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Approximate Fixed Point Sequences of
Nonlinear Semigroups in Metric Spaces

M. A. Khamsi

Abstract. In this paper, we investigate the common approximate fixed point sequences of nonexpan-
sive semigroups of nonlinear mappings {Tt}t≥0, i.e., a family such that T0(x) = x, Ts+t = Ts(Tt (x)),
where the domain is a metric space (M, d). In particular, we prove that under suitable conditions the
common approximate fixed point sequences set is the same as the common approximate fixed point
sequences set of two mappings from the family. Then we use the Ishikawa iteration to construct a
common approximate fixed point sequence of nonexpansive semigroups of nonlinear mappings.

1 Introduction

The purpose of this paper is to prove the existence of approximate fixed points for
semigroups of nonlinear mappings acting in metric spaces. Note that from a numer-
ical point of view, approximate fixed points are very useful, since exact fixed points
may be hard to find. We will also give an algorithm of how to build such approximate
fixed points in the case of hyperbolic metric spaces. Let us recall that a family {Tt}t≥0

of mappings forms a semigroup if T0(x) = x and Ts+t = Ts ◦ Tt . Such a situation is
quite typical in mathematics and applications. For instance, in the theory of dynam-
ical systems, the vector function space would define the state space, and the mapping
(t, x) → Tt (x) would represent the evolution function of a dynamical system. The
question about the existence of common fixed points and about the structure of the
set of common fixed points can be interpreted as asking whether there exist points
that are fixed during the state space transformation Tt at any given point of time t ,
and if yes, what does the structure of a set of such points look like. In the setting of
this paper, the state space is a nonlinear metric space.

The existence of common fixed points for families of contractions and nonex-
pansive mappings in Banach spaces has been the subject of intense research since
the early 1960s, as investigated by Belluce and Kirk [1, 2], Browder [3], Bruck [4],
DeMarr [8], and Lim [19]. It is worthwhile mentioning the recent studies on the
special case, when the parameter set for the semigroup is equal to {0, 1, 2, 3, . . . },
and Tn = Tn, the n-th iterate of an asymptotic pointwise nonexpansive mapping.
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Kirk and Xu [17] proved the existence of fixed points for asymptotic pointwise con-
tractions and asymptotic pointwise nonexpansive mappings in Banach spaces, while
Hussain and Khamsi [12] extended this result to metric spaces.

2 Main Results

Recall the definition of a nonexpansive mapping defined in a metric space.

Definition 2.1 Let (M, d) be a metric space and C ⊂ M be a nonempty subset. A
mapping T : C → M is said to be nonexpansive if

d(T(x),T(y)) ≤ d(x, y)

for any x, y ∈ C . A point x ∈ C is called a fixed point of T if T(x) = x. The set of fixed
points of T will be denoted by Fix(T). A sequence {xn} in C is called an approximate
fixed point sequence of T if limn→∞ d(T(xn), xn) = 0. The set of approximate point
sequences of T will be denoted by AFPS(T).

Recall that in Banach spaces a nonexpansive mapping defined on a nonempty
closed bounded convex subset has an approximate fixed point sequence and may not
have a fixed point. This definition is now extended to a one parameter family of
mappings.

Definition 2.2 Let (M, d) be a metric space and C ⊂ M be a nonempty subset. A
one-parameter family F = {Tt ; t ≥ 0} of mappings from C into itself is said to be a
nonexpansive semigroup on C if F satisfies the following conditions:

(i) T0(x) = x for x ∈ C ;
(ii) Tt+s(x) = Tt (Ts(x)) for x ∈ C and t, s ∈ [0,∞);
(iii) for each t ≥ 0, Tt is a nonexpansive mapping.

Define the set of all common fixed points of F as Fix(F) =
⋂

t≥0 Fix(Tt ). Similarly,
define the set of approximate point sequences of F, denoted by AFPS(F), as

AFPS(F) =
⋂

t≥0
AFPS(Tt ).

The concept of continuity for semigroups of mappings is important. Next we give
the definitions that will be needed throughout.

Definition 2.3 Let (M, d) be a metric space and C ⊂ M be nonempty. A one-
parameter family F = {Tt ; t ≥ 0} of mappings from C into M is said to be:

(i) continuous on C if for any x ∈ C , the mapping t → Tt (x) is continuous, i.e., for
any t0 ≥ 0, we have limt→t0 d

(
Tt (x),Tt0 (x)

)
= 0, for any x ∈ C ;

(ii) strongly continuous on C if for any bounded nonempty subset K ⊂ C , we have

lim
t→t0

sup
x∈K

(
d(Tt (x),Tt0 (x))

)
= 0.

Recall the following lemma, which can be found in any introductory course on
real analysis.
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Lemma 2.4 ([23]) Let G be a nonempty additive subgroup of R. Then G is either
dense in R or there exists a > 0 such that G = a · Z = {an ; n ∈ Z}. Therefore, if α
and β are two real numbers such that α

β is irrational, then the set

G(α, β) = {αn + βm ; n,m ∈ Z}

is dense in R. In particular, the set G+(α, β) = G(α, β)∩ [0,+∞) is dense in [0,+∞).

The following technical lemmas will be useful to prove the main result of this
section.

Lemma 2.5 Let (M, d) be a metric space. Let C be a nonempty subset of M. Let
T : C → C be a nonexpansive mapping. Then we have AFPS(T) ⊂ AFPS(Tm) for any
m ≥ 2.

Proof Without loss of generality we may assume that AFPS(T) is not empty. Let
{xn} ∈ AFPS(T). Then we have limn→∞ d(T(xn), xn) = 0. Fix m ≥ 2. Then we have

d(Tm(xn), xn) ≤
m∑

k=1
d(Tk(xn),Tk−1(xn)) ≤ md(T(xn), xn)

for any n ≥ 1. Since m is fixed and {xn} ∈ AFPS(T), we get

lim
n→∞

d(Tm(xn), xn) = 0,

i.e., {xn} ∈ AFPS(Tm).

Lemma 2.6 Let (M, d) be a metric space and C ⊂ M be nonempty. Let
F = {Tt ; t ≥ 0} be a one-parameter nonexpansive semigroup of mappings from C into
C. Let α and β be two positive real numbers. Then we have

AFPS(Tα) ∩ AFPS(Tβ) ⊂
⋂

t∈G+(α,β)
AFPS(Tt ).

Proof Without loss of generality we may assume that AFPS(Tα)∩ AFPS(Tβ) is not
empty. Let {xn} ∈ AFPS(Tα) ∩ AFPS(Tβ). Recall that

G+(α, β) = {mα + kβ ≥ 0 ; m, k ∈ Z}.

Let t ∈ G+(α, β). Then we have two cases. First assume that t = mα + kβ, where
m, k ≥ 0. Then

d(Tt (xn), xn) = d
(

Tmα+kβ(xn), xn

)
= d
(

Tm
α (Tk

β(xn)), xn

)
,

which implies that

d
(

Tt (xn), xn

)
≤ d
(

Tm
α (Tk

β(xn)),Tm
α (xn)

)
+ d
(

Tm
α (xn)), xn

)
≤ d
(

Tk
β(xn), xn

)
+ d
(

Tm
α (xn)), xn

)
,

for any n ≥ 1. Using Lemma 2.5 , we get limn→∞ d(Tt (xn), xn) = 0, i.e., {xn} ∈
AFPS(Tt ). Next assume that t = mα + kβ, where either m or k is negative. Without
loss of generality assume that t = mα− kβ, where m, k ≥ 0. We have

d(Tt (xn), xn) = d(Tmα−kβ(xn), xn) ≤ d(Tmα−kβ(xn),Tmα(xn)) + d(Tmα(xn), xn).
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Since Tmα = Tmα−kβ ◦ Tkβ , and Tmα−kβ is nonexpansive, we get

d(Tt (xn), xn) ≤ d(xn,Tkβ(xn)) + d(Tmα(xn), xn) = d(xn,T
k
β(xn)) + d(Tm

α (xn), xn)

for any n ≥ 1. Again using Lemma 2.5, we get limn→∞ d(Tt (xn), xn) = 0, i.e.,
{xn} ∈ AFPS(Tt ). Hence

{xn} ∈
⋂

t∈G+(α,β)
AFPS(Tt ).

Now we are ready to give the main result of this section.

Theorem 2.7 Let (M, d) be a metric space and C ⊂ M be nonempty and bounded.
Let F = {Tt ; t ≥ 0} be a one-parameter nonexpansive semigroup of mappings from C
into C. Assume that F is strongly continuous. Let α and β be two positive real numbers
such that α

β is irrational. Then we have

AFPS(Tα) ∩ AFPS(Tβ) = AFPS(F).

Proof Since AFPS(F) ⊂ AFPS(Tα)∩ AFPS(Tβ), it is enough to prove AFPS(Tα)∩
AFPS(Tβ) ⊂ AFPS(F). Without loss of generality, assume that AFPS(Tα) ∩
AFPS(Tβ) is not empty. Let {xn} ∈ AFPS(Tα) ∩ AFPS(Tβ). Lemma 2.6 implies
that

{xn} ∈
⋂

t∈G+(α,β)
AFPS(Tt ).

From Lemma 2.4, we know that G+(α, β) = G(α, β) ∩ [0,+∞) is dense in [0,+∞).
Let t ∈ [0,+∞). Then there exists tm ∈ G+(α, β), m ≥ 1, such that limm→∞ tm = t .
We have

d
(

xn,Tt (xn)
)
≤ d
(

xn,Tm(xn)
)

+ d
(

Tm(xn),Tt (xn)
)

≤ d
(

xn,Tm(xn)
)

+ sup
x∈C

d
(

Tm(x),Tt (x)
)
.

Let ε > 0. Since F is strongly continuous, there exists m0 ≥ 1 such that for any
m ≥ m0, we have

sup
x∈C

d
(

Tm(x),Tt (x)
)
< ε.

Since {xn} ∈ AFPS(Tm0 ) from Lemma 2.6, there exists n0 ≥ 1 such that
d(xn,Tm0 (xn)) < ε, for any n ≥ n0. Hence

d
(

xn,Tt (xn)
)
≤ d
(

xn,Tm0 (xn)
)

+ sup
x∈C

d
(

Tm0 (x),Tt (x)
)
< 2ε

for any n ≥ n0. Since ε was arbitrarily positive, we conclude that

lim
n→∞

d(Tt (xn), xn) = 0, i.e., {xn} ∈ AFPS(Tt ).

As a corollary we get the following.

Corollary 2.8 Let (M, d) be a metric space and C ⊂ M be nonempty and bounded.
Let F = {Tt ; t ≥ 0} be a one-parameter nonexpansive semigroup of mappings from C
into C. Assume that F is strongly continuous. Then we have

AFPS(T1) ∩ AFPS(Tπ) = AFPS(T1) ∩ AFPS(T√2) = AFPS(F).
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In the next section, we give an algorithm of how to construct an approximate fixed
point sequence of two maps in a metric space.

3 Common Approximate Fixed Point Sequence of Two
Nonexpansive Mappings

In this section we will discuss a construction of a common approximate fixed point
sequence of two nonexpansive mappings defined on a hyperbolic metric space as
defined by Reich and Shafrir [21] (see also [10]). This class of metric spaces includes
all normed linear spaces that are hyperbolic spaces. As nonlinear examples, one can
consider the Hadamard manifolds [5], the Hilbert open unit ball equipped with the
hyperbolic metric [10], and the CAT(0) spaces [14–16, 18].

Let (M, d) be a metric space. Suppose that there exists a family S of metric seg-
ments such that any two points x, y in M are endpoints of a unique metric segment
[x, y] ∈ S ([x, y] is an isometric image of the real line interval [0, d(x, y)]). We shall
denote by (1− β)x ⊕ βy the unique point z of [x, y] that satisfies

d(x, z) = βd(x, y), and d(z, y) = (1− β)d(x, y).

Such metric spaces are usually called convex metric spaces [20]. Moreover, if we have

d
(
βp ⊕ (1− β)x, βp ⊕ (1− β)y

)
≤ (1− β)d(x, y)

for all p, x, y in M, and β ∈ [0, 1], then M is said to be a hyperbolic metric space (see
[21]).

Definition 3.1 Let (M, d) be a hyperbolic metric space. We say that M is uniformly
convex (UC) if for any a ∈ M, for every r > 0, and for each ε > 0

δ(r, ε) = inf
{

1− 1

r
d
( 1

2
x ⊕ 1

2
y, a
)

; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε
}
> 0.

The definition of uniform convexity finds its origin in Banach spaces [6]. To the
best of our knowledge, the first attempt to generalize this concept to metric spaces
was made in [11]. The reader may also consult [10, 13, 21].

From now on we assume that M is a hyperbolic metric space, and if (M, d) is
uniformly convex, then for every s ≥ 0, ε > 0, there exists η(s, ε) > 0 depending on
s and ε such that

δ(r, ε) > η(s, ε) > 0 for any r > s.

The following technical lemmas will be useful throughout.

Lemma 3.2 ([9,22]) Let X be a uniformly convex hyperbolic space. Then for arbitrary
positive numbers ε > 0 and r > 0, and α ∈ [0, 1], we have

d
(

a, αx ⊕ (1− α)y
)
≤ r
(

1− δ(r, 2 min{α, 1− α}ε)
)
,

for all a, x, y ∈ X, such that d(z, x) ≤ r, d(z, y) ≤ r, and d(x, y) ≥ rε.

Using the above lemma we obtain the following result.
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Lemma 3.3 ([9, 13]) Let (M, d) be a uniformly convex hyperbolic metric space. As-
sume that there exists R ∈ [0,+∞) such that

lim supn→∞ d(xn, a) ≤ R,

lim supn→∞ d(yn, a) ≤ R,

limn→∞ d(a, σnxn ⊕ (1− σn)yn) = R,

where σn ∈ [α, β], with 0 < α ≤ β < 1. Then limn→∞ d(xn, yn) = 0.

Let (M, d) be a hyperbolic metric space and C ⊂ M be a nonempty convex subset.
Let T, S : C → C be two mappings. Fix x1 ∈ C . Das and Debata [7] studied the strong
convergence of Ishikawa iterates {xn} defined by

(3.1) xn+1 = αnS
(
βnT(xn)⊕ (1− βn)xn

)
⊕ (1− αn)xn

where αn, βn ∈ [0, 1]. Under suitable assumptions, we will show that {xn} is an
approximate fixed point sequence of both T and S. Assume that T and S are nonex-
pansive and have a common fixed point p ∈ C . Then we have

d(xn+1, p) = d
(
αnS(yn)⊕ (1− αn)xn, p

)
≤ αnd

(
S(yn), p

)
+ (1− αn)d(xn, p)

≤ αnd(yn, p) + (1− αn)d(xn, p)

= αnd
(
βnT(xn)⊕ (1− βn)xn, p

)
+ (1− αn)d(xn, p)

≤ αn

[
βnd(T(xn), p) + (1− βn)d(xn, p)

]
+ (1− αn)d(xn, p)

≤ d(xn, p),

where yn = βnT(xn) ⊕ (1 − βn)xn. This proves that {d(xn, p)} is decreasing, which
implies that limn→∞ d(xn, p) exists. Using the above inequalities, we get

lim
n→∞

d(xn, p) = lim
n→∞

d
(
αnSyn ⊕ (1− αn)xn, p

)
= lim

n→∞

[
αnd(Syn, p) + (1− αn)d(xn, p)

]
= lim

n→∞

[
αnd(yn, p) + (1− αn)d(xn, p)

]
= lim

n→∞

[
αnd
(
βnT(xn)⊕ (1− βn)xn, p

)
+ (1− αn)d(xn, p)

]
= lim

n→∞

[
αn

(
βnd(T(xn), p) + (1− βn)d(xn, p)

)
+ (1− αn)d(xn, p)

]
.

The following result is the main theorem of this section.

Theorem 3.4 Let C be a nonempty, closed and convex subset of a complete uniformly
convex hyperbolic space (M, d). Let S,T : C → C be nonexpansive mappings such
that Fix(T) ∩ Fix(S) 6= ∅. Fix x1 ∈ C and generate {xn} by (3.1). Assume that
αn, βn ∈ [α, β], with 0 < α ≤ β < 1, then

lim
n→∞

d
(

xn, S(xn)
)
= 0, and lim

n→∞
d(xn,T(xn)) = 0.
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Proof Let p ∈ Fix(T) ∩ Fix(S). Then the sequence {d(xn, p)} is decreasing. Set
c = limn→∞ d(xn, p). If c = 0, then all the conclusions are trivial. Therefore we will
assume that c > 0. Note that we have

d(xn+1, p) ≤ αnd
(

S(yn), p
)

+ (1− αn)d(xn, p)(3.2)

and

d(S(yn), p) ≤ d(yn, p) ≤ βnd(T(xn, p)) + (1− βn)d(xn, p) ≤ d(xn, p),(3.3)

for any n ≥ 1. From inequalities (3.2) and (3.3), we get

d(xn+1, p) = d
(
αnS(yn)⊕ (1− αn)xn, p

)
≤ αnd

(
S(yn), p

)
+ (1− αn)d(xn, p)

≤ d(xn, p),

which implies limn→∞ d(S(yn), p) = c. Indeed, let U be a nontrivial ultrafilter over
N. Then we have limU αn = α∞ ∈ [α, β] and limU d(xn, p) = limU d(xn+1, p) = c.
Hence

c ≤ α∞ lim
U

d(Syn, p) + (1− α∞)c ≤ c.

Since α∞ 6= 0, we get limU d(Syn, p) = c. Since U was arbitrary, we get

lim
n→∞

d(S(yn), p) = c

as claimed. Therefore, we have

lim
n→∞

d(xn, p) = lim
n→∞

d
(

Sy(n), p
)
= lim

n→∞
d
(
αnS(yn)⊕ (1− αn)xn, p

)
= c.

Using Lemma 3.3, we get limn→∞ d(S(yn), xn) = 0. Next from (3.2) and (3.3), we
get

d(xn+1, p) ≤ αnd(yn, p) + (1− αn)d(xn, p) ≤ d(xn, p)

which implies limn→∞[αnd(yn, p) + (1 − αn)d(xn, p)] = c. Since lim infn→∞ αn ≥
α > 0, we conclude that limn→∞ d(yn, p) = c. Since βn ≥ α > 0, we get
limn→∞ d(T(xn), p) = c in a similar fashion. Therefore we have

lim
n→∞

d(xn, p) = lim
n→∞

d
(

T(xn), p
)
= lim

n→∞
d
(
βnT(xn)⊕ (1− βn)xn, p

)
= c.

Using Lemma 3.3, we get limn→∞ d(T(xn), xn) = 0. Finally, since

d
(

xn, S(xn)
)
≤ d
(

xn, S(yn)
)

+ d
(

S(yn), S(xn)
)

≤ d
(

xn, S(yn)
)

+ d(yn, xn)

= d
(

xn, S(yn)
)

+ βnd
(

T(xn), xn

)
≤ d
(

xn, S(yn)
)

+ d
(

T(xn), xn

)
,

we conclude that limn→∞ d(xn, S(xn)) = 0.

Remark 3.5 The existence of a common fixed point of T and S is crucial. If one
assumes that T and S commute, i.e., S ◦ T = T ◦ S, then a common fixed point exists
under the assumptions of Theorem 3.4 if we assume that C is bounded. Indeed, fix
x0 ∈ C and define

Tn(x) =
1

n
x0 ⊕

(
1− 1

n

)
T(x),
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for x ∈ C , and n ≥ 1. Then

d
(

Tn(x),Tn(y)
)
= d
( 1

n
x0 ⊕

(
1− 1

n

)
T(x),

1

n
x0 ⊕

(
1− 1

n

)
T(y)

)
≤
(

1− 1

n

)
d
(

T(x),T(y)
)
≤
(

1− 1

n

)
d(x, y),

for any x, y ∈ C . That is, Tn is a contraction. The Banach Contraction Principle
implies that Tn has a unique fixed point un in C . Since C is bounded and

d
(

un,T(un)
)
= d
( 1

n
x0 ⊕

(
1− 1

n

)
T(un),T(un)

)
≤ 1

n
d
(

x0,T(un)
)
,

we get d(un,T(un))→ 0. Define the function

τ (x) = lim sup
n→∞

d(un, x).

Since M is uniformly convex, τ has a unique minimum point p ∈ C , i.e.,

τ (p) = inf{τ (x) ; x ∈ C},
and τ (p) < τ (x), for any x 6= p. Since {un} is an approximate fixed point sequence
of T, we have

lim sup
n→∞

d
(

un,T(p)
)
= lim sup

n→∞
d
(

T(un),T(p)
)
≤ lim sup

n→∞
d(un, p).

Hence τ (T(p)) ≤ τ (p), which implies p = T(p). Since M is strictly convex, Fix(T)
is a nonempty convex subset of M. Since T and S commute, we have S(Fix(T)) ⊂
Fix(T). The above proof shows that S has a fixed point in Fix(T); i.e., T and S have a
common fixed point.
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