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Abstract

This work is concerned with the prediction problem for a class of U -random fields. For this class of
fields, we derive prediction error formulas, spectral factorizations, and orthogonal decompositions.
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1. Introduction

We study in these notes the prediction problem for a class of random fields which
do not necessarily have finite variance. More precisely, we study zero mean random
fields [Xmn} for which there exist a finite nonnegative Borel measure /i on the torus
and p € (1, oo) with the property

(1)
M N

m=-Mn=-N f
M

E
m=-M n=-N

>\ e"),

for all N, M = 0, 1 , . . . , and all amn e C. In (1), x means that up to multiplicative
constants, the two quantities are bounded above and below by each other. It is thus
clear that the time domain of a random field satisfying (1) is isomorphic to Lp (/x), and
prediction problems for [Xmn] give rise to extremal problems in Lp(n). Unless the
equivalence in (1) becomes equality, metric projections are not preserved under the
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32 R. Cheng and C. Houdre [2]

spectral isomorphism. Nevertheless, although we only give spectral domain results
here, it is a simple matter to transfer these results to the time domain (see [8,10,18],
for univariate results with p = 2). Random fields satisfying the condition (1) with
equality and with p = 2 are well understood (they are the so-called homogeneous
random fields). We seek to extend the prediction theory to the case p in the interval
(1, oo), when the Hilbert space structure is replaced with the notion of Birkhoff-
James orthogonality. This strategy has been carried out for one-parameter processes
in [1,2,15,16]. The present work is concerned with the multiparameter case. We
shall obtain prediction error formulas, spectral factorizations, and orthogonal (in some
sense) decompositions of these Lp random fields. Examples of non-homogeneous
fields satisfying (1) can also be obtained from the univariate results of [9].

2. Notation and preliminaries

Let T be the unit circle in the complex plane, and let do be the normalized Lebesgue
measure on T. The torus T2 will be parameterized by the pair (e's, e") throughout;
and finally let do2 = d(a x a) on T2.

Suppose that /x is a finite nonnegative Borel measure on T2. For any fixed parameter
p, 1 < p < oo, the Banach space Z/(/z, T2) is reflexive and strongly convex, and
is spanned by the set of functions [e'

ms+'"' : (m, n) e I2}. Every subset S of Z2

determines a natural subspace of Lp(/x), namely that spanned by [e'
ms+"" ; (m, n) e

S}. We write ^(S, /A) or M{S) to mean this subspace. For S C I2, the notation
<J>eS, means that 4> = 0, outside of 5.

Let x and v be elements of a Banach space _S?. We write xl.&y if H* -I- ay \\& >
\\x\\^ for all scalars a. Note that the relation L<£ need not be symmetric. In the
special case _Sf = Lp(/x), this notion of orthogonality has the following analytical
characterization (see Singer [17, Theorem 1.11 and Lemma 1.14]).

LEMMA 2.1. For f and g in Lp(fi), we have f -Lpg if and only if

where '0/0' is interpreted as zero.

It follows that the relation ±p is linear in the second argument. We may thus write
f -Lp^C for a subspace Jt with the obvious meaning. If it happens that two subspaces
J( and Jf have trivial intersection, and both / ±pg and g±pf hold for all / € Jt
and g 6 vY, then we write J( ®p Jf for the algebraic sum of J( and Jf. This
extends to finite sums in the obvious way.
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3. Helson-Lowdenslager half-planes

The seminal paper on the prediction of homogeneous fields is one of Helson and
Lowdenslager [7] (see also Wiener's collected works [14] for the history of the problem
and further references). Many of their results carry over in a straightforward way from
their framework to ours. Following their lead, we are concerned here with parameter
sets 5 C I1 which satisfy

1. 5 U {0} is an additive semigroup;
2. 5U{0}U(-5) = Z2;
3. 5 n (-S) = 0 (0 does not belong to S).

We write So for S U {0}. Such a set is called a half-plane in the sense of Helson and
Lowdenslager. Fix a half-plane 5, and define

(2) e"=inf [\l +0 |" dn.

where the infimum is over <j> e jft{S). The infimum is achieved uniquely by some
4> — H. With that terminology, let us state the following two results:

THEOREM 3.1. Let d\i = wda2 + drj be the Lebesgue decomposition of \JL. If
log w is integrable, then

ep = exp I log wdo2;

otherwise e = 0.

THEOREM 3.2. Let S be a half-plane, and w a nonnegative summable function on
T2. There exists <t> € Lp{o2) such that OeS0 and w = \<$>\p, if and only if

f logwdo2 > —oo.

The first result is a generalization, to several variables, of Szego's infimum, the
second is the corresponding outer factorization. Both proofs only require small
adjustments from the corresponding proofs in [7].

4. Right half-planes

We now turn to the prediction problem associated with the parameter set R, given
by

(3) R = [(m,n) : m > 1, n€l}.
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Thus R is what we would call a right half-plane, a natural extension from the one-
parameter case. For p = 2, prediction with respect to R was carried out in [12].
For general p, we shall obtain an error formula, and the corresponding spectral
factorization. The methods of the previous section do not carry over directly: Unlike R,
Helson-Lowdenslager half-planes enjoy certain algebraic properties which have deep
analytical consequences. Here, some elementary arguments are needed to reduce the
problem to the one-parameter case. The following gives the prediction error formula.
In the symmetric half-plane case, it extends the formula obtained for L2-random fields
in [5] and already announced in [4].

THEOREM 4.1. Let R be the half-plane defined in (3), and let d[i be a finite non-
negative Borel measure on T2. Write

dfx = wR d(a x fi2) + dXR,

where /x2 is the second marginal measure of 11 and A.R±(CT X ^I2)- Then

inf { j |1 +<f>\pdfx : <£€/?} = j \expjlogwR(e", e") dtr(e")\ d^ie'1),

where the right side is interpreted as zero if the integral diverges.

PROOF. Let G be the unique member of ^(R, fx) for which

(4) 8" =inf I /"ll+01'rf/i, :</>€/?} = f \1 + G\" dfi.

Assume for now that S > 0. The above extremal condition implies that

(1 + G)±p(\ + G)eims+int

for all (m, n) € R. By Lemma 2.1, this gives

(5) 0 = f |1 + G|p-2(1 + G)(l + G)eims+int dfi = f |1 + G\pe""+i" dfi

for all (m, n) € R. Taking complex conjugates, we see that this holds whenever
m ^ 0. Let dv = 11 4- G\p dfA, and let v2 be the second marginal measure of v. Then
for any half open arc V of T the indicator function xv can be estimated boundedly
pointwise by trigonometric polynomials. Thus equation (5) gives
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whenever m ^ 0. This remains true with V replaced by any Borel subset of T.
Likewise, for any half open arc U of T, the indicator xu can be estimated boundedly
pointwise by trigonometric polynomials of the form f (eis) = J2aie'is- F ° r s u c n

polynomials, we have

ff(e")Xv(e")dv = £ a m j eims XvV') dv = J f (eis)da(eis) • v2(V).

It follows that

f f
v(U x V) = / Xuxvdv = j Xuda • v2(V) = (a x v2)(U x V).

This remains true if the rectangle U x V is replaced by any Borel subset of T2, and
consequently, v = a x v2. Let /x2 be the second marginal measure of /x. Note that
/x2( V) = 0 implies that | i t(Tx V) = 0, and in turn this requires

|1 + G\" dix = v(T x V) = v2(V).
r

Hence v2 <£ [i2, and we may write dv2 = q dfx2 for some density function q.
Let n have the Lebesgue decomposition

d\x = wR d(a x n2) + dkR.

By the above observations,

\\ + G\"wRd(a x ix2) + |1 + G\" dkR = \l + G\" d/x = dv
= d(a x v2) = qd(a x

It follows that dXR annihilates |1 + G\p, and q = |1 + G\pu, almost everywhere
[a x /x2].

The orthogonality condition (1 + G)Lpe
ims+ir", m>\, provides

[ | G|p-2(1 + G)eims+int d\i = 0,

m > 1. We may replace d/x with wRd(a x /i,2). With that, the above can be
reinterpreted as (1 + G)±pe

ims+int in the geometry of Lp(wR d{o x /x2)).
Let

(6) = \e" : f logwR(eis,e")da(eis) > -ool .
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Define the function * ( e ' \ e") by

(7) *(«", e") = lim exp - / *' + re" log wR{e'\ eu) da{ew),
'—i- p J e'u — re'5

for e" e A, otherwise zero. Then *(•, e") is outer for /x2-almost every e" in A, and

Suppose for the present that iii(A) = ^ ( T ) . Then, with the help of the lemma
below, we have

8" = f
= f

= inf
[J
f r

1 d(a x /x2) :

: QeR

= inf { /"

On the other hand, suppose that /x2(A) = 0. We may apply the previous calculation
to the measure

dfj, H— d(a x fj,2),n

to get

Sp < inf I / 11 + Q\pdu + - d(<r x u2) : Q&R \
[J n J

= f |exp [\og[wR(eis, e") + - 1 dff(e")]rfM2(«").

As n increases without bound, the last expression approaches zero by monotone
convergence. Hence 8 = 0 in this case.
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In general, n2(A) falls between these two extremes. But XAW') is estimable
boundedly pointwise by trigonometric polynomials, and so for any QGR we have

1 + Q = (1 + Q)XA + (1 + Q)XA'\

the point is that both QXA and QXA< lie in J({K). Thus

8" = i n f

= inf f
Q\"dn:

\l + QAPXA dfi : e,€K} + inf

If we assume that 5 = 0, then we may still construct the function * as before, and
then

0 = 8" > inf J |1 + Q\"WRXA dip x M2)

= J \sxp f logwR(e",e")da(e")\ d^e") > 0.

Equality is forced throughout, which gives /x2(A) = 0, and once again

8" = j Fexp JlogwR(eis, e^daie1')] dfi2(e").

This completes the proof. D

Part of the argument in the proof above relied on this next lemma, which asserts
that the closed linear span of the random field and of its innovation are identical.

LEMMA 4.2. Let wR(e's, e") be nonnegative andintegrable with respect to a x /x2,
and assume that log wR is a(e's)-integrable almost everywhere-ix2(e"). Then with 4*
as defined in (7)

il)d{o x /z2))-span{e'mj+'n'*(e'\e") : («,«) e R)

e1') d{a x M2))-span {eims+int : (m, n) e R).

PROOF. The right side is M{R, XA d(o x H2)), which obviously contains the left
side as a subspace. Let /0 be a bounded linear functional on
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which annihilates every * ( e " , e
i')e

ims+inl for all (m, n) e R. Hahn-Banach gives a
norm-preserving extension / of l0 to all of LP(XA d{a x fi2)). There is a function
h(e", e'1) in the dual space LP'(XA d(a x /x2)) such that

l(f) = jfh(XAd(crxn2)),

for a l l / in LP(XA ^ ( C X ^2))- In particular,

0 = y e™'-1"""*^ rf(a x fi2),

for all (m,n) e R. Hence

must vanish almost every where-/i2. For such e" the function *(• , e")h(-, e") lies in
the Hardy class Hl(T). Since * ( • , e") is outer for e" 6 A, we have that h(-, e") is of
Nevanlinna class. Consequently, h must annihilate all of ^{R, XA d(o x /J.2)). This
establishes the reverse inequality, and hence the claim. •

Note that with the definitions of this section, the measure [i has the decomposition

d[i — \W\P d{a x fi2) + WRXA< d(p x fj,2) + dkR.

Evidently, the innovation space corresponds to the first component of this decompo-
sition.

THEOREM 4.3. We have

Z/OO-span {(1 + G)eims+int : (m, n) e R}

x M2))-span{(l + G)eims+'nl :{m,n)eR\

(ax /z2))-span{ei""+"" : (m,n) e R].

PROOF. The first equality holds since 1 + G is annihilated by WRXA< d(ax^.2)+dkK.
The second follows from observing that wR = q/\ 1 + G\p, and so for all / and QeR,

l\f + (1 + G)Q\p
XAwRd(a x n2) =J\f + (1 + G)Q\P

XA ^ d(a x /x2)

In the last inequality, / 4* lies in ^(R, XA d(a x ix2))\ furthermore, ql/p is a function
of e" only, and hence ql/p Q remains in jfl(R, XA d(a x ix2)). The last expression
can be made arbitrarily small by choosing QeR appropriately. This shows that any
/ eR can be approximated by (1 + G) Q, where Q belongs to J({R, XA d(a x ix2)).
The claim follows. •
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5. Outer properties

Define A to be the parameter set

A = {(m,n) e T 2 :m = 0,n > 1 } ( J {(m,n) e T2 : m > l } ,

and as usual put Ao = A U {0}. Thus A is a half-plane in the sense of Helson and
Lowdenslager. Whereas geometric arguments are used in [7] to obtain a spectral
factorization, here the special case A yields an explicit analytical formula. The
method is adapted from that used in [11] for the case p = 2, [13] for matrix valued
functions, and [3] for operator valued functions. The resulting outer factor is used in
later sections to derive orthogonal decompositions of the field.

Assume that the prediction error e from (2) is positive, so that the density function
w has integrable logarithm. We construct the outer function <i> from Theorem 3.2
analytically as follows. Define

,ei!) = e x p - I' e—±
p J e'e -

= expj ̂ ±a(z) = exp / —log/?(0, e'H)da(elV),
z

with radial limits taken in accordance with Fatou's theorem. Check that the following
conditions hold:

\4>\p = w, 4>eA; |0 | p = w,

Furthermore, <£(•, e") is outer almost everywhere [cr(e")L and <J>(0, •) is outer.
And now we find that <J> has an outer property with respect to A.

PROPOSITION 5.1. With the above definitions we have

Z/(cr2)-span {e'ms+in'<£> : (m, n) e A} = Z/(a2)-span {e
ims+int : (m, n) € A } .

PROOF. By Lemma 4.2 the left side contains the Z/(a2)-span of {e
ims+int : m > 1}.

Hence it also contains e'"'4>(0, e"), for each n > 1, since

e""O(0, e") = ein'<t>(eis, e") - ein'[<t>(eis, e") - $ (0 , e")].

Now Beurling provides that the left side must therefore contain every e"" for each
n > 1. Thus the inclusion 3 holds. The reverse inclusion is obviously true. •
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The following states that the innovation part of the field is associated with the
continuous part of the measure.

THEOREM 5.2.

Z/(/i)-span {(1 + H)eims+ir" : (m, n) € A}

= Lp(wda2)-span{(l + H)eims+int : (m, n) e A}

= Lp(wda2)-spm {eims+inl : (m, n) € A}.

PROOF. The first equation holds since 1 + H was shown to vanish on the singular
part of ix. For the second equality, let / € A and Qe A and note that

j \f +{\ + H)Q\pwd(o2) = I \<Pf +(Q\pd((i2).

For / fixed, this can be made arbitrarily small by choice of Q. Thus the inclusion 2
holds in the second relation. The reverse inclusion is obvious. •

6. Three part decomposition

In [7], a second-order stationary random field is decomposed orthogonally into
its regular, evanescent, and singular parts. In this section the corresponding result
for Lp is established. In this setting, Hilbert space arguments give way to more
elementary methods, and the usual notion of orthogonality is replaced by Birkhoff-
James orthogonality. We find that, perhaps surprisingly, the component spaces of the
decomposition are related by ®p , even though the orthogonality _LP is generally not
symmetric.

We form the Lebesgue decompositions of \x and its second marginal, \i2.

d/x = wR d{a x fi2) + dXR, d(i2 = u2da + dr)2.

There is a Borel set S of T such that r]2(E) = a(ac) = 0. Put w — wRu2, and define
A as in equation (6). Now put

\wd(o2), \ogweL\a2)

[0, \ogwiL\a2),

xZ'WRd(a x r)2), login e Ll(o2)

(a x fj,2), logw $. V(a2),

= XA' dip x ix2) + dkR.
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Then d/i = d\ir + d/xe + d^is, a pairwise singular decomposition.
Define the subspace & of Lp (/z) as follows.

S t = L ' M - s p a n { e i m s + i n ' ( l + H) : ( m , n ) e l 2 } .

By Theorem 5.2, we can identify 3f, with Lp(/xr).
Furthermore define y to be the subspace H ^ L o - ^ ^ ' ^ °f ^ ( A O - Note that

. ^ = lT=o •>*(*./*) as well.
If/ 6 «^, then e'

ms+""f e eis^(n,fx) for all (m,n) 6 Z2. Consequently,
(1 + G)±pe'mi+'"7 for all (wi, n). By Lemma 2.1 this gives

0 = f |1 + G|"-2(l + G)eims+in'

for all (m, n). It follows that (1 + G)f = 0. By Theorem 4.3, / vanishes almost
everywhere [XAWR d(q x /z2)]. It follows that/ € Lp([is), and we get y c Lp(fis).

On the other hand, let 0 be a Borel se.t such that Ms(0e) = 0 and (/x - (is)(@) = 0.
Then the infimum

y" = inf I / |x© - 01

is attained by some <f> = Ge belonging to Jt(R, fi). Arguing as before, we get that
- Ge) dkR = 0. Thus,

y» =

= j \Xe-G@\pud(a x Hi)

- inf / \x& - (j)\pud(a x /z2)

= inf( / \Xe-(PApXAud(a x fx2)+ I \Xe - <h\pXA'Ud(a x fi2)

= inf / \x@-<f>i\pXAud((T x fi2) + iaf I \x& - <t>2\
pXA<Udip x fi2).

Indeed, equality holds in the last step (rather than >) since the two terms of

<P = XA4> + XA<4>

both belong to M(R, pC).
It follows that xe belongs to J({R, fi). Similarly, we find that x&eims+in' e

i) for all (m, n). This gives Lp(fj,s) c &, and hence the subspaces are equal.
We summarize and extend these results below.
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THEOREM 6.1.

(i) d\x — d\xT + d\xe + diJ,s,

(ii) Lp(ix)=&®P£®py,
(iii) ^ = L"(dlxr),

£ = Lp(dfi,e),

(V) (lXr)r = Mr, (^e)r = 0, (/Xs)r = 0,

(jlr)e = 0, 0*e)« = M«. (Hs)e = 0,

(fxr)s = 0, (Mc)j = 0, (/XJ)J = MS-

PROOF. Statements (i), (ii) and (iii) were already established previously. Assertion

(iv) follows from Theorem 5.2 and the fact that Jl(h, /is) = y . Claim (v) is

straightforward to verify from the definitions.̂  •

Thus, we see that the field does indeed decompose into its regular, evanescent, and
singular parts; furthermore, the measure M decomposes in a corresponding way. The
decomposition respects subspaces generated by A: In particular, it is significant that
the component spaces in (iv) are already subspaces of Jl{t\, \JL). The condition (v)
is a sort of inertial property: It asserts that each of the subspaces ^", g and y itself
decomposes in a trivial way under this scheme.

7. Four part decomposition

We now consider a decomposition of LP(M) with respect to both vertical and
horizontal notions of regularity. The decomposition will consist of four components,
one which is regular with respect to both the vertical and horizontal shifts, one which
is remote in both shifts, and two which represent the mixed types. Actually, the four
part decomposition covers the two fold Wold type decomposition in the symmetric
half plane case (horizontal and vertical). For the p = 2 case such decompositions
have been established in [6,11,12]. For general p, we find that the component spaces
are themselves V spaces for some measure, and they are related by the symmetric
orthogonal sum©,,.

To begin, define

Ro = [(m,n) e f :m > 0},
To = {(m, n) € T2 : n > 0},

T = {(m,n)eT2:n > 0},
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= y = f^ e
imsJt{R),

m=0

n=0

Thus Ro is a shift of the right half-plane R previously used, and To is its counterpart
along the orthogonal direction; 5?R is the remote space written before as simply 5?,
while yT is its rotated counterpart.

Next, form the Lebesgue decompositions

d[i = wR d(a x [it) + dkR,

dfi — wT d(fi{ x a) + dkT.

There exist measurable subsets T and A of T2 such that

(a x /x2)(rc) = 0 , O , x cr)(Ac) = 0

and furthermore we define subsets A and B of T by

A =

n

\ogwR{eis,e")da{eis) > -oo

" : f^log wT(e",e") da(eu) > -oo

Let X be the span of the functions e
ims+in'(\ + G), where G is the extremal function

from (4).
We show that yR has an orthogonal complement in Z/(/z).

PROPOSITION 7.1. Lp(ix) = X ®p yR.

PROOF. Write J = \C-oo ^""C1 + G). We know that

and consequently

where

eisJ + er'sJ + ••• + eiNsJ
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Let / € ^?(R0), and write/ = kn + mn, where kn e Xn and mn €
Since

for all n, the decomposition is unique. Observe that

l l*B | |<l l*» + m»ll = 11/1

and

Thus we can find weakly convergent subsequences of [kn} and {mn} with limits
and moo, respectively. Then

jfn, mM e yR, f =
n=0

This shows that

n=0

It follows
0 oo

(8) L"Qi)= \ / eims^(R)= \ / e'msJ^
m=—oo m=—oo

From Theorem 4.3 we have

Observe that if g € yR, then

eims+in'(l + G)±pg,

forall(m,n). Thus

2 " i = 0,

almost everywhere-[a x fi2]. But (1 + G) is essentially nonvanishing on F n
(T x A), forcing gXA = 0 almost everywhere-(CT X IX2). This proves that g lies
in LP(XA<WR d((T x /x2) + dX), and hence as does all of yR. In fact

yR = Lp(X(TXA')ur< dfi) = LP(XA<WR dip x fi2) + dk).

Finally, since X(TxA')ure and X(TxA)nr indicate disjoint sets, we may use ®p in place of
+ in (8). •
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Let us write

£ = ( T x A ) n r , F = ( B x T ) n A .

The following was also proved above. The point is that the remote spaces yR and
yr are themselves Lp spaces for some measure.

COROLLARY 7.2.

yR = V {XE< dfi), yT = V (XF< d/i)

Accordingly, the complements of yR and yT are Lp spaces, and we can naturally
associate V (/i) with the four part decomposition

(9) u {ii) = sea ®p 2b e P see e p J%,

where

2a = Lp (XEHF dp), ^b = L" (XEnF< dfi),

Thus 2a is the part of Lp (/i) which is both horizontally regular and vertically regular;
S£d is both horizontally singular and vertically singular; 2b and 2C are of the mixed
types.

8. An inertial property

With the four part decomposition (9) established, we examine the behavior of its
component spaces. Since S£a is itself an Lp space, it has a decomposition analogous
to (9):

</> c ^ m </> c& </> a* t/1

and similarly with -Sfj,, .Sfc and S£d- It is desirable for their component spaces to have
the following inertial property.

(10)

2aa — J£a, J£ab = 0, £i?ac — 0, 2ad — 0,
2\,a = 0, Jfbb = 2b, 2bc = 0, S£\,d — 0»
2ca = 0, 2cb = 0, 2CC = 2C, 2cd = 0,
2da — 0, 2ib — 0, 2dc = 0, ££dd = S£

This would say that the component spaces themselves decompose trivially under (9).
Theorem 6.1 (v) provides that the three part decomposition has this inertial property;
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it turns out, however, that the four part decomposition does not. Rather, the following
theorem shows that (10) is equivalent to three separate criteria developed below:
condition (11), a constraint on the underlying measure ju.; (12), a property of the half-
plane subspaces J?(R0) and Jt(TJ>\ and (13) a condition on the associated metric
projection operators. For p = 2, a part of this result was previously known [11,
Theorem III. 12].

T H E O R E M 8 . 1 . The four conditions ( 1 0 ) , ( 1 2 ) , ( 1 3 ) and (II) are equivalent.

PROOF. TO begin, assume that (10) holds, and further decompose fi as follows

dmle") = n,(e") da(e") + drll(e
ls),

dkR = vR d(kRA x CT) + d^R,

dkT — vTd(a x A.7-2) + d%T,

where k^j is the j th marginal measure of A.(). We substitute these into the definitions
of Xa d/x, Xb d{i, Xc d/u., and x<t dfi, and impose consistency. This forces the following
identifications:

XawRu2da2

XaWRd{0 X T}2)

XaWrdim XCT)

XbWRu2 do~2

XbWR dip x r)2)

Xcu)Ru2da2

= XaWl

= 0,

= 0,

= XcWl

rU\ do2,

-U\ da2,

•v2d(o x A.r.2),

•Ui da2,

XcWTd{r)x x CT) = XcWRvRd(kRtl x a),

Xd d$R = Xd d%T,

da2 = XdWTUi da2,

x r)2) = XdWTvTd(q x kT,2),

x CT) = XdWRvRd(kRA x a).

Put Xdd^R (= Xddt-r) = dk and w = wRu2 (= wTui). With these and the existing
definitions, this in turn gives

Xa d/x = XaW da2,
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Xb d\i = XbW da2 + XbWR d(p x rj2),

Xc dn = XcW do2 + XcWT dir)! x a),

= XdW da2 + XdWR d(p x r)2) +

47

x a) +

Direct comparison of the above with the definitions of the component measures shows
that the singular parts of all these measures are already consistent with property (10);
that is, the assumption of (10) affects only the behavior of w. There are nine cases,
depending on the values of a (A) and CT(B):

case a(A) a(Ac) a(B) a{Bc)
(I)
(II)
(III)
(IV)
(V)
(VI)
(VII)
(VIII)
(IX)

>0
>0
1

>0
0
1
0
1
0

>0
>0
0

>0
1
0
1
0
1

>0
1

>0
0

>0
1
1
0
0

>0
0

>0
1

>0
0
0
1
1

In cases (I), (II) and (III), the space j£?a fails to be 'doubly regular' since the logarithmic
integrability condition part of Theorem 3.2 fails. Hence condition (10) could not hold.
Thus we have shown that (10) implies that one of (IV)-(IX) must hold, or equivalently

(11) a(Ac) = 1 or a(Bc) = 1 or a (A) = a(B) = 1.

Note that (11) is a simple measure-theoretic criterion.
Continuing, assume (11). Then one of the cases (IV)-(IX) must hold. If not (VI),

then

XF = Xa + Xc - 0 + Xc = XFXE'

Xc-XE- XEX(TXT) + X(E'HF) 6

and similarly XE e - ^ ( To). On the other hand if (VI) holds, let ft and T be measurable
sets of T such that a(Q) = CT(T) = r]^0) = J?2(TC) = 0. Now

XF=Xa+Xc = Xa+Xb-

in a similar way we get

XE = XF ~

We conclude that (11) implies (12):

(12) XE e XF €
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The condition (12) says that the set E associated with horizontal regularity is well
behaved with respect to vertical dynamics, and vice-versa.

Next, let us write

Xa — XEPIF, Xb = XEHF' XC = XE'DF, Xd =

It is always true that Xc and Xd belong to yR; likewise Xb and Xd belong to yT. If
we assume that (12) holds, then all of Xa, Xb, Xc and Xd lie in ^(Ro) n J?(To). Let
/ € Jt{Ro). There are finite trigonometric sums pn€R0 such that

\f ~Pn\P 0.

Consequently,

\f - 0, \Xaf ~ XaPnl 0.

Since XaPn belongs to ~jjf(R0), this shows that Xaf does as well. In conclusion,
Xa^(Ro) is a subspace of Jt{R^). Similar statements hold with indices b, c and
d, and with Ro replaced by To. With the obvious shorthand, we may express this as
follows.

Now for any / e Lp (/x) consider

£|p

= inf

= inf

j \Xaf + (1 - Xa)f + Xag + d ~ Xa)g\P dfl I g€R }

\Xaf

• i n f - Xa)f + V - Xa)gi\" >

Indeed equality holds in the last step because xag\ and (1 - Xa)g2 can be varied
independently within M{K). This shows that if/ lies in Jzfa, then its metric projection
into J((R) (in the geometry of Z/(/x)) already belongs to Jia(R). The same is true
with the other indices b, c and d, and with R replaced by T. We can express these
statements as follows. Let P(R) be the metric projection from Lp(fx) into J({R),
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and Pa(R) the corresponding metric projection in j£?a; likewise with indices b, c and
d. Furthermore we write P |j£f for the restriction of P to J5f.

We have shown that (12) implies the condition

P{R)\#a = Pa(R), P(T)\J?a = Pa(T),

3 P{R)\#b = Pb(R), P(T)\J?b = Pb{T),

P(R)\Sfd = Pd(R),

In essence, (13) says that the taking of component spaces respects both vertical and
horizontal half-plane projections.

Finally, let P(yR) and P(yT) be the metric projections onto yR and yT, respec-
tively. Let Pa(-) be the metric projection of Lp(xa d\L) onto the space (•), and define
similarly with the other indices. From (13) we easily deduce

= pb(yT),

We then get

= (0),

= (0),

and so S£aa = S£a. Corresponding statements are true with the other indices. This
proves that (13) implies (10). This circle of implications yields the theorem. •

References

[1] S. Cambanis, C. D. Hardin Jr. and A. Weron, 'Innovations and Wold decompositions of stable
sequences', Probab. Theory Related Fields 79 (1988), 1-27.

[2] S. Cambanis and R. Soltani, 'Prediction of stable processes: Spectral and moving average repre-
sentations', Z Wahrscheinlichkeitstheorie 66 (1984), 593-612.

[3] R. Cheng, 'Outer factorization of operator valued weight functions on the torus', StudiaMath. 110
(1994), 19-34.

[4] T.-P. Chiang, 'On linear extrapolation of discrete of discrete homogeneous stochastic field', Dokl.
Akad. Nauk SSSR 112 (1957), 207-210 (In Russian).

[5] , 'The prediction theory of stationary random fields. I. Half-plane prediction', Ada Sci.
Natur. Univ. Pekinensis 25 (1991), 25-50 (In Chinese with English abstract).

https://doi.org/10.1017/S1446788700000859 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000859


50 R. Cheng and C. Houdre [20]

[6] , 'The prediction theory of stationary random fields. III. Four-fold Wold decompositions',
J. Multivariate Anal. 37 (1991), 46-65.

[7] H. Helson and D. Lowdenslager, 'Prediction theory and Fourier series in several variables I, IF,
Acta Math. 99 (1958), 165-202; ibid.106 (1961), 175-213.

[8] C. Houdre, 'Factorization algorithms and non stationary Wiener filtering', Stochastics Stochastics
Rep. 33 (1990), 49-62.

[9] , 'Linear Fourier and stochastic analysis', Probab. Theory Related Fields 87 (1990), 167-
188.

[10] , 'On the linear prediction of multivariate (2, P)-bounded processes', Ann. Probab. 19
(1991), 843-867.

[11] H. Korezlioglu and Ph. Loubaton, 'Prediction and spectral decomposition of wide-sense stationary
processes on 1?\ in: Spatial processes and spatial time series analysis (Brussels 1985) (ed.
F. Droesbeke) (Publ. Fac. Univ. Saint-Louis, Brussels, 1987), pp. 127-164 .

[12] , 'Spectral factorization of wide sense stationary processes on I2', J. Multivariate Anal. 19
(1986), 24-47.

[13] Ph. Loubaton, 'A regularity criterion for lexicographical prediction of multivariate wide-sense
stationary processes on Z2 with non-full-rank spectral densities', J. Fund. Anal. 104 (1992),
198-228.

[14] P. Masani, Norbert Wiener: Collected works. Vol. Ill (MIT Press, Cambridge, MA, 1981).
[15] A. G. Miamee and M. Pourahmadi, 'Wold decomposition, prediction and parameterization of

stationary processes with infinite variance', Probab. Theory Related Fields 79 (1988), 145-164.
[16] B. S. Rajput and C. Sundberg, 'On some extremal problems in Hp and the prediction of V-

harmonizable stochastic processes', Probab. Theory Related Fields 99 (1994), 197-210.
[17] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces (Springer,

New York, 1970).
[18] N. M. Spencer and V. V. Anh, 'Spectral factorisation and prediction of multivariate processes with

time-dependent spectral density matrices', J. Austral. Math. Soc. (Ser. B) 33 (1991), 192-210.

Executive Vice President South East Applied Analysis Center
ECI Systems and Engineering School of Mathematics
596 Lynnhaven Parkway Georgia Institute of Technology
Virginia Beach, VA 23452 Atlanta, GA 30332
USA USA
e-mail: rayc@ecihq.com e-mail: houdre@math.gatech.edu

https://doi.org/10.1017/S1446788700000859 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000859

