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THE SP-HULL OF A LATTICE-ORDERED GROUP
ROGER D. BLEIER

There have been several recent papers on the subject of the P-hull and the
SP-hull of an I-group (lattice-ordered group). The most natural formulation of
the concepts was given by P. Conrad in [6]. T. Speed studied P-groups exten-
sively in [11]; his work was motivated by earlier work by H. Nakano and
I. Amemiya in a vector lattice setting. A. Vecksler [12] produced the SP-hull
for f-rings. The ortho-completion of S. Bernau [2] is a related concept.

The best construction of the P-hull and SP-hull thus far has been given by
D. Chambless [4]. However, his direct limit construction does not leave the
reader with a “concrete’ feeling for these hulls. K. Keimel [10] has given a nice
sheaf-theoretic interpretation of the SP-hull.

In this paper we give a construction of the SP-hull and the P-hull which is
substantially different from those previously given. If G is represented as an
l-subgroup of a cardinal product of totally-ordered groups indexed by X, then
we construct these hulls out of G and the index set X. Section 1 lays the founda-
tion for the succeeding sections. In Section 2 we construct the SP-hull
and obtain various corollaries from our construction. In Section 3 it is
shown that each /-homomorphism of G onto H whose kernel is a polar extends
to an /-homomorphism of the SP-hull of G onto the SP-hull of H. Section 4
treats generalizations and the P-hull. A very nice description of the P-hull of
the free vector lattice on two generators is given.

We briefly review the portion of /-group theory that we will be using. (We
follow Conrad in our terminology. The reader is referred to [8] for the basic
theory of I-groups.)

Let .S be a subset of an I-group G. Then

S ={gcG|lgl Als|] =0 foralls e S}

is called the polar of Sin G. .S’ is a convex I-subgroup of G. The collection Z(G)
of all polars in G is a Boolean algebra under inclusion. The meet operation is
set-theoretic intersection, and the complement of 4 € Z(G) is A’. We write
S for (§')',and if g € G, we write g”’ for {g}”’. 4 € £ (G)ifandonlyif 4 = A",
We denote the join operation in Z(G) by V.

An I-group G is the cardinal sum A @ B of l-ideals A and Bof Gif AN B =0
and A4 + B = G. If this is the case, then B = A’, and 4 and B are called
(cardinal) summands of G. The collection of all summands of G is a Boolean
subalgebra of Z(G).

If G is an /I-subgroup of an [-group H such that G M C 5 0 for each non-zero
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convex l-subgroup C of H, then we say H is an essential extension of G. If for
each & € H with 2 > 0 there exists g € G such that 0 < g < &, then we say G
is dense in H. If G is a dense I-subgroup of H, then H is an essential extension
of G.

Let H be an essential extension of G, and let * denote the polar operation
in H. Then 4 — A’* is a Boolean isomorphism of & (G) onto P (H). [7,
Theorem 3.4]. If S is a subset of G, then S"** = S** and S'** = S*. [6,
Section 2.] Thus S'™* = S**,

If each element of 22(G) is a summand of G, then G is an SP-group (strongly
projectable /-group). If H is an essential extension of G, and H is an SP-group,
and no proper /-subgroup of H that contains G is an SP-group, then we say H
is an SP-hull of G.

If ¢’ is a summand of G for each g € G, then G is a P-group (projectable
I-group). If H is an essential extension of G, and H is a P-group, and no
proper l-subgroup of H containing G is a P-group, then we say H is a P-hull
of G.

If G is an I-subgroup of a cardinal product of totally-ordered groups, we say
G is representable. G is representable if and only if ¢’ is a normal subgroup of G
for each g € G. Thus if G has a P-hull or an SP-hull, then G must be repre-
sentable. Conversely, if G is representable, then G has a P-hull and an SP-hull.
Moreover, these hulls are unique. Versions of these results have been obtained
by all the authors previously mentioned.

Let f be an element of the cardinal product Il,cx 7%, where each T, is a
totally-ordered group. We denote the x-component of f by f(x), and we define
S(f) = {x € X|f(x) # 0}. If K is a subset of Il,cx 7%, we define

S(K) = {x € X|f(x) # 0 for some f € K}.

Throughout this paper G denotes an I-group and ’ is the polar operation in G.
Where a statement involves another /-group, it is often necessary or convenient
to use a different symbol for the polar operation in this second I-group. We
often use * for this purpose. We also use * for this purpose, but never without
express designation, since we sometimes use * in other ways. We assume
throughout that all l-groups are representable.

1. Fields of sets and extensions of /-groups. A field of subsets of a set
X is a collection # of subsets of X such that (i) @ € #, (ii) A N\ B € ¥ if
A,B €%, and (iii) X\4 €¢ ¥ if A ¢ ¥

Each field of subsets of X is a Boolean algebra under the partial-ordering of
inclusion. On the other hand, suppose & is a collection of subsets of X satisfying
()0 € #,and (ii) A N\ B € A forall A, B € #.Then,asis well-known in the
theory of Boolean algebras, it is possible that & is a Boolean algebra under the
partial-ordering of inclusion but not a field of subsets of X. This is possible even
if we assume X € Z. (The collection of all regular open subsets of the real line
is an example of this phenomenon.)
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The following technical lemma is crucial to the development in succeeding
sections. | owe its proof to an anonymous referee.

LeMMA 1.1. Suppose & is a collection of subsets of a set X such that (i) 0 € &,
and (i) ANB € B if A,B ¢ B. If X is a Boolean algebra under the partial-
ordering of inclusion, then there exists a Boolean isomorphism 1 of & onto a field ¥
of subsets of X with nB 2 B for all B € &.

Proof. Let &, be the collection of all B € & such that x € B. Then &, is
empty or & is a filter in #. If &, is empty, let %, be any ultrafilter in & ;
otherwise let %, be an ultrafilter in & such that %, D &,.

Define, for all B € &, 1B = {x ¢ X|B € %,}. 1t is clear that 5 preserves
inclusion, that »(#) = @, and that » maps the largest element of &% to X. If
A,B ¢ & we have immediately that 7(4 M B) € 94 M 3B. On the other
hand, if ¥ € nA N\ 4B, then A4,B ¢ %, whence AN B € U,, and thus
x € (4 N B). Thus (4 N B) = n4 N 4B.

Denote the complementof Bin % by B’. We show n(B’) = X\nB.BN\B' =@
so 7(B) M 7(B’) = n(BM B') = @. Suppose x ¢ nB. Then B ¢ %, and so
there exists K € %, such that BN K = §. K C B’ and hence B’ € %,. Thus
x € 9(B’). We have shown 7B N\ n(B’) =@ and 7B \Uy(B’) = X. Thus
2(B') = X\nB.

Suppose 4, B € & and there exists 2 € B such thatz ¢ 4. If A’ N\ B = §,
then B € 4" = A, a contradiction. Thus there exists x € 4’ N\ B. B € Y%,
and 4 ¢ U, (since A’ € U,). Thusx € nBandx ¢ n4. Hence, if 4 = B, then
nd # 9B.

We have shown that 7 is a one-to-one Boolean homomorphism of & into the
field of all subsets of X. If x ¢ B, then B € & ,, whence B € %,, and x € nB.
Thus 7B 2 B for all B € &, and the proof is complete.

Now, let G be an l-subgroup of the cardinal product Il,cx 7, where each 7,
is a totally-ordered group, and let & be a field of subsets of X. Suppose
h € 11 T, is such that for some finite partition of X in# ,say Fy, ..., F,, there
exist g; € G such that A(x) = gy(x) for all x € F; (z =1,...,n). We then
write B = [g,/F], and we denote the set of all such & by G[# ].

LeEMMA 1.2. G[# ] is an I-subgroup of 11 T that contains G.

Proof. Suppose h = [g,|F;] and f = [g,|F,] are elements of G[# ]. Then
h—f=1[gi— g)FiNF]€GF] and bV 0 =[g; V O|F)] € GI¥]. Thus
G[# ] is an l-subgroup of 11 7. Also, if g € G, then g = [g|X] € G[#].

LewMa 1.3. For F € F define o(F) = {h € GIF]| S(h) € F}. Then o(F)
is a cardinal summand of G[¥ |; in fact,

GIF] = o(F) @ ¢(X\F).

Proof. Clearly ¢(F) and ¢(X\ F) are l-ideals of G[# ], and ¢(F) N o(X\F) = 0.
Suppose & = [g,|F,] € GIF 1. Let ky € 11 T, be such that ky(x) = g,(x) for all
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x € FN Fyand by(x) = Oforallx € (X\F) N F,. Leth, € II T, be such that
ho(x) = gi(x) for all x € (X\F) N F;and ky(x) = 0 for allx € FN F,. Then
hl, hz E G[?], hl E (p(F), hg € go(X\F), and h = kl + ]12. Thus

GIF] = o(F) @ ¢(X\F).

LemMA 1.4. Let H be an l-subgroup of 1l,cy T, where each T, is a totally-
ordered group, and let G be an I-subgroup of H. Suppose.o/ is a subalgebra of PP (H)
such that each A €  is a summand of H. Then F* = {S(A)|A € &} is a field
of subsets of S(H), and G[F *] is an I-subgroup of H.

Proof. We have § = S(0) € #* and S(H) ¢ #*. If A and B are convex
I-subgroups of H, then S(4 M B) = S(4) M S(B). Also, since 4 is a summand
of H, we have S(4) U S(41) = S(H) and S(4) N S(4+L) = @. (HereL denotes
the polar operation in H.) Thus.% * is a field of subsets of S(H).

Let g € G and F = S(4) € F*. Let f € G[# *] be such that f(x) = g(x) for
allx € Fand f(x) = Oforallx € X\F = S(41). We can writeg = r 4 s where
r € Aands € 4L. Now S(r) € S(4), S(s) € S(41), and S(4) N S(4L) = 0.
Thus r(x) = g(x) for all x € S(4) and r(x) = 0 for all x € S(41). Thus
f =7 € H, and since each element of G[# *] is the sum of finitely many
elements like f, we conclude G[# *] C H.

2. The SP-hull of an l-group. Let G be an I-subgroup of Il,cx 7%, where
each T3 is a totally-ordered group. The map J — S(J) is a one-to-one inclusion
preserving function of Z(G) onto a collection & of subsets of X ; moreover, the
inverse map is also inclusion-preserving. Thus & is a Boolean algebra of
subsets of X with respect to the partial-ordering of inclusion. If I, J € Z(G),
then S(I) N SJ) = SINJ) € #;also, @ = S0) ¢ &. Thus by Lemma 1.1
there exists a Boolean isomorphism 7 of % onto a field # of subsets of X. We
will prove G[# | is the SP-hull of G.

LEmMA 2.2. Ifg € G, J € P(G), and S(g) N\ S(J) = 0, then S(g) N 2S(J) = 0.

Proof. S(g) N S(J) = @implies g’ M J = 0, and hence S(g”’) N S(J) = 0.
Thus 7S(g"") N 2S(J) = @. Since S(g) < S(g’”) < 1S(g”") we conclude

S(g) N 2S(J) = 0.
LEMMA 2.2. (i) If b € GIF ), J € P(G), and S(h) N\ S(J) = @, then
S(h) N\ 1SJ) = 0.
(i) If 0 < k € GIF |, there exists g € G with 0 < g < h.

Proof. Suppose z € S(h) N\ 9S(J). Let F; €% and g € G be such that
2 € F1 C9S(J) and h(x) = gi(x) forallx € Fi. F; = S(J1) for some J, € Z(G).
We have 2z € S(g1)) N\ F1, so by Lemma 2.1 S(gi) M SJ1) #= 0. Since
g1(x) = h(x) for all x € S(J1), we conclude S(k) M S(J1) # @. Thus since
S(J1) € S(J) we have S(k) N S(J) # B, and (i) is proved.
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Now let & > 0. Since S(g1) N S(J1) # 0, there exists 0 < k € J; with
S(g1) N S(k) #= @. Let g = |g1| A k. Then 0 < g < &, and (ii) is proved.

LEMMA 2.3. Let J € P(G) and F = 3S(J). Let o(F) = {h € GIF ||S(h) < F}.
Then o(F) = J"t (where + denotes the polar operation in G[# ]).

Proof. Let b € o(F) and g € J'. Then S(g) N.S(J) = 0, so by Lemma 2.1,
S(g) N F = @. Thus S(g) N\ S(h) = @, and |g| A || = 0. Thatis, h € JL

Now suppose & € G[# | and h ¢ o(F). Then h(x) 5 0 for some x € X\F =
2S8(J"). Thus by Lemma 2.2(1), S(k) N\ S(J’) # @. Thus b ¢ J'*.

THEOREM 2.4. G[# | is the SP-hull of G.

Proof. By Lemma 1.2, G[% | is an I-group, and G is an l-subgroup of G[Z ]. G
is a dense I-subgroup of G[¥ ] by Lemma 2.2(ii). Thus each polar in G[# | is of
the form J* where J € & (G). Thus by Lemma 2.3 and Lemma 1.3, G[% |
is SP.

Suppose now that K is an l-subgroup of G[# | containing G and that
K is an SP-group. Let * denote the polar operation in K. Then J** is a
summand of K for all J € Z(G). Thus S(J**) U S(J*) = S(K) = S(G[#)).
(Note S(G) € S(K) C S(GI#]) = S(G).) Since G|# | is an essential extension of
G, it is also an essential extension of K, and thus J** C J**L C jLL and
J* C J*L = JL Thus S(J**) C S(JH) and SU*) € S(UL). But S(JH) N
S(JL) = 0. Thus S(J**) = S(J) and S(J*) = S(JL).

Now if g € G and J € Z(G), we can write g = 7 + s where r € J** and
s € J*. We have then r(x) = g(x) forallx € S(J-) = S(J**), and r(x) = 0 for
allx € X\S(JL). Also, S(JH) = »S(J) € % . Thusr € G[# ]. But each element
of G[# | is the sum of finitely many elements like 7. Thus K = G[# |, and G[# ]
is an SP-hull of G.

THEOREM 2.5. Suppose G is an l-subgroup of an l-group M such that
(i) M is SP,
(i) #f N 1is SP and N 1is an l-subgroup of M containing G, then N = M, and
(iii) there exists a Boolean isomorphism t of P(G) onto P (M) such that
J S 7(J) forall T € PG).
Then there exists an l-isomorphism B of GIF | onto M such that B(g) = g for all
g €G.

Proof. Let M be an Il-subgroup of Il,cy T, where each T, is a totally-
ordered group, and S(M) = Y. Then ¥ * = {S(K)|K € (M)} is a field of
subsets of ¥ since M is SP. Let Z* = {S(J)|J € Z(G)}, where here we take
S(J) as a subset of Y. Define n*: @* —% * by 9*(S(J)) = S(+(J)). Then n* is a
surjective Boolean isomorphism and S(J) C #*S(J). By Theorem 2.4, G[# *] is
an SP-hull of G. By Lemma 1.4 G[# *]is an l-subgroup of M. Thus G[# *] = M.
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Now define 8:G[# | — G[# *] by BlgnS(JT )] = [g:n*S(J;)]. We show that 8
is a well-defined function.

Suppose [ginS(T)] = [0|X] = 0. Then S(g) N5SUJ,) =0, and thus
S(g/") N S(J,) = B,and g/" N J; = 0. Hence S(g/") N 7*S(J;) = @, and thus
S(g:) M n*S(J,) = @. Since this is true for each 4, we conclude that

[gddn*S(J )] = [0]X] = 0.
Now suppose [g:nS(J:)] = [g,/nS(J,)]. Then
lg: — gj[nS(],f\ Il =lg: — gj]ﬂs(fi) NS )] = [OIX]-

Thus [g; — g4n*S(J:M ;)] = [0] Y] and hence [gin*S(J )] = [g,[n*S(J,)].
Thus B is well-defined. It is readily verified that 8 is a surjective /-homo-
morphism. We show it is an isomorphism. Suppose [gi3S(J,)] # 0. Then
S(g:) N 9S(J,) # 0 for some 7, and hence S(g;) M S(J;) ## @, using Lemma 2.1.
Thus S(g;) N 9*S(J ) # @ and hence B[gi|nS(J ;)] = 0.
Finally, 8(g) = Blg|X] = BlglnSG)] = [glv*S(G)] = [¢g| Y] = g for all g € G.
This completes the proof of Theorem 2.5.

If M is an SP-hull of G, then the hypotheses of Theorem 2.5 are satisfied with
7(J) = J+. It follows that G has a unique SP-hull (up to isomorphism over G).
Following [6] we denote the SP-hull of G by G57.

Our model of the SP-hull makes many of its properties almost self-evident.
We list these below as corollaries. Many have appeared in one form or another
at various places in the literature.

COROLLARY 2.6. If G is an I-subgroup of a cardinal product I1 R, of copies of
the real numbers R, then G5t is an l-subgroup of the same cardinal product.
(c.f., [9, Theorem 3.3].)

COROLLARY 2.7. If 0 < h € G5%, then there exist g, g € G such that 0 < g <
h = g. In particular, if G is archimedean, then so is G5*.

Proof. By Lemma 2.2(ii) there exists g € G with 0 < g £ h. Write
h = [gi F)) € G[#], in the notation of Section 1, and let § = Vg, Thenk =< 3.

COROLLARY 2.8. If G s divisible (respectively, a vector lattice, an f-ring) then
s0 is G5P, If G belongs to an equationally-closed class € of l-groups, then so does
G*SE.

Proof. Only the case that G is divisible is treated here; the proofs of the
remaining assertions are similar.

Suppose G is divisible. We can view G as an I-subgroup of I1 M[_#]G/M where
each M € _# is a minimal prime subgroup of G (and hence G/ M is a totally-
ordered group). Suppose & = [g,|F;] € G[.# ] and n is a positive integer. There
exists f, € G such thatnfy = g,. Now & = [f,|FJ] € G[# |and nh = [nf,|F,] = h.
Thus G[.# ] = G5¥ is divisible.
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An [-group with the property that each of its I-epimorphic images is archi-
medean will be called hyperarchimedean. 1t is proved in [8, p. 2.17] that G is
hyperarchimedean if and only if G is (isomorphic to) an I-subgroup of a cardinal
product II R,, where each R, is a copy of the real numbers, such that if
0 < g, g € G there exists a positive integer # such that ng(x) > g(x) whenever
Z2(x) # 0.

COROLLARY 2.9. If G is hyperarchimedean, then so is GS*.

Proof. LetG be represented as in the preceding paragraph. Let0 < h,k € G[# ].
Write b = [g4|F.], B = [g;|F,]. There exists an integer 7,; such that n,,g,(x) >
g:(x) whenever g;(x) % 0. Let # be the largest of the n,;. Then nk(x) > h(x)
whenever %(x) % 0. Thus G57 is hyperarchimedean.

Example. Let G be the I-subgroup of Il,cy R, consisting of all eventually
constant real sequences. (Here N denotes the natural numbers.) Then
B = (ST € P(G)} consists of all subsets of N. Thus the map 75 in
Lemma 1.1 can be taken to be the identity, and hence by Theorem 2.4 GS¥
is the /-group of all real sequences which have finite range. GS% is hyperarchi-
medean. However, the Dedekind completion of G is the I-group of all bounded
real sequences, and this is not hyperarchimedean.

CoroLLARY 2.10. Suppose H is an essential extension of G, and H 1s an SP-
group. Suppose H is an I-subgroup of a cardinal product 1l,cy T, of a totally-
ordered groups T,. Then F* = {S(J)|J € P (H)} is a field of subsets of S(H),
and G[F *] is the SP-hull of G.

Proof. This was proved in the first paragraph of the proof of Theorem 2.5.

Example. Suppose H is the I-group of all continuous almost-finite extended-
real-valued functions on an extremally disconnected compact Hausdorff space
Y, and H is an essential extension of G. Then % * is the collection of regular
open subsets of ¥, and G[# *] is the SP-hull of G by Corollary 2.10.

Corollary 2.10 can be generalized somewhat. Suppose G is an I-subgroup of H.
Let us say H is a weak-esseniial extension of G if (J + J)L =0 for all
J € P(G). (Here L denotes polar in H.) H is a weak-essential extension of G if
and only if the map J — J™ is a Boolean isomorphism of Z(G) into £ (H).
[5, Theorem 4.1.] It is clear that each essential extension of G is a weak-
essential extension of G.

CoRroLLARY 2.11. Suppose H is a weak-essential extension of G, and H is an
SP-group. Then G5 is an l-subgroup of H.

Proof. Represent H as an I-subgroup of Il ¢y 7', where each T, is a totally-
ordered group, and S(H) = Y. Let #* = {S(J)|J € Z(G)}, where here S(J) is
taken in Y. Let 9S(J) = S(J'1). Then 5 is a Boolean isomorphism onto a field
of subsets of ¥, and 3S(J) 2 S(J) for all J € Z(G). Thus G[¥ *] = GSF by
Theorem 2.4. By Lemma 1.4, G[¥ *] is an I-subgroup of H.
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Remark. Suppose G € Z(H). Then J € 2 (G) if and only if J € #(H) and
J C G. It follows by an argument similar to that for Corollary 2.11 that G5?
is an J-subgroup of HS%,

3. Further properties of the SP-hull. In the first three lemmas in this
section, G and H are I-groups which need not be representable, and 1 denotes
the polar operation in H.

LeEmMA 3.1. Let o:G — H be a surjective I-homomorphism. If S is a subset of G
such that ker a C .5, then a(S") = a(S)L. If J € P(G) and J D ker a, then
a(J) = (a(J))L, an element of PP (H).

Proof. Suppose & € a(S’). Then b = af for some f € S’, and f A s = 0 for
alls € S. Thus 2 A as = 0 for all s € S, and hence & € a(S)+.

On the other hand, suppose & € «(S)L. Then & = ag for some g € G, and
ag A as =0 for all s €.S. Thus g A s € kera and hence by hypothesis
gNAs€S. Thus (g As) As=0 for all s €S, and thus g € S’. Thus
k€ alY).

The last statement in the lemma follows by taking S = J’. Then S’ = J" = J,
and hence a(J) = a(J')L.

LeEMMA 3.2. Let a:G — H be a surjective l-homorphism such that ker o € P (G).
If K € P(H), then a\(K) = {g € Glag € K} is an element of P (G).

Proof. K = a(S)*+ for some subset S of G. Let 4 = ker @, and let
D = {s A b|s € Sand b € 4A’}. The sentences that follow are equivalent (using
A = A" to get from the fifth to the fourth). g € a'(K).ag € K.ag A as =0
for all s€ S.gAs€ A forall s€S. gAsAD =0 for all s€ S and
bec A'.ge D

Thus a~(K) = D’ is a polar in G.

LEMMA 3.3. Let a:G — H be a surjective I-homor phism such that ker o € P(G).

Define a:P(G) > PH) by a(J) = a(J VW ker «). Then @ is a surjective
Boolean homorphism.

Proof. Let &/ = {I € (G)|I 2 ker a}. Then & is a Boolean algebra with
ker « as least element. The map J — J ¥ ker « is a Boolean homomorphism of
P (G) onto .. Also, by Lemmas 3.1 and 3.2, the map I — a(I) is a Boolean
isomorphism of .27 onto Z(H). Thus & is a surjective Boolean homorphism.

THEOREM 3.4. Suppose G and H are representable l-groups, and a:G — H is a
surjective l-homomorphism such that ker « € P(G). Then there exists a surjective
l-homomorphism B:GSF — HSF such that Bg = ag for all g € G.

Proof. Let G be an l-subgroup of Hzex T,, where each T, is a totally-ordered
group. Let & = {S()|J € Z(G)}, and let n: & —F be as in Lemma 1.1.
Then G57 = G[# ] by Theorem 2.4.
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Similarly, let H be an I-subgroup of Il,¢y T,, where each T, is a totally-
ordered group. Let #* = {S(K)|K ¢ P (H)}, and let n*:%* —F * be as in
Lemma 1.1. Again, H37 = H[# *] by Theorem 2.4.

Let @ be as in Lemma 3.3. Define 8:G[# | — H[F *] by Blg:nS(J)] =
[ag|n*S(a(J:))]. We show that 8 is well-defined. For this, as in the proof of
Theorem 2.5, it is enough to show that if [g,»S(J;)] = 0, then

[ag{n*S(@(J )] = 0.
Suppose [gi|1S(J4)] = 0. Then g/ N J; = 0, and hence
(g/" ¥ kera) \ (J; ¥ ker o) = ker «,

and hence a(g/’ W kera) M a(J; ¥ ker a) = 0. Now, a(g/’ ¥ kera) is a
polar in H by Lemma 3.1, and ag; is an element of a(g,” ¥ ker a). Hence
(ag) C g/’ ¥ ker @) and thus (ag)*t M a(J; ¥ ker @) = 0. Therefore
S((ag)t) N S(a(J; ¥ ker @) = @, and hence by Lemma 2.2,

Slagy) N 7*S(a(J, V¥ ker a)) = 0.

Thus [agi|n*S(a(J, ¥ ker a))] = 0, and g is well-defined.

It is easily verified that g8 is an /-homomorphism. To see that 8 is surjective,
it is enough to note that « is surjective and that each finite partition of ¥ in
% * is the image of a finite partition of X in.%# . The latter is true because each
finite partition of H in & (H) is the image under @ of some finite partition of G
in Z(G). (This is an elementary fact about Boolean algebras.)

Finally, if g € G, then

Bg = BlglX] = BlglnS@G)] = [agn*S@G)] = [agn*S(H)] = [ag| Y] = ag.
THEOREM 3.5. If 4 € P (G), then G5F ~ (G/A)S* @ (G/A')5*~.

Proof. Let G C Il,cx 7%, n, and % be as in the construction of G5 in
Section 2, and let F = 7S(4’). Denote by g|r the element of I1,¢x 7 such that
glr(x) = g(x) forallx € F. Then L = {g|r |g € G} is an I-subgroup of Il s T,
and «:G— L by ag = g|r is a surjective -homomorphism. If g € A4, then
S(g) N S(4’) = 0, and so by Lemma 2.2, .5(g) N\ F = @, and hence g € ker a.
Moreover, if g € ker a, then S(g) N\ F = @, and thus S(g) N .S(4’) = 6 and
g€ A” = A. Thus L ~G/ker a = G/A.

By Lemmas 3.1 and 3.2 the polars in L are of the form aJ where J € £ (G) and
J 2D A.LetB* = {S(a()|J € #G)andJ 2D A} andF* = {E ¢ ¥ |[EC F}.
Define 7*:%* —F%* by n*(S(a])) = 2S(UJ) N\ 9S(4’). If E € F*, then
(X\E) N\ F € #, and hence there exists C € £(G) such that nS(C) =
(X\E) Y F. C & A’ since nS(C) & 25(4’) = F. Thus ¢’ 2 A" = A, and

7*S(a(C)) =2S(C)NF = (X\nS(CO) N F = X\X\E)YNF))N\F = E,

since £ © F. Thus 9* is a surjective function. Also, it is clear that »* preserves
inclusion.
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Suppose I,J € Z(G), I D 4, J D A4, and that n*S(al) C 7*S(aJ). Then
7SI M AY) = 9(SUT) N S(A)) = 25) N 4SA") = 9*S(al) S 1*S(a]) =
2S(J M A7), and thus TN A" € J M A’. Now since I D A and J D 4, we
have I=AVI=(AVI)INAVA)=AVINA)CAVWITNA)=1].
It follows that #* is one-to-one and that its inverse preserves inclusion.

Thus #* is a Boolean isomorphism of Z* onto# *. Hence

(G/A)SP ~ L5P ~ L[F *]

by Theorem 2.4. L[# *] can be identified with ¢(F) = {k € G[¥ ]|S(h) C F}.
Similarly, (G/A’)S% is isomorphic to ¢(X\F). By Lemma 1.3 we conclude
GI#] = o(F) @ ¢(X\F) =~ (G/A)* @ (G/A4")"".

4. The P-hull of an /-group. In this section we generalize the results of
Section 2, and we consider the P-hull of an /-group.

We assume G is an I-subgroup of Il,cx 7., where each T, is a totally-ordered
group, and that %/ is a subalgebra of £(G) such that, for each g € G, g’ is an
element of &Z. We let ¥ = {S(4)|4 € &} and let n:% — & be a Boolean
isomorphism onto a field & of subsets of X (as in Lemma 1.1). G[&'] is an
I-subgroup of II T, by Lemma 1.2.

THEOREM 4.1. G s a dense l-subgroup of G[&’], and if A € o, then A"t is a
summand of G[&). If H is an I-subgroup of G containing G which has the property
that A'* is a summand of H for each A € o, then H = G[&’]. (Here + denotes
polar in G[&’], and * denotes polar in H.) Moreover, these properties characterize
G[&1 up to isomorphism over G.

The interested reader can without difficulty modify the proofs of
Theorems 2.4 and 2.5 to obtain a proof of Theorem 4.1.

THEOREM 4.2. G[&'] is a P-group.

Proof.Let E € & and g € G.Letk € G[&’] be given by k(x) = g(x) ifx € E
and k(x) = 0if x € X\E. We show k- = o(E M 25(g"")) from which it follows
by Lemma 1.3 that L is a summand of G[&].

Let 0 < f € kLt Then f A r = 0 for all » € kL. Suppose that there exists
z € (X\E) N\ S(f). Let » € G[&’] be given by r(x) = f(x) for all x € X\E and
r(x) = 0 for all x € E. Then r € k- but f A r > 0. We conclude from this
contradiction that S(f) € E. Also, k- C gt = g'*, and hence S(f) C S(gt) =
75(g"). Thus S(f) S E M 9S(g"), and f € o(E M 25(g")).

On the other hand, suppose 0 < f ¢ kL. Then there exists r € kL with
E A7 >0.We have S(z) " EN S(g) = 0. Let E = 4S(J) where J € Z(G).
Then S(r) N S(J) N S(g) = @, and hence S(r) N S(J) N S(g”) = . Thus
S(r)y NSUJ N g") = @, and hence

S N EN4S(g") = S(r) N aSJ) M 1S(g’) = Sr) N a(SUT) N S(g")) =
S(r) N aST N g") =g,
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where the last equality is by (the appropriate analogue to) Lemma 2.2. Since
E A r > 0 we conclude there exists x € X\(E M 3S(g"’)) such that k(x) = 0.
Thus & € o(E M 3S(g")).

Finally,if0 < & € G[&],thenh = k; V ... V k,whereeach k;islike kin the
preceding paragraphs. Thus 41t is the join in 2 (G[&]) of kL, . . ., kL. Since
the cardinal summands of an /-group H always form a subalgebra of Z(H), we
conclude 7L is a summand of G[&].

THEOREM 4.3. If &/ is the subalgebra of P (G) generated by {g"|g € G}, then
G[&’] is the P-hull of G.

Remark. The possibility of using the subalgebra of £(G) generated by
{g""|g € G} to produce the P-hull of G was first utilized by D. Chambless [4] in
his direct limit construction.

Proof of Theorem 4.3. G is a dense l-subgroup of G[&’] by Theorem 4.1, and by
Theorem 4.2 G[&] is a P-group.

Suppose now that K is an I-subgroup of G[&’] containing G and that K is a
P-group. Let.%7 be the subalgebra of Z(K) generated by {g**|g € G}, and %/,
the subalgebra of 2(G[&’]) generated by {gtt|g € G}. (*denotes polarin K, and+
denotes polar in G[&°].)

Since G[&°] and K are essential extensions of G, the maps 4 +— A+l and
A+ A** are Boolean isomorphisms of &/ onto.%/, and .o/, respectively. Since
G[&]is a P-group, we conclude that 4+l is a summand of G[&’ ]| for all 4 € .&7.
Similarly, 4** is a summand of K for all 4 € &/.

One can now imitate the argument in the body of the proof of Theorem 2.4 and
get K = G[&’]. Thus G[&’]is a P-hull of G.

THEOREM 4.4. Let o/ and & be as in Theorem 4.3. If M is a P-hull of G, then
there exists an l-group isomorphism B of G[&’] onto M with Bg = g for all g € G.
Thus G has a unique P-hull.

Proof. Let M be an I-subgroup of I,y 7', where each T, is a totally-ordered
group, and S(M) = V. Let €* = {S(4)|4 € .}, where S(A)i s taken in Y.
The map u by u(4) = A+L is a Boolean isomorphism of &/ into Z2(M). Also,
u(g"”) = g™+ = gl is a summand of M for all g € G, since M is a P-group.
Thus A isa summand of M forall 4 € &7, and hence &* = {S(411)|4 € &}
isa field of subsets of Y. Now n*: €* — &*byn*(S(4)) = S(4LL) isasurjective
Boolean isomorphism and C C n*C for all C € €*. By Theorem 4.3, G[&*]is a
P-hull for G.

The remainder of the proof is exactly similar to the arguments used in proving
Theorem 2.5.

The results in Section 2 extend easily to the general setting of this section.
The same does not seem to be true for the results in Section 3.

Let G be an I-subgroup of a product of totally-ordered groups. The only non-
constructive step in our existence proofs for G5¥ and G¥ is the proof of Lemma 1.1.
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In cases where the map 5 of the Lemma can be produced constructively, we get a
fairly concrete model of the P-hull or SP-hull. We give an example illustrating
this possibility.

Example. The P-hull of the free vector lattice FVL2 on two generators.

Let X = R\{0} and let W = Il,cx R,. (R denotes the real numbers; thus X
is the plane punctured at the origin.) Then W is the vector lattice of all real-
valued functions on X. By a cone in X we mean a subset K of X such that
rk € K whenever k € Kand 0 < r € R. K is an open (closed) cone in X if and
only if K is a topologically open (closed) subset of X.

Let H = {f € W|f is continuous, and there exist a finite number of closed
cones K;...K, in X with K;\U...U K, = X and there exist linear func-
tionals fi, . . ., [t K2 — Rsuch that f(x) = fi(x) forallx € K,}. It wasshown in
[1] that FVL2 C H and in [3] that FVL2 = H.

The collection {f”|f € FLV2} is a Boolean subalgebra of Z(FVL2).
% = {S(f")|f € FVL2} consists of the regular open cones in X that have only
finitely many connected components. (See [1] for proofs of these last two
sentences.) & is a Boolean algebra of subsets of X. Let C € % with C # @ and
C # X. Each component of C has a boundary which consists of two rays, one at
the clockwise-most extremity of the component, the other on the counter-
clockwise side. We let 7C be the union of C and the clockwise boundary rays of
its components, and we let 70 = @ and X = X. Then 7 is a Boolean homo-
morphism of % onto a field & of subsets of X and 7C 2 Cfor C € ¥.

By Theorem 4.3, H[&"] is the P-hull of FVL2. & consists of §, X, and all those
cones in X with finitely many components, each of which is closed on the
clockwise side and open on the counter-clockwise side.

Now we can give the following nice description of the P-hull of FVL2: A
function f: X — R is in the P-hull of FVL2 if and only if f = 0 or there exist a
finite number of connected cones Eq, . .., E,inX withE, U ...UE, = X and
with each E; closed on the clockwise side and open on the counterclockwise side,
and there exist linear functionals fi, . . . , f,:R2 — R such that f(x) = fi(x) for
allx € E,.
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