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Introduction. Cohomology theories of various algebraic s t ructures have 
been investigated by several authors. The most noteworthy are due to Hoch-
schild, MacLane and Eckmann, Chevalley and Eilenberg, who developed the 
theory of cohomology groups of associative algebras, abstract groups, and Lie 
algebras respectively. In this paper we are concerned primarily with a charac­
terization of the third cohomology group of a Lie algebra by its extension 
properties. 

In §1 necessary definitions from Chevalley and Eilenberg's theory are given 
[2] ; §2 is concerned with a special type of extension. In §3 we define the invariant 
coboundary: a mapping of Hq(L,P) into Hq+1(L}Q) for any representation 
modules { V, P] and {W, Q} of L. In §4 we consider the special extension prob­
lem corresponding to the Teichmuller theory for simple (associative) algebras 

[4]. 
T h e author wishes to acknowledge his debt to A. J. Coleman and N . S. 

Mendelsohn for their constructive reading of the proofs. He should also like to 
thank S. MacLane for suggesting a more elegant approach to §3 than was 
originally employed. Finally, he should like to express his appreciation to the 
National Research Council of Canada for assistance in carrying out this 
program. 

1. Definition of the cohomology groups. Let I be a Lie algebra over a 
field F, and P a representation of L by means of linear endomorphisms of a 
vector space V of finite dimension over F. A g-linear al ternating mapping of L 
into V will be called a g-dimensional F-cochain (or shorter: a g-F-cochain). 
The g-F-cochains form a space Cq(L, V). By définition, C°(L, V) = V. We 
define a linear mapping / —> of of Cq(L, V) into Cq+1(L, V) by the formula 

(5f)(xi, . . . , xq+i) = X) ( — l)*+ '+ 1 /([**» xil xu . . . ,xk, . . . ,xh . . . , xg+1) 
k<l 

g+l 

+ 2 ( —l)*+ 1P(*<)/(*i , . . . , £ < , . . . , xq+i), 

where the tilde implies omission of the corresponding variable. If q = 0 then 
f eV and Of is defined by (ôf)(x) = P(x)f. For any / Ç Cq(L, V) and all q, 
ôôf = 0. A cochain / is a cocycle provided ôf = 0. The cocycles of dimension q 
form a subspace Zq(L, P) of Cq(L, V). A c o c h a i n / £ Cq(L, V) is a coboundary 
if it is of the form 8g for some g G Cq~l(L, V). The coboundaries of dimension 
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q form a subspace B*(L,P) of Z*(L,P). By definition B°(L,P) = {0}. The 
factor space 

W{L, P) = Z<(L, P)/B«(L, P) 

is called the gth cohomology group of L by P. 

2. The extension £7 = (L, V, W, 0). Let S be an arbitrary set of elements. 
By an S-module on a field F we mean a pair { V, P) formed by a vector space V 
of finite dimension over F and a mapping P which assigns to every element 
x G 5 a linear endomorphism P(x) of V. In particular, let 5 be the set of ele­
ments of a Lie algebra L. An 5-module { V, P] is called a representation module 
of L if the following condition is satisfied : 

P([x,y]) =P{y)P{x) -P(x)P(y) 

for any elements x, y of L. In this case the mapping P is called a representation 
of L. 

The group H2(L, P) was related by Çhevalley and Eilenberg to the extension 
L by P as follows: We define an extension L+ = (L, F) of L by P to be a Lie 
algebra with the following properties : 

(i) V is an ideal in L+, 
(ii) [Vy V] = 0, that is, F i s an abelian ideal, 

(iii) L+/V^L, 
(iv) The linear representatives px = (p(x)) Ç Z + corresponding to x G £ 

by the isomorphism (iii) satisfy1 Pxv = [z/, p(x)]. 
The structure of L+ is completely determined by 

[Px, Py] = P[x,y] + g(x,y), x,y £ L, g(x, y) e V, 

where g satisfies the condition corresponding to 

[[px, Py], Pz] + [[Py, Pz], Px] + [[Pz, Px], Py] = 0 , 

that is, 

g([x, y], z) + g([y, z], x) + g([z, x], y) + Pzg(x, y) + Pxg(y, z) + Pyg{z, x) = 0. 

Hence g is a 2-P-cocycle. Conversely, for any given g G Z2(L, P) there exists 
an extension L+ with this g. We denote this extension by L+ = (L, V, g). If we 
choose another system of representatives 

pt = Px + h(x) (h(x) € V), 
the corresponding g+ is given by 

g+(X) y) = g{x, y) + {Pyh(x) - Pxh(y) - h([x, y])}, 

namely g+ = g (mod B2(L, P)). Hence cohomologous g s generate isomorphic 
extensions. The extension L+ is said to split if there is a subalgebra L' of L+ 

^ e t 0 be a homomorphism of L+ onto L. The representatives px(p is a linear function of x) 
are any fixed set of elements of L+ satisfying 4>px = x and p0 = 0. Furthermore, V is the 
kernel of the homomorphism <f>. 
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such that (/> maps V isomorphically onto L. Hence the vanishing of H2(L, P) 
for all P implies the splitting of all extensions L+ = (L, V). 

Let the pair {U, R} be a representation module of L with an L-invariant 
submodule W (with the operation of L on W denoted by Q). On the factor space 
U/W one has then an induced operation by L; if this is isomorphic to a module 
{ V, P], we call U an extension of V by W with respect to L. 

Denote the elements of L by x, y, . . . and those of V by vi, v2, . . .. For each 
element v G V we take a representative /JLV ^ U from the residue class corres­
ponding to v G F by the isomorphism U/W = V such that nv depends linearly 
on v. Hence 

U = (W + O) U (IF + /x J W ( ^ + M..) U . . . 

where O is the zero representative and 

2.1 Rxfxv = \xPxV + 0(x, v), P(x, v) G W. 

It follows from equation 2.1 that ft is a bilinear function of x G L and y G F. 
Now, since R is a representation on U, 

Ry Rx Vv — J?2 -Ky M» = R[x,y]Vv 

for all x, y £ L and v £ V. Hence 

2.2 0(x, Pyv) - 0(y, Pxv) + p([x, y], v) + Qx 0(y, v) - Qy /3(x, v) = 0 

for all x, y £ L and z; G F. If we choose another set of linear representatives 

ix+
v = nv + K„ v G V, Kv eW, 

we have 
2.3 p+(x,v) = 0(x,v) + {QxKv - KPJ. 

We call /3 satisfying 2.2 a factor system and denote it by {/3}. Two factor systems 
{/3} and {/3+} satisfying the relation 2.3 are said to be associated. The structure 
of an extension U is completely determined by the factor system {/3}. Hence 
we write U = (L, F, IF, /3). Conversely, for any factor system {/3} there exists 
an extension U = (L, F, IF, /3) satisfying 2.1 Two extensions Ui = (L, F, IF, /3Z) 
(i = 1, 2) are isomorphic (as L-modules, each element of IF < Ut (i = 1, 2) 
corresponding to itself) if and only if {fii} and {/32} are associated. In this case 
we identify U\ with £/2. 

We define {/3i + /32} = {/?i} + {ft}. Then all the factor systems form a 
module <£(F, IF). In a splitting factor system there is a set of representatives 
IJLV such that /3(x, z;) = 0. Then 

p-(x,v) = QXKV- KPxV. 

The splitting factor systems form a subspace S(F , IF) of $ ( F , IF). Hence 
we have 

THEOREM 2.4. TT̂ e elements of $ ( F , IF ) /S (F , IF) correspond in a one-to-one 
manner with the extensions U of V by W with respect to L. 
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3. The invariant coboundary. This section is merely an adaptation of the 
well-known relative cohomology sequence for coefficients to Lie algebras. 
Given the extension U = (L, V, W, 0), it is known that there exists a relative 
cohomology sequence2 of homomorphisms, 
3.1 
. . . - > i T ( L , V)^>HQ+1(L, W)^HQ+1(L, ^)^>iT+1(L, V)->HQ+2(L, W)-+ . . . , 

and that this sequence is exact. In this sequence the mapping M is the obvious 
one: regard a cochain with values in Was if it has values in the larger module U\ 
N is also obvious : take a cochain with values in U and reduce the values modulo 
W to obtain one with values in V. The mapping A is usually called the invariant 
coboundary and is described normally as follows : Let \p : U —•» V be the given 
homomorphism of U upon its quotient V = U/W, and let g be any cocycle in 
Cq(Lt V). Pick representatives g(xi, . . . , xg) at random so that g is multilinear 
and 

ypg(xi, ...,xq)= g(xh . . . ,xq). 

Then / = 8g actually has values in W and the mapping A is the one obtained 
by sending the cohomology class of g in Hq(L, V) into that of/ in Hq+1(L, W). 

We define a linear mapping F = Fp of Cq(L, V) into Ca+1(L, W) \q > 0) 
as follows: 

% ) = / Ç C « + ' ( i , n g£C°(L,V), 
where 

f(xi, . . . , xQ+1) = ^ ( - 1 ) Î + 1 / 3 ( X Ï , g(xi, . . . , 5cu . . . , xq+i)), xi, . . . , xff+i e L. 

A minor computation shows that the mapping A is essentially the same as 
the mapping Fp when applied to cocycles g. When applied to cochains g, the 
two maps differ by 

M(5<7) ( z 1 , . . . , x a + 1 ) . 

The advantage of the invariant coboundary is that it avoids some of the long 
computations necessary when employing the mapping Fp. For example, it is not 
necessary to prove that the mappings Fp and 8 commute. Also the proof that the 
sequence 3.1 is exact in the usual sense is entirely straightforward. The map A 
is defined for the extension (an easy argument shows that the choice of representa­
tives does not matter)3 and not from the factor sets /3 or /3+. 

If the factor system {/3} splits, then (3 = 0, and so also Fp = 0. Hence: 

THEOREM 3.2 If the factor system {/3} splits, then A maps Hq(L, V) into the 
zero cohomology class of Hq+l{L, W) (q > 1). 

4. The group HZ(L} W). An interpretation of the third cohomology group 
in relation and analogous to the Teichmiiller theory of factor systems of 

2We use U, V, W here instead of R, P and Q respectively. The cohomology groups have the 
same meaning as before. 

3If the factor systems {/S} and {/3+} are associated, then Fp and Fp+ induce the same mapping 
of W(L, V) into H<t+KL, W). 
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higher degree is now given. Let L+ = (L, V, g) be an extension of L with factor 
set g and U = (L, V, W, (3) an extension of V by W with respect to L. The 
extension U implies the existence of representation modules { U, R] and { V, P) 
of L satisfying 

4.1 Rxlxv = / i P i , + p(x, v), x £ L, v £ V, fiv e U, P(x,v) G W 

(cf. equation 2.1) where the elements nv are the representatives corresponding 
to the isomorphism U/W = V. We consider the following problem. 

To construct* an extension L + + = (L, U) of L by R satisfying L++/W' = L+. 
Suppose tha t we have such an extension. We then have the following lat t ice: 

L++ > L+ > L 

I < - M _ | I 

u — > v — > o 

w — > o 
From L++/W = L+ choose linear representatives 

rx+ G L++ (x+ G L + ) 

such tha t 
rx+ == fj,x+ 

on V. Hence 

L + + = (W + rx+) \J (W+ ry+) U . . . , 

+ + r T + . r T++ 

x , y , . . . t L ; rx+, Ty+J . . . t ^ . 

Then 

4.2 [Tx+, TV+] = r[x+,y+] + l(x+, y+), l(x+, y+) G W. 

In particular, 
IVpx» Tpy] = riPx,Pyl + KPX, Py) 

4.3 = Tp[x,y]+g(Xiy) + l(pX, py) 

= TP[*,y] + Poix.v) + l(Pz, Py), KPx, Py) G W 

where the representatives px G L+ are selected in such a way tha t 

[Px, Py] = P[x,y] + g(*, j) • 

Now, from the isomorphism L++/U = L choose linear representatives ax G L + + 

so tha t arx = r(px). Then 

L++ = (U+*X)U (U+*y)KJ . . . , x, y, . . . € Z ; cr,, ery> . . . G L++. 

Therefore we have the following multiplication of representatives 

4.4 [ax, <jy] = <r[x,y] + ixHXtV) + a(x, y), a(x, y) G W, h G C2(L, V). 

*L++/W may then be regarded as an extension of L. 
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Comparing equations 4.3 and 4.4 we observe that n^x,y) = M̂ or,?)» so that 

4.4' ta, <ry] = a[XtV] + iig{XtV) + a(x, y), a(x, y) G W. 

Since g G Z2(L, P) it is easy to see that the function a is a 2-PF-cochain. 
The extension L++ of L by R implies that Rxu = [u, ax\ (u G U), and so, 

by 4.1, 
4.5 ta, ax] = nPxV + p(x, v), p(x, v) G W. 

From equations 4.4 and 4.5, 

4 . 6 [<TX, [<Ty, az]] = [<JX, (T[y>z] + Hg(y,Z) + « ( ? , Z)] 

= <T[x,[y,z}] + Vg(x,[y,z]) + a(xi [j A) 

- VP.MV.Z)) - P(x,g(y,z)) - Qxa(y,z) 

since [w, ax] = Rxw = Qxw (w G W). The Jacobi identity for the representatives 
<7X yields symbolically 
4.7 A(g) + 8a = 0. 

Denote by k( G Z2(L, £7)) the factor set belonging to L++. Then 

&(x, y) = iig{XtV) + a(x, y) = g(x, y) + a(x, y), 

and so 8a = — 8g. Hence A(g) = 8g, and in addition k(x, y) = £(x, y) mod PF. 
Conversely, if we have a(x, y) G W satisfying equation 4.7 then we can con­

struct the extension L++ as follows: To each x G L assign a symbol ax. The 
algebra L++ is to consist of all the elements of all the cosets U + ax. Multiplica­
tion of two axs will be defined by 4.4' and the multiplication of a ax and a IJLV 

by the equation 4.5. Multiplication of ax and w is defined by [w, ax] = Qxw. 
Since Çx is a linear endomorphism, PT is an ideal in L+ + . Further, for an arbitrary 
representative [xv G U and w G W, [iiv,w] = 0 since [7 is abelian. There remains 
the verification of the Jacobi identity for the ax and this is equivalent to 4.7. We 
must also verify the Jacobi identities for mixed multiplications of <rxs and j^ ' s : 

LEMMA 4.8. 

(i) ta) \PVI, /*»,]] + tax, ta2, o-«]] + taa, ta, /i„J] = 0, 

(ii) ta» [M», o-y]] + ta, ta» o-*]] + ta» ta, AU»]] = 0. 

The proof of (i) is obvious since U is abelian. 

Proof of (ii). The expression on the left is equal to 

ta, VPyV + £(? , V)] + [/*,,, O-fy,*] + /*„(„,*) + «(? , X) ] + [flTy, ~ fJLPxV ~ fi (X , V)] 

= - VPAPyv) - P(x, Pv v) - Qxp(y, v) + np[y,x]v + p(\y, x], v) + npy{p.v) 

+ /3(y,Pxv) + Qy${x,v) 

= - 0(x, Pvv) + 0(y, Pxv) + 0([y, x], v) - Qxp(y, v) + Qy(3(x, v) = 0, 

by the relation 2.2. Hence we have 
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THEOREM 4.9. Let Lbea Lie algebra over afield F and { U, R} a representation 
module of L where U = (L, V, W, 13) is an extension of V by W with respect to L. 
Then for a given extension L+ = (L, V, g) a necessary and sufficient condition for 
the existence of another extension L++ = (L, U) of L by R such that L++/W = L+ 
is that the S-Q-cocycle A(g) is a coboundary. 

COROLLARY 4.91. If HZ(L, Q) = {0} then there is always such an extension. 
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