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Abstract

Felsic tuff as a direct fallout deposit is known from one small area in the Kyrenia Range, north
Cyprus, within deep-sea terrigenous turbidites. Nearby tuffaceous siltstones contain composi-
tionally similar felsic volcanic rocks (c. 5-10%), mixed with terrigenous material. Sedimentary
evidence indicates that the fallout tuff was variable reworked locally, whereas the tuffaceous
siltstones are interpreted as turbidites mixed with terrigenous material derived from
Anatolia. U-Pb dating of zircons that were extracted from a sample of relatively homogeneous
tuff yielded a dominant age of 16.64 + 0.12 Ma (Burdigalian). Zircon trace-element analysis
indicates predominant derivation from within-plate-type felsic magma. Whole-rock chemical
analysis of the tuffaceous sediments as a whole is compatible with a felsic arc source, similar to
the post-collisional magmatism within Anatolia. Regional comparisons suggest that the nearest
volcanism of similar age and composition is located c. 500 km away, within the Kirka area
(Eskisehir region) of the Western Anatolia Volcanic Province. Evidence of tephra dispersal
in the western Mediterranean region and climatic modelling suggests E-wards prevailing winds
and therefore tephra transport over southern Anatolia and adjacent areas during early Miocene
time. The north Cyprus tuffs could represent powerful Minoan (Plinian)-type eruptions in
western Anatolia, coupled with SE-wards tephra transport during and soon after the onset
of post-collisional magmatism.

1. Introduction

There is increasing interest in subduction and collision-related magmatism, especially concern-
ing its recent and ancient societal impacts (e.g. Sparks, 2003; Loughlin et al. 2015). To character-
ize a modern volcano, it is necessary to understand its geometry, volume, historical
development, petrological and chemical characteristics, and also its ejected fragmental material
including local gravity flows and further-travelled tephra (e.g. Mount St Helens, Cascade; Evarts
et al. 1987). Tephra layers, our present subject, provide age markers (tephrochronology) and
event horizons (tephrostratigraphy) (Lane et al. 2017) and can provide regional to global cor-
relations of volcanism (Shane, 2000; Harangi et al. 2005; Lowe et al. 2017; Petrelli et al. 2017;
Chen & Robertson, 2019).

For ancient volcanoes, complete characterization can be difficult because of erosion or burial,
such that the link between the volcanic centre and dispersed tephra may be lost. In well-studied
areas, such as the NW Pacific or Central America, extensive geochemical data on subaerial vol-
canoes, combined with integrated studies of volcanic ash from deep-sea cores, allows volcanoes
to be linked to far-travelled tephra in space and time (Scudder et al. 2016). Major- and trace-
element analysis of volcanic glasses are particularly useful to pinpoint specific volcanic centres
(Kutterolf et al. 2018; Schindlbeck et al. 2018). Whole-rock geochemical data of tephra succes-
sions are also useful, especially for identifying long-term trends and the relative contributions of
different source materials (e.g. volcanogenic versus terrigenous) (Scudder et al. 2016; Robertson
et al. 2018). Similarly, in the Mediterranean Sea, geochemical data from tephra in deep-sea cores
has been linked to specific volcanic centres and eruptive events (Clift & Blusztajn, 1999). Study is
more complicated where both the source volcanoes and the associated tephra are on land, espe-
cially for older lithologies that may be eroded, diagenetically altered or metamorphosed (Cerling
et al. 1985).

In the circum-Mediterranean region, our present study area, there is extensive but far from
complete documentation of the geochemistry of major volcanic centres (e.g. Schleiffarth et al.
2018). However, until now little compositional data were available for volcanic glasses to com-
pare dispersed tephra with eruptive sources (Pearce et al. 2002, 2007). Comparisons of tephra
with potential source volcanoes in this region therefore have to rely mainly on whole-rock geo-
chemical data.
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Fig. 1. (Colour online) (a) Simplified tectonic map of the Eastern Mediterranean and (b) Geological map of the Kyrenia Range, northern Cyprus after Robertson et al. (2012). The

two tuffaceous sampling sites are marked by small red boxes.

For any dispersed tephra, it is useful to characterize the physical
characteristics, sedimentology and chronostratigraphy of the
deposit, which can be achieved by petrography, mineralogy and
both palaeontological and radiometric dating (Fisher &
Schmincke, 1984; Carey & Schneider, 2011; Lowe, 2011). The alter-
ation-resistant accessory mineral (e.g. zircon) allows accurate
U-Pb dating, particularly of felsic volcanic products. The chemis-
try of zircon also aids correlation of dispersed tephra with potential
eruptive centres (e.g. Aydar et al. 2012; Baresel et al. 2017).

Miocene tuffs and tuffaceous sediments are locally exposed in
the Kyrenia Range, northern Cyprus (Baroz, 1979) and provide an
opportunity to investigate a link between dispersed tephra and a
possible volcanic source. The northern part of Cyprus was located
in a deep-water setting during the Miocene Epoch, close to its
present position adjacent to the southern margin of Anatolia
(Fig. 1a, b). The tuffs are associated with siliciclastic turbidites that
were derived from southern Anatolia and accumulated to the south
of this landmass (McCay & Robertson, 2012; Chen et al. 2019;
Shaanan et al. 2020).

Within Anatolia, intra-continental magmatism followed sutur-
ing of Neotethyan ocean basins during latest Cretaceous —
Palaeogene time (e.g. Schleiffarth et al. 2018). Eruptions occurred
repeatedly during early Miocene — Quaternary time, becoming
generally younger eastwards (Dilek & Altunkaynak, 2010;
Schleiffarth et al. 2018).

Here, we provide new sedimentological, petrographic and/or
geochemical, and radiometric age evidence for felsic tuffs and
tuffaceous siltstones in the eastern Kyrenia Range. We use the

https://doi.org/10.1017/50016756820001399 Published online by Cambridge University Press

combined evidence to infer the timing, chemical composition
and possible source of the tuffs and tuffaceous sediments. We iden-
tify a possible post-collisional eruptive source in western Anatolia,
contributing to knowledge of post-collisional volcanism in the
region.

2. Geological background

Anatolia is situated in the western segment of the Arabia—Eurasia
collision zone (Fig. 1a). Three collision-related volcanic provinces
are recognized within Anatolia, mainly based on geographic loca-
tion, chemical composition and age (Innocenti et al. 1982; Pearce
et al. 1990; Le Pennec et al. 1994; Schleiffarth et al. 2018): (1) the
Western Anatolian Volcanic Province, in the izmir-Afyon-Isparta
area (western Turkey), is characterized by high-K, calc-alkaline
andesites and dacites that are associated with felsic ignimbrites
and dated at 21-10 Ma (Aquitanian—Tortonian) (Innocenti et al.
1975; 1982; Keller, 1983); (2) the Central Anatolian Volcanic
Province, in the Ankara-Karaman-Kirsehir region (central
Turkey), includes typical calc-alkaline volcanics, namely, ignim-
brites, volcanogenic sediments and subordinate lavas, beginning
at c. 10 Ma (Late Miocene) (Innocenti et al. 1975; Pasquare et al.
1988); and (3) the Eastern Anatolian Volcanic Province, in eastern
Turkey, Armenia and NE Iran, is represented by volcanism dated
as from c¢. 11Ma to 17th century AD (middle Miocene to
Holocene) of both calc-alkaline and alkaline affinities (Pearce
et al. 1990; Sengor et al. 2008).
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Collision-related tuffaceous products are likely to have been
deposited around the periphery of Anatolia in the Mediterranean
and Black seas, but remain largely unknown. Exceptionally, felsic
tuffs and tuffaceous sediments are exposed in the Kyrenia Range
as a result of the Pleistocene uplift (Kinnaird & Robertson, 2013;
Palamakumbura et al. 2016). The tuffs and tuffaceous sediments
occur within the Panagra (Gegitkdy) Formation (Fig. 2), which is
exposed throughout the Kyrenia Range (Baroz, 1979; Robertson
& Woodcock, 1986; Hakyemez et al. 2000; McCay & Robertson,
2012). (We use English stratigraphical names where possible; in
cases where Greek and Turkish names are synonymous, the latter
is stated in parentheses at first occurrence.) The Panagra
Formation, ¢. 50-100 m thick, begins with green to grey, fine-
grained hemipelagic limestone, rich in planktic foraminifera. The
succession grades upwards into a distinctive interval of red to brown
calcareous mudrock (marl), together with thin interbeds of siltstone/
sandstone turbidites containing siliciclastic and biogenic detritus
(Robertson & Woodcock, 1986; McCay & Robertson, 2012).
Strontium analysis and planktic foraminiferal dating indicate a
Burdigalian—Langhian (middle Miocene) age (Baroz, 1979;
McCay et al. 2013) for the Panagra Formation. The tuffs and tuffa-
ceous sediments are only recorded within the Panagra Formation in
the eastern part of the Kyrenia Range (Fig. 1b).

3. Methods
3.a. Analytical objectives

Assuming the age of zircon crystallization is synchronous with vol-
canic eruption and ash-bed deposition (e.g. Bowring et al. 1998),
U-Pb zircon geochronology can be used to determine the age of the
eruption from its dispersed tephra and help to identify volcanic
centres of appropriate age. It is assumed that far-travelled tephra
layers retain a similar mineral composition to their source eruption
within an entire proximal, to distal ash horizon (e.g. Ovtcharova
et al. 2015).

In addition, whole-rock geochemical analyses of tuff, tuffaceous
and non-tuffaceous sediments were carried out with the objective
of evaluating the contribution of tephra compared with terrigenous
and biogenic constituents. The whole-rock chemical analysis also
aimed to identify possible volcanic centres in the region, potentially
including western Anatolia where violently explosive volcanic
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products (e.g. felsic ignimbrites) are relatively well-documented
(e.g. Seghedi & Helvaci, 2016).

3.b. Zircon geochronology and geochemistry

Zircon grains were separated from the tuffs of the Panagra
Formation (sample no. 14-37) using standard gravitational separa-
tion techniques. Zircon grains were randomly picked under a bin-
ocular microscope. The grains, together with zircon U-Pb standard
91500 (c. 1062.5 Ma; Wiedenbeck et al. 1995) were then cast in
epoxy mounts and polished 1/3—1/2 to expose the grain interior.
The morphology and internal microstructure were observed and
imaged by cathodoluminescence (CL) prior to analyses. U-Pb
analysis (grain no. 1-10) was performed on a Cameca ims-1270 sec-
ondary ion mass spectrometer (SIMS) at the School of GeoSciences,
University of Edinburgh, using the methods detailed by Kelly et al.
(2008) and Ustadmer et al. (2012). Each analysis was c. 27 minutes in
duration (including a preliminary 2 min, 15 pm raster across the
analysis site) and employed a 4 nA primary O*” ion beam current
and Kohler illumination to produce a spot ¢. 20 um in diameter on
the sample. Oxygen flooding increased the Pb ion yield by a factor of
c. 2. Isotope ratios were measured in 20 cycles; the first five cycles
were excluded in order reduce possible near-surface contamination
of common lead. Additional zircon U-Pb analyses (grain no. 11-34)
were undertaken on a laser ablation inductively coupled plasma
mass spectrometer (LA-ICP-MS) at the Beijing GeoAnalysis Co.
Ltd. Laser sampling was performed using a Resolution SE model
laser ablation system, coupled to an Agilent 7900 ICP-MS to increase
the quantitative abundance. Pre-ablation was conducted for each
spot analysis using 5 laser shots (c. 0.3 um in depth) to remove
potential surface contamination. The analysis was performed using
a 30 um diameter spot at 5 Hz and a fluence of 2 ] cm2. Iolite soft-
ware package was used for data reduction (Paton et al. 2010). Zircon
91500 and GJ-1 (c. 604 Ma; Jackson et al. 2004) were used as the
primary and the secondary age reference materials. Zircon 91500
and GJ-1 were analysed twice and once every 10-12 analyses of
the sample, respectively. Analytical uncertainties in the calculated
ages are quoted as +1c. The results were processed using Isoplot/
Ex version 3.75 (Ludwig, 2012). Zircon trace elements were acquired
simultaneously with the U-Pb isotopic data. The National Institute
of Standards and Technology Standard Reference Material (NIST-
SRM) 610 glass and *'Zr were used to calibrate the trace-element


https://doi.org/10.1017/S0016756820001399

Early Miocene post-collisional felsic tuff, Cyprus

(a)

1361

Panagra (Gegitkdy) Formation

E‘ Marl "'"’ Davlos (Kaplica) Formation

Red mudstone [ @ | Sample locality

@ Tuffaceous unit >—  Younging direction

(d)

Turbiditic sandstone
m Tuffaceous siltstone-
sandstone
® Sample locality

19-46
R 19-45

Stratigraphic level (cm)

MudSandCongl

Fig. 3. (Colour online) Field occurrences of the tuffaceous deposits in northern Cyprus. (a) Exposure of felsic tuff near Cinarli (Platani); (b) Sketch of section of the tuff (see (a) for
field location); (c) Field photographs of the tuffs (white), including thin mudstone interbeds (yellow-brown); inset: repeated tuffaceous interval with sharp sandy based and tops;
and (d) Measured log of tuffaceous siltstone-sandstone turbidites, near Tirmen (Trypimeni).

concentrations as external reference material and internal standard
element, respectively. All of the analytical results are listed in online
Supplementary Tables S1-S3 (available available at http://journals.
cambridge.org/geo).

3.c. Whole-rock geochemistry of tuff and tuffaceous/non-
tuffaceous sediments

Three samples of relatively homogeneous tuff were selected for whole-
rock X-ray fluorescence (XRF) at the School of GeoSciences,
University of Edinburgh, using the methods of Fitton et al. (1998)
and Fitton & Godard (2004). Accuracy and precision were typically
¢. 5%. Additional trace and rare earth elements (REEs) were analysed
at the ACME Laboratories, Vancouver by ICP-MS. Trace-element
contents were determined from a LiBO, fusion by ICP-MS by using
5 g of sample pulp. Detection limits were ¢. 0.01-0.04 wt% for major
oxides, and 0.01 and 0.1 ppm for trace and rare earth elements. The
relative standard deviation for the REEs is ¢. 5% and up to 10% for all
other trace elements with quality control using international geostan-
dards (see http://acmelab.com). In addition, whole-rock major- and
trace-element (including REEs) analyses of two samples of tuffaceous
siltstone—sandstone were conducted by XRF and also with an Agilent
7700e ICP-MS at the Wuhan Sample Solution Analytical Technology
Co. Ltd., Wuhan, China. Standards BHVO-2, AGV-2, BCR-2 and
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RGM-2 were used to ensure analytical precision. The uncertainties
are 1-5% for elemental abundances of > 1 ppm and 5-10% for abun-
dances of < 1 ppm. The analytical data for the major, trace and rare
earth elements are listed in online Supplementary Table S4 (available
at http://journals.cambridge.org/geo).

4, Results
4.a. Field occurrences

E-W-striking red mudstones of the Panagra Formation, c¢. 50 m
thick (Figs 1b, 2) are exposed near Cimarl1 (Platani) in the eastern
Kyrenia Range (Fig. 3a, b). These sediments grade upwards into a
pale-coloured interval of tuff, c. 8 m thick. This is followed by red
calcareous marl and/or mudstone. The Panagra Formation is, in
turn, overlain by medium- to thick-bedded sandstone turbidites
of the Davlos (Kaplica) Formation (Fig. 3b).

The relatively homogeneous tuff interval near Ciarl1 (Platani)
consists of repeated depositional units (Fig. 3¢): (1) well-bedded
normal-graded units (up to 10 cm thick) with sharp, scoured sandy
bases, grading upwards into well-sorted, parallel, planar or wavy-
laminated intervals, and then into silty or fine-grained pale tuff; (2)
thin-bedded (2—5 cm thick), poorly sorted mixtures of fine-grained
tuff and sand-sized materials, commonly with sharp sandy or silty
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Fig. 4. (Colour online) (a-c) Photomicrographs of the tuffs (plane-polarized light) and (d) Tuffaceous siltstone (cross-polarized light). (a) Abundant colourless volcanic glass;
(b1-b4) Enlargements of panel a showing different ash morphologies; (c) Enlargement of (a) showing Orbulina sp. (planktic foraminifera) in tuff; and (d) Tuffaceous siltstone
including sub-angular quartz crystals, opaque grains, mica (altered) and rare plagioclase grains. Q - quartz; Vg - volcanic glass; Ms - muscovite; Pl - plagioclase; Bt - biotite;
F - foraminifera; P - pumiceous; C - cuspate; Fr - frothy; B - blocky; T - tabular. Scale bar: 100 pm.

bases (< 5 mm) and, in places, relatively sharp tops; and (3) fine-
grained, generally massive or weakly parallel-laminated, homo-
geneous tuff (5-10 cm).

In addition, near Tirmen (Trypimeni), c. 11 km further west
(Fig. 1b), the Panagra Formation includes a c. 2-5 m thick interval
of well-bedded, normal-graded sandstone—siltstone turbidites.
There are several well-lithified interbeds (mostly 3-5 cm thick,
but up to 10 cm thick) of white to pale brown tuffaceous silt-
stone—sandstone (Fig. 3d).

4.b. Petrography

In thin-section, the relatively pure tuff from near Cinarli (Platani)
(Fig. 4a) is fine- to medium-grained and well-sorted, with abun-
dant volcanic glass (ash-sized) (c. 50%) (Fig. 4b1-b4), together
with quartz (c. 40%), muscovite (c. 5%), hornblende (c. 1%), feld-
spar (mainly plagioclase) (c. 1%) opaque grains (Fig. 4a) and scat-
tered planktic foraminifera (Fig. 4c). In contrast, the tuffaceous
sediments from near Tirmen (Trypimeni) comprise a mixture of
terrigenous and tuffaceous material (c. 5-10%) (Fig. 4d), namely
volcanic glass, quartz, plagioclase, muscovite and biotite. Volcanic
glass shards in the tuffaceous sediments have been partly dissolved
and replaced with clays. However, glass in the homogeneous tuff
remains relatively fresh.
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4.c. Zircon U-Pb geochronology

Typically needle-like, 80—200 pm-long grains of zircon were separated
from a sample of relatively homogeneous fine-grained tuff (sample
no. 14-37) from the section near Cimarli (Platani). Most crystals show
magmatic-type concentric zoning, as revealed by CL images (Fig. 5a).
Thirty-four analyses were obtained from 34 zircon grains, of which 20
were concordant (90-110% concordance) and 14 discordant. The
pre-Miocene zircons (aged 37-80 Ma) are generally affected by inclu-
sions or cracks and are all discordant. Concordant analyses of both
bright cores (sample no. 21) or dark cores (sample no. 4, 25), and also
of the rims of core—rim structure (sample no. 6), all yielded
Precambrian ages ranging from 678.8-2505.0 Ma. These zircons
are interpreted as recycled sedimentary grains (sample no. 4, 6, 21)
or the cores of older zircons (sample no. 25). Of the concordant 16
zircons, eight grains define a tight age cluster, yielding a mean
205pp/238J age of 16.64 + 0.12 Ma with a mean square weighted
deviation (MSWD) of 1.13 (Fig. 5b, ¢). This is inferred to represent
the crystallization age of the felsic tuff source magma. Other concord-
ant zircon grains yielded slightly older ages of 17-21 Ma (Fig. 5b).
These ages are interpreted as earlier volcanic events in the source area.
For comparison, the palacontologically determined age of the Panagra
Formation as a whole is Burdigalian-Langhian (16.95-15.61 Ma)
based on planktic foraminiferal and nannofossil evidence and also
Sr isotope dating (Baroz, 1979; McCay et al. 2013). The overall
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Fig. 5. (Colour online) (a) Cathodoluminescence images of zircon grains analysed
from the tuff sample (sample no. 14-37) near Cinarli (Platani). Locations of the mea-
sured spots and the corresponding ages (2°Pb/?38U + 10) are indicated. Yellow circle
(SIMS): 20 um; red circle (LA-ICP-MS): 30 pm. (b) Wetherill Concordia diagrams for the
Miocene age population. (c) 2°°Pb/238U weighted mean diagram for the tight zircon age
cluster.

radiometric age data therefore suggest that the zircons from the dated
sample contain a mixture of contemporaneous and older, reworked
volcanic material.

4.d. Zircon trace-element compositions

The Miocene zircons, together with most others, have REE pat-
terns that increase steeply from La to Lu, with a pronounced pos-
itive Ce anomaly and a negative Eu anomaly (Fig. 6). This is
consistent with the normal association of zircon with heavy REE
relative to light REE (Hanchar & van Westrenen, 2007) in magma
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Fig. 6. (Colour online) REE concentrations normalized to chondrite (Nakamura, 1974)
for the zircons in tuff sample (sample no. 14-37).

that is typically oxidizing (Smythe & Brenan, 2015), and with con-
current feldspar crystallization (Rubatto, 2002). The pre-Miocene
zircons (aged 37-80 Ma) are characterized by enrichments in light
REE (La, Ce) compared with the Miocene zircons (Fig. 6); this
could have resulted from contamination by mineral inclusions
(Zhong et al. 2018). The Precambrian zircons are variable, charac-
terized by middle REE enrichment (no. 31) or heavy REE depletion
(no. 25) (Fig. 6). The analyses of the middle REE-enriched zircon
(no. 31) are likely to be affected by inclusions (i.e. titanite). The
lesser heavy REE enrichment in grain no. 25 is consistent with a
metamorphic origin (Th/U = 0.05; Rubatto, 2002).

In addition, the zircon crystals are characterized by a relatively
wide range of U (71.5-21820 ppm) and Th (17.3-3678 ppm) con-
centrations (see online Supplementary Tables S1-S3). Smaller
grains (e.g. sample no. 15, 33) and also the single grain with a high
uranium concentration (> 10 000 ppm; no. 17) are likely to have
lost lead preferentially, such that no concordant ages can be
calculated.

4.e. Whole-rock geochemistry

The analysed values of some key elements are as follows (see online
Supplementary Table $4):

Relatively pure tuff from Cinarli (Platani): SiO,, 69.4-70.9 wt%;
AL Os, 12.7-12.9 wt%; Fe, 05, 1.4-1.7 wt%; CaO, 1.0-1.3 wt%;
TiO,, 0.08 wt%; Ba, 63—86 ppm; Ce, c. 46 ppm; U, c. 25 ppm;
Th, 47-51 ppm; Nb, 31-33 ppm; Sr, 58-85 ppm; and Rb, 244—
256 ppm.

Tuffaceous siltstone from Tirmen (Trypimeni): SiO,,
32.2-38.3 wt%; Al,Os, 10.2-12.4 wt%; Fe,0s, 0.5-1.3 wt%,; CaO,
10.7-17.1 wt%; TiO, c. 0.16 wt%; Ba, 71,554-78,898 ppm; Ce,
35-63 ppm; U, 4-5 ppm; Th, 23-28 ppm; Nb, 11-12 ppm; Sr,
223-649 ppm; and Rb, 15-23 ppm.

Non-tuffaceous sandstone (from both locations): SiO,,
28.8-30.3 wt%; ALO;, 1.5-1.9 wt%; Fe,05, 0.9-1.3 wt%; CaO,
32.0-34.8 wt%; TiO,, 0.1 wt%; Ba, 126 ppm; Ce, 21.0 ppm; U,
1.9 ppm; Th, 2.0 ppm; Nb ¢. 2.3 ppm; Sr c. 324516 ppm; Rb,
12-17 ppm.

The relatively high loss-on-ignition (LOI) values (average
6.08 wt%) of the pure tuff are likely to represent secondary alteration
processes, for example, partial devitrification of glass. Higher
LOI values (16-19 wt%) occur in the tuffaceous siltstone possibly
due to fluid alteration, which may also have led to the observed
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concentration in Ba (up to 78,898 ppm). The most calcareous non-
tuffaceous sandstones are rich in carbonate grains and calcite
cement (McCay & Robertson, 2012; Chen & Robertson, 2020)
and, as expected, have the highest LOI values (up to 29 wt%) as a
result of loss of CO,.

The chemical data are plotted on several tried and tested geo-
chemical plots that are indicative of source composition, prov-
enance, sorting and/or diagenesis. On a chondrite-normalized
REE plot (Fig. 7a), the non-tuffaceous sandstone turbidites have
a typical terrigenous composition. The relatively pure tuff samples
are marked by Eu depletion that is attributed to source-melt pla-
gioclase fractionation (Rollinson, 1993). In contrast, the tuffaceous
siltstones show Eu enrichment, probably due to plagioclase enrich-
ment (Rollinson, 1993). The Eu enrichment could have resulted
from diagenetic mobilization (MacRae et al. 1992) or from hydro-
thermal alteration (e.g. Michard et al. 1983), given that unaltered
felspars are rarely visible in thin section. Compared with Post-
Archean Australian Shale (PAAS) (Fig. 7b), the tuff is relative
depleted in most elements but enriched in U, Th and heavy
REE. The tuffaceous siltstones are very strongly enriched in Ba
(up to 78 898) and also enriched in Th, U and Sr. The relatively
high values of Ba, Th, U, Sr and Ti in the Panagra Formation tuffs
are similar to the compositions of certain rhyolitic volcanics, nota-
bly the Miocene Kirka—Phrigian tuff of western Anatolia (Fig. 7¢)
(Seghedi & Helvaci, 2016), which is a possible source (see
Section 5.c below).

On the La/Th versus Hf diagram (Fig. 8a), which is indicative of
magmatic composition, the tuffaceous siltstones have relatively
low La/Th ratios and intermediate Hf values, compatible with a fel-
sic arc source. In contrast, the non-tuffaceous sandstones have
higher La/Th ratios, consistent with an originally andesitic arc
source of possible Late Cretaceous — Miocene age, based on dating
of the zircons from the Miocene sandstones of the Kyrenia Range
(Chen et al. 2019; Shaanan et al. 2020). On the Th/Sc versus Zr/Sc
plot, both the relatively pure tuffs and the tuffaceous siltstones are
of near-granitic composition (Fig. 8b), whereas the non-tuffaceous
sediments plot between basalt and continental crust (source
mixing is likely). These features are again consistent with the petro-
graphic and whole-rock geochemical evidence from the Oligocene—
Miocene sandstones from northern Cyprus (McCay & Robertson,
2012; Chen & Robertson, 2020). On the Al-Zr-Ti plot (Fig. 8c)
the relatively pure tuffs and the tuffaceous siltstones are grouped,
whereas the non-tuffaceous sandstones have higher Zr/Al ratios
compared with PAAS, which is interpreted as the result of sedimen-
tary sorting prior to deposition. The tuffaceous siltstones have
chemical index of alteration (CIA) (Nesbitt & Young, 1982) values
of 44-54, compared with CIA values of 75-76 for the non-tuffaceous
sandstone turbidites (Fig. 8d). These CIA values are consistent with
mild weathering conditions within the source area or during sedi-
ment transport. The relatively high CIA values of the background
non-tuffaceous turbidites are suggestive of relatively humid source
area and/or sorting process (Garcia et al. 1991).

5. Discussion
5.a. Sedimentological process

The combined field and laboratory evidence suggest that the rela-
tively pure tuffaceous interval at Cinarli (Platani) has three com-
ponents. First, the homogeneous, finely laminated, fine-grained
tuff resulted from direct fallout of felsic ash through the water col-
umn. Secondly, the sharp-based, normal-graded interbeds are
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Fig. 7. (Colour online) (a) Chondrite-normalized REE diagram for whole-rock
samples. Normalizing values of chondrite from Nakamura (1974). (b) PAAS-mormal-
ized multi-element diagram for whole-rock samples; normalizing values of PAAS from
McLennan et al. (1993). (c) Panagra Formation tuffs versus Kirka-Phrigian tuff, west
Anatolia (Seghedi & Helvaci, 2016).

interpreted as tuffaceous turbidites that contain a mixture of con-
temporaneous and reworked tuffaceous material (and some much
older grains). Thirdly, where sharp bed tops as well as bed bases are
present, this is suggestive of seafloor reworking by bottom currents
(although this appears to be minor). In addition, the tuffaceous
sandstones at Tirmen (Trypimeni) contain a variable mixture
tuffaceous and terrigenous grains and are interpreted as tuffaceous
turbidites. The absence of coarser-grained pyroclastic deposits in
both occurrences could be explained either by long-
distance aeolian transport or possibly by ponding of coarser-
grained material closer to the source volcanism, for example,
within local silled depocentres.

Assuming the Burdigalian microfossil and Sr-isotope ages for
the Panagra Formation are correct (c. 16.6 Ma), the deposition
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Helvaci, 2016; Esenli et al. 2019); these are the Kirka-Phrigian caldera (Eskisehir area), the tuffs from Gordes Basin and the Salbas Tuffaceous Member (Adana Basin).

of the relatively pure ash was broadly synchronous with eruption.
However, the older early Miocene ages (17—21 Ma) are indicative of
previous eruptions in the source area. The tuffaceous siltstones—
sandstones, ¢. 11 km further west (Fig. 1b), represent composition-
ally similar tephra that mixed with terrigenous detritus and was
finally deposited by turbidity currents.

Alkali feldspar and biotite are generally abundant within the
Oligocene—Miocene terrigenous turbidites, as indicated by X-ray
diffraction studies (McCay & Robertson, 2012). However, within
the tuffaceous sediments these minerals appear to have been
largely altered to kaolinite and carbonate minerals, as suggested
by the petrographic studies.

5.b. Magma dffinities inferred from zircon trace elements

The relatively high Lu (> 50 ppm), U (> 70 ppm), Ta (> 1 ppm)
and Hf contents (> 11 000 ppm) of the most of the zircon grains
analysed are consistent with felsic magma sources (Belousova et al.
2002). The Eu/Eu* ratios of all of the grains are consistent with
plagioclase crystallization prior to, or coeval with, zircon growth
(Hoskin & Schaltegger, 2003). Compared with zircons from known
tectonic settings, the majority of the zircon grains fall within the
anorogenic (within-plate) field on the basis of their Nb/Hf, Hf/
Th and Th/Nb ratios (Fig. 9). The two Precambrian zircons
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(sample no. 21, 25) fall within the orogenic field, suggesting that
their source rocks are arc-related.

5.c. Possible magmatic sources

Pinpointing of magmatic sources for tuffaceous sediments can be
difficult, especially for areas such as Anatolia that have experienced
subsequent contractional tectonics (mainly late Miocene) and
major uplift and erosion (mainly Pleistocene). However, the
source, magmatic type and eruptive characteristics of the early
Miocene (Burdigalian) Kyrenia Range tuffs and tuffaceous silt-
stones can be assessed based on chemical composition, compara-
tive age and sediment fabric (i.e. tephra type, shape, grain size,
sorting and bed thickness).

There is little evidence of a suitable local source in or around
Cyprus. However, the Kyrenia Range is a thrust belt that experi-
enced a final phase of southward thrusting during late Miocene
time, concealing part of its foreland (Baroz, 1979; McCay &
Robertson, 2013; Robertson & Kinnaird, 2016).

The nearest extensive Miocene felsic tuffs are exposed through-
out the Adana basin to the north (Salbas Tuff Member of the
Kuzgun Formation) (Fig. 10). However, this is palacontologically
dated as Tortonian in age (c. 11 Ma) (Yetis, 1988), significantly
younger than the Kyrenia Range tuffs, and has a contrasting
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Fig. 9. (Colour online) (a) Nb/Hf versus Th/U (after Hawkesworth & Kemp, 2006); and
(b) Hf/Th versus Th/Nb diagrams (after Yang et al. 2012) for the zircons analysed.
Contaminated zircon compositions are removed.

calc-alkaline (arc-related) composition (see online Supplementary
Fig. S1). Early Miocene volcanics occur extensively in and around
the Amanos Mountains bordering the Adana basin to the east
(Fig. 10); these are represented by relatively quiescent-type basaltic
eruptions and minor intrusions (mainly dykes) that remain poorly
dated and chemically studied. However, felsic tuffs are, at most, min-
imal (Duman et al. 2017; unpublished data).

The Oligocene-Miocene terrigenous turbidites of the Kyrenia
Range were derived from the east based on palacocurrent data
(Weiler, 1970; McCay & Robertson, 2012). Suitable source rocks
are exposed in the Cenozoic SE Anatolian thrust belt (McCay &
Robertson, 2012; Chen & Robertson, 2020; Shaanan et al. 2020).
However, Miocene volcanics in SE Turkey are rare and mainly
restricted to basalt-andesite, for example, the Bahgcelievler area
of the Kahramanmaras region (Fig. 10) (Arger et al. 2000).
There are no palaeocurrent data specifically from the rare
Miocene tuffaceous sediments in the Kyrenia Range. There is no
requirement for them to have been derived from the east, together
with the terrigenous turbidites. However, some mixing of terrig-
enous and volcaniclastic material took place prior to final
deposition.

The relative thinness of the primary bedding (c. 5 cm) and the
fine grain size of the inferred fallout tuffs in the Kyrenia Range,
combined with their chemical composition, prompt comparison
with similar-aged felsic igneous rocks related to post-collisional
magmatism in Anatolia (see Section 2 on geological background).
The Kyrenia Range tuffs are broadly similar in composition and
age to the felsic ignimbrites of the Eskisehir—Afyon—Isparta
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volcanic zone in the Western Anatolian Volcanic Province
(Fig. 10) (Dilek & Altunkaynak, 2010; Seghedi & Helvaci, 2016).
Specifically, large rhyolitic ignimbrite, pumice and dacitic lava-tuff
units are well-exposed in the Kirka—Kiitahya—Usak area of the
Eskigehir—Afyon—Isparta volcanic zone (Bingdl, 1977; Yagmurlu
et al. 1997; Aydar, 1998; Dilek & Altunkaynak, 2010; Seghedi &
Helvaci, 2016). These are likely to represent Minoan (Plinian)-type
eruptions (Fisher & Schmincke, 1984). They are chemically similar
to the Kyrenia Range tuffs and tuffaceous sediments, although the
latter have slightly higher values of U, Th, Ba, Sr and Ti (Fig. 7¢),
which could be explained by greater magmatic fractionation of the
source magma. Small tuffaceous deposits of similar composition to
those of the Kyrenia Range also occur further south, in the Isparta
area (Fig. 10), but these are much younger (ie. 4.1-4.6 Ma;
Yagmurlu et al. 1997).

Radiometric dating indicates ages of 16-21 Ma for the
Eskigehir—Afyon-Isparta volcanic zone as a whole (e.g. Bingdl,
1977; Aydar, 1998), similar to the age of the Kyrenia Range tuffs
(16.64 = 0.12 Ma). High-volume eruptions from the Kirka-
Phrigian Caldera (Dilek & Altunkaynak, 2010; Seghedi &
Helvact, 2016) could have yielded ejecta of similar chemical com-
position (Fig. 7a—d) to the Kyrenia Range tuffs. Similar-aged tuffs
(16-20 Ma) also occur within the Gordes and Selendi basins
(Fig. 8) in western Anatolia (Purvis ef al. 2005); however, these
are of contrasting calc-alkaline composition (see online
Supplementary Fig. S1).

5.d. Tephra distribution and sediment accumulation

Studies of tuff thickness versus distance from source (Fisher &
Schmincke, 1984) suggest that the 5-10 cm thickness of the
Kyrenia Range tuff fallout events could be equivalent to c.
10—100 m thickness in the source area (Fig. 11a). This is broadly
consistent with the reported up to 50 m thickness of individual
pyroclastic depositional events for the Kirka felsic tuffs (Seghedi
& Helvaci, 2016). In addition, for tephra, the median grain size
versus the known distance from source is broadly indicative of
the distance of aeolian transport (Fisher & Schmincke, 1984).
The Kyrenia Range tuffs are dominated by ash sizes of
c. 63—125 um (Fig. 4b1-b4) and plot close to the field of far-
travelled, powerful eruptions (Fig. 11b), consistent with
Minoan (Plinian)-type eruptions (Fisher & Schmincke, 1984).
The position on the diagram is also suggestive of low-fall veloc-
ity of fragments carried by a high-velocity wind.

E-wards or SE-wards transport of tephra is suggested by stud-
ies of early Miocene fine-grained tephra distribution in the
western Mediterranean region (i.e. NE Apennines) (Montanari
et al. 1994). Climatic models suggest that northeasterly winds
prevailed during middle Miocene time (Serravallian), changing
to westerlies during late Miocene time (Tortonian) (Cornell
et al. 1983; Montanari ef al. 1994; Quan et al. 2014). Tuff, origi-
nating in the Kirka—Phrigian area of NW Anatolia could there-
fore have been dispersed E-wards and SE-wards by
prevailing winds.

It is therefore possible that the Kyrenia Range tuffs represent
highly explosive Minoan (Plinian)-type eruptions, during and
soon after the initiation of post-collisional magmatism in
western Anatolia. The felsic ash would have been dispersed
c. 500 km in a southeasterly direction to reach the north
Cyprus area (Fig. 10), where it fell out over the sea, sank to
the seafloor and was partly reworked by gravity flows and cur-
rents. However, problematic aspects remain. There are no
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Fig. 10. (Colour online) Topography of Anatolia (Shuttle Radar Topography Mission; Farr et al. 2007) showing the three main volcanic provinces (of different age ranges) and the
main locations of early-middle Miocene (20-15 Ma) post-collisional volcanism. Data from Tiirkmen et al. (2013), Prelevi¢ et al. (2012), Seghedi & Helvaci (2016) and Schleiffarth
et al. (2018). NAFZ - Northern Anatolia Fault Zone; CAFZ - Central Anatolia Fault Zone; EAFZ - Eastern Anatolia Fault Zone; IAESZ - izmir-Ankara-Erzincan Suture Zone; ITS - Inner
Tauride Suture; EAVP - Eastern Anatolia Volcanic Province; CAVP - Central Anatolia Volcanic Province; WAVP — Western Anatolia Volcanic Province.

@ o (b)
o
8 ol
o R Kirka-Phrigian il .
o = Powerful eruptions
8 Lol Low-fall velocity fragments
i @ ! High-velocity wind
=8l B
§ - gIr
i ik ¢— Maximum limit
8 2 be (25 kme)| § o
s \, Minoan Santorini 3
Z Avellino_ (28 km’) N Cyprus tuffs =<t
He[lfla] KM crater Lake Minimum limit
(15 km™) B Weak eruptions
~| (0.13 km’) © High fall velocity fragments
ol . 4 F : 5 i Low velocity wind :
0 100 200 300 400 500 600 10 100 1000 10000

Distance from source (km)

Distance from source (km)

Fig. 11. (Colour online) (a) Thickness and distance from source along dispersal axis for several fallout tephra layers. Tephra distribution curves are modified from Fisher &
Schmincke (1984). Minoan Plinian deposit curve is based upon compacted thickness of total Minoan tephra layer using adjusted isopach contours (Watkins et al. 1978). (b)
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reported occurrences of early Miocene tuffs elsewhere within
the Kyrenia Range, or within onshore sedimentary basins to
the west and NW (e.g. Manavgat, Koprii, Aksu and Kas basins);
i.e. towards the suggested source area. Felsic tuffs were possibly
deposited, but then reworked and diluted by terrigenous
material and therefore not easily recognizable in the field.
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After the early Miocene period, the prevailing winds were seem-
ingly no longer favourable for tephra transport to the Cyprus area
(Quan et al. 2014). This could explain why tuffaceous deposits are
not known to occur higher in the Miocene—Pliocene stratigraphical
succession in northern Cyprus, despite the continuing explosive

volcanism within Anatolia.
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6. Conclusions

The only known Cenozoic—Recent tuffaceous deposits in Cyprus
are represented by a relatively pure felsic ash-rich interval at
one locality, and by related tuffaceous siltstones—sandstones at
another nearby locality, both in the eastern Kyrenia Range.

The tuffaceous deposits accumulated by a combination of direct
ash fallout and by reworking, mainly by gravitational processes (i.e.
tuffaceous turbidites).

U-Pb dating of detrital zircons from relatively homogeneous
ash indicates a dominant eruption age of 16.64 + 0.12 Ma (early
Miocene), together with slightly older ages of 17-21 Ma that
represent preceding volcanic events.

Zircon trace-element analysis suggests that the majority of the
grains are felsic magma-sourced, of within-plate affinity, whereas a
few grains are arc-related.

Whole-rock chemical analysis of the tuffaceous sediments is
indicative of a felsic arc source characterized by low La/Hf, inter-
mediate Hf and high Zr/Sc ratios.

The north Cyprus tuffs are generally similar in age and compo-
sition to explosive early Miocene, post-collisional felsic volcanics in
western Anatolia, specifically the Kirka—Phrigian volcanic area
¢. 500 km to the NW of Cyprus.

During early Miocene time, tephra could have been carried
SE-wards by prevailing winds to reach the north Cyprus area, fol-
lowed by variable reworking.
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