compact operators on X. As usual,
T € B(X) is said to be a Fredholm operator if both the dimension of the null space
of T and the codimension of the range of T are finite, and is said to be a Riesz
operator if T—c is a Fredholm operator for every nonzero scalar ¢ [1]. We shall
write O(V)={T € B(X): T—c is a Fredholm operator, Yc € V}, where V is a proper
subset of C. Thus the set of all Fredholm operators is ®({0}), and ®(C\{0}) the set
of all Riesz operators. Clearly every nonzero scalar is a Fredholm operator, and
if ce C, c¢ Viff ce ®(V). We shall write ®(¢)=B(X), where ¢ is the empty set
and this expression is justifiable by

THEOREM 1. If V and W are proper subsets of C, V= W iff ®(W)< O(V).

Proof. Let V= W and T € ®(W), then T—c € ®({0}) for every c € W, and hence
for every ce V, T € (V). Conversely, if V& W, then there is a ce V with ¢ ¢ W.
Thus ¢ ¢ ©(V) and ¢ € Q(W), D(W) & O(V).

Let T € B(X), we shall denote by = the canonical homomorphism of B(X) onto
the (quotient) Banach algebra B(X)/K(X), o(T) and p(T) (resp. o(m(T)) and
p(@(T))) the spectrum and the resolvent set of T (resp. =(T)). A characterization of
the Fredholm operators due to F. V. Atkinson says that 7€ ®({0}) iff =(T) is in-
vertible in B(X)/K(X). In this case, let =(T) be its inverse.

LemMA 1. Let W be a proper subset of C, S€ B(X), Te ®({0}) and T as stated
above. Then S—cT € ®({0}) for every c € W, iff ST € ®(W).

Proof. Let ce W. S—cT e ®({0}), iff n(S—cT) is invertible, iff #((S—cT)T)
=x(S—cT)=(T) is invertible, iff 7(ST—c) is invertible, iff ST € O({c}).

REMARK 1. Notation as in Lemma 1, we see that ST e ®(W) iff TS € O(W).
Also S—cT e ®({0}) for every c € W, iff ST € ®(W). In order to see what the set
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@(C) is, we shall give a simple proof of Theorem 3.2 [2] and of its converse as well.
LeMMA 2. (Theorem 3.2 [2]): O(C)+#¢ iff dim X <oo.

Proof. T € ®(C), iff #(T— c)==(T) — c is invertible for every c € C, iff o(=(T)) =4,
iff K(X)=B(X), iff the identity operator on X is compact, iff dim X <co.

REMARK 2. S and T € O(W) iff W< p(n(S)) N p(m(T)). The so-called Gelfand-
Mazur theorem says that if in a complex Banach algebra with unit element 4
every nonzero element is invertible, then 4 is one dimensional. In the case of B(X),
we have the following more general statement.

THEOREM 2. B(X)=C, iff B(X)\{c}= ®({c}) for any c € C.

Proof. The “only if,” part is clear. To show the “if”’ part, let T'e B(X), then there
exists b € C such that T ¢ ®({b}) by Lemma 2. Thus T—b+c ¢ ®({c}), T—b+c=c
by assumption, =5 and hence B(X)=_C.

LemMma 3. If V and W are any subsets of C, then
1) M NOW) =DV UW).
) V)V (W) = OV N W). Equality holds if either V= Wor W< V.

The proof follows easily and may be omitted. The opposite inclusion relation
in (2) is not valid in general. In order to show this it suffices to take a linear bounded
operator T ¢ @ ({0}) with finite dimensional null space and such that its range be
closed and of infinite codimension. By Theorem 7.1 [2] then there exists a number
b>0 such that for every S € B(X) with | S| <b, T+ S ¢ ®({0}). Thus, for ¢,50 with
[co] < b, one obtains T ¢ D({c,}). Accordingly

O({0) Y @({co}) & {0} N {co}) = D(¢) = B(X).

ReMARK 3. Since O(C\{0}) N ®({0})=D(C), a Riesz (resp. a Fredholm) operator
is a Fredholm (resp. a Riesz) operator iff X is of finite dimension.

COROLLARY 1. If X is of infinite dimension and L={®(V): V< C}, then the system
{L, N, €} is a complete and complemented lower semilattice with respect to the set
intersection and inclusion relation, and ®(C)=¢ is the smallest element in L. More-
over, X is of finite dimension iff the system {L, N, U, S} is the lattice with only
two elements, B(X) and ¢.

The proof follows easily and may be omitted. The lower semilattice is atomic,
since each element ®(C\{c}) covers ®(C).

THEOREM 3 (1). If W is a nonempty subset of C and T € ®(C\W), then there is a
nonempty subset V< W such that V< o(a(T))< o(T).
(2) If W is a subset of C with W=20(T), then T € ®(C\W).

Proof. (1) T ¢ ®(W), since otherwise dim X <oo. Hence there is a nonempty
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subset V< W such that #(T—c)=n(T)—c is not invertible for every ceV,
Veo(@(T)). po(T)< p(=(T)), since 7 carries an invertible element into an invertible
element. (2) By the last argument, T e ®(p(T)) and T ¢ ®(o(T)) for any T € B(X).

ReMARK 4. If ¢ € p(T), then T—c and (T'—c)~* € ®({0}). Thus if either T—b or
(T'—d)~1 is a Riesz operator for some b or d in p(T), then dim X <oo.

REMARK 5. Some direct consequences of Theorem 3 are: the spectrum of a
Riesz operator contains the zero, o(T)#¢ for any T e B(X), and every quasi-
nilpotent operator is a Riesz operator.

REMARK 6. By Lemma 3 and Theorem 3, if (W)= @(V), T € ®(V) andC\(W\V)
20(T), then T e O(W).

3. Let T e B(X) and r(T) be its lower bound [3]. It is known that the range of
T is closed iff r(T) > 0. T € ®({0}) implies #(T) > 0. Also if T € ®({0}), S € B(X) and
|S|| <#(T), then T+ S € O(0}).

ReMARK 7. Clearly T e ®({c}) if | T| < |c|=r(c). This condition may be weakened
by that |#(T)| <|c|, because in this case T can be written as T=S+ A4, where
SeB(X), |S|<]c|] and 4 € K(X), and since m(T—c)=n(S+A—c)=n(S—c) is
invertible, T' e ®({c}).

LeMMA 4. If W is a finite subset of C, then ®(W) is an open subset of B(X).

Proof. Let T € ®(W) and r(T—b)=min {r(T—c): c € W}+#0. if S € B(X) is such
that |7(S—T)| < r(T—b), then S—b=(S—T)+(T—b) € D({0}) and hence S € D(W).

LeMMA 5. If b and ¢ are nonzero scalars and d is any scalar, then
bO({c}) = c®({b}) and bO{d}) = O{bd}).
In particular, dO(C\{0}) = ®(C\{0}).

Proof. T' e b®({c}), iff T/b—c e ®({0}), iff T/c—b € D({0}), iff T e c®({d}), and
hence b®({c}) = cD({b}). The remainder of the proof follows similarly.

LemMA 6. Let W g C, Te ®(C\{0}), Se ®(W) and TS—ST e K(X), then
T+ S € ®(W). Moreover, TS and ST € ®(V) for any subset V< C\{0}.

Proof. Let ce W, T(S—c)—(S—c)T=TS—ST € K(X), then T+S—c e O{0})
[4, Theorem 9]. But ¢ € W was arbitrary, T+ .S € ®(W). TS and ST € ®(C\{0}) [4,
Lemma 5].

Let W C and Y(W)={Te ®(C\{0}): TS—STe K(X), VSe ®(W)}, then,
W< W, implies Y(Wy)< Y(W,), and Y({c})= Y({0}) due to a simple fact that
O{0})={T—c: VT € ®({c})} and O({c})={T+c: YT € O({0})}.

LemMa 7. If W& C, then Y(W) is a linear manifold of B(X) such that K(X)
< Y(W). Moreover, Y(W) is closed under multiplication.
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Proof. Clearly K(X)< Y(W). To show the closedness under addition, let 7 and
T e Y(W) and Se O(W), then T+ Se ®(W). T'(T+S)—(T+S)T' € K(X), i.e.
(T'T-TT")+(T'S—ST’) € K(X) and hence T'T—TT' € K(X). Thus

T+T e ®(C{0), (T+T)S—S(T+T) = (TS—ST)+(T'S—ST")e K(X)

for every Se ®(W), T+T'e Y(W). Now since T'T—TT' € K(X), TT' and T'T
€ O(C\{0})). TT'S—STT' =T(T'S—ST")—(ST—TS)T’ € K(X) for every S e O(W).
Hence TT' € Y(W), and T'T € Y(W) follows similarly.

It was proved in [1] that if {T}} is a sequence in ®(C\{0}) and T}, — T in B(X),
where T,T=TT, for all sufficiently large n, then T € ®(C\{0}). The next theorem
extends this result.

Remark 8. T e ®(C\{d}) iff T—d € O(C\{0}).

THEOREM 4. Let {T,} be a sequence in ®(C\{d}) and T, — T convergence in norm
with T e B(X). If TT,—T,T € K(X) for all sufficiently large n, then T € ®(C\{d}).

Proof. For a nonzero scalar ¢ there is a sufficiently large n such that |7T—T,|
<r(c). Hence T—T, € ®({c}). But T,,—d € ®(C\{0}) for every n, and

(T_Tn)(Tn—d)—’(Tn—d)(T—Tn) =TT,—T,Te K(X)’
T—d = (T-T,)+(T,—d) e ®({c})

by Lemma 6. But ¢#0 was arbitrary, T—d € ®(C\{0}) and hence T € ®(C\{d}).
We may apply the same method to prove

COROLLARY 2. Let {T,} be a sequence in B(X) and T € B(X) with T € ®(C\{d}).
If T, — T convergence in norm and TT,—T,T € K(X) for all sufficiently large n,
then T, € ®(C\{d}) for all such n.

THEOREM 5. Y(¢) and Y({c}) are Banach algebras.

Proof. In virtue of Theorem 4 and the fact that T,,S— ST, — T'S— ST for every
S € ®(¢) provided T, — T, Y(¢) is closed. By Lemma 7, Y(¢) is a Banach algebra
with the same norm as in B(X). To show the second part, let 7, — T in B(X), then
T—b=T'e O({0}) for some b#0 by Remark 7.

T,T—TT, = T(T'+b)—(T"+b)T, = T.T'~T'T,
= T(T'+¢)—(T"+ )T, € K(X).

Hence T € ®(C\{0}) by Theorem 4. The remainder of the proof follows as above.

ReMARK 9. T is a Fredholm operator, iff the adjoint T* of T is a Fredholm
operator [3]. Hence if V= C, and since (T'—c¢)* =T* — ¢ is the Banach space adjoint
of T—c, we have T e ®(V) iff T* € ®(V). Thus all above statements and proofs
are true if we are dealing with the adjoint space and adjoint operators.
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