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Hincin’s Theorem for Multiplicative
Free Convolution

S. T. Belinschi and H. Bercovici

Abstract. Hin¢in proved that any limit law, associated with a triangular array of infinitesimal random
variables, is infinitely divisible. The analogous result for additive free convolution was proved earlier
by Bercovici and Pata. In this paper we will prove corresponding results for the multiplicative free
convolution of measures defined on the unit circle and on the positive half-line.

Introduction

Let us recall that a measure i on the real line R is said to be infinitely divisible relative
to the classical convolution  if there exist probability measures pi1, s, . . . such that

= [y % Ly k- ek Ly
—_—

n times

for every natural number »n. Hin¢in characterized infinitely divisible measures as all
the possible weak limits (as 1 — 00) of sequences of the form ., * ft,1 * f4n2 % - - * [k, >
where J, is the point mass at ¢, € R, and the probability measures p,; form an
infinitesimal array, in the sense that

lim min{s,;((—€,€)): 1< j<k,} =1

for every ¢ > 0. An analogous result was proved in [2], in which classical convolu-
tion * is replaced by additive free convolution H of measures on the real line.

One can also define the free multiplicative convolution pz X v of two measures
1, v, if these are defined on the unit circle, or on the positive real half-line. These
operations are derived from the multiplication of freely independent random vari-
ables [7], just as classical convolution is derived from the addition of classically inde-
pendent random variables. It is our purpose in this paper to show that the analogue
of Hin¢in’s theorem holds for these multiplicative free convolutions. It should be
noted that the multiplicative results do not simply follow from the additive one, be-
cause the natural change of variables (the exponential) does not turn additive free
convolution into multiplicative free convolution. Indeed, it was observed already [5]
that there are certain weak limits in the multiplicative free case which do not have a
commutative counterpart.
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The case of triangular arrays of measures on the positive half-line, for which the
measures /i,; do not depend on j, was studied in [3], where necessary and sufficient
conditions for weak convergence of the sequence ;2% are given.

Even though the two classes of measures we consider are formally studied with
the same analytical apparatus, there are technical differences, and they are treated in
different sections below.

1 Measures on the Half-Line

The analogue of the Fourier transform for multiplicative free convolution was discov-
ered by Voiculescu [3]. Given a probability measure ;1 on Ry = [0, 00), one defines
the analytic functions ¢, 7,: & = C\ R, — Cby

_ ozt _ %(Z)
w@= [, @)= zea

As observed in [2], the function 77, actually maps {2 to itself, and
m > argn,(z) > argz, z€ Q,3z >0,

where the principal value of the argument is indicated. There is an open set V C C,
containing some interval of the form (—a, 0), where an inverse n;l is defined, that
is, 77”(77;1 (z)) = zfor z € V. One can then define

1 _
Yu(2) = ;77;1 1(z), zeV.

The fundamental result proved in [7] (see also [5] for measures with unbounded
support) is that ¥, (z) = X,(2)%, (2) for z in an open set containing some (—a, 0).
In this paper we will consider only measures ;o with no mass at zero. For such mea-
sures, the function X, is always defined on an open set containing the entire interval
(—00,0).

Weak convergence of probability measures can be translated [5] into convergence
properties of the functions ¥. Thus, given probability measures p and p,,n > 1
on Ry, the sequence p,, converges weakly to x if and only if there is an open set V,
intersecting (—oo, 0), where all the functions ¥, £, are defined, and such that ¥,
converges to X uniformly on V.

Infinite divisibility relative to multiplicative free convolution was characterized in
terms of the function X [4,5]. Thus, u is M-infinitely divisible if and only if 3, can
be represented as X,(z) = '@, where v: 0 — (C is an analytic function such that
v(Z) = v(z) and Sv(z) < 0 whenever Sz > 0. This condition amounts to saying
that the function 7, ' has an analytic continuation x to the entire region €, and
this analytic continuation satisfies the condition arg x(z) < argz, Sz > 0. In this
relation the notation arg x is used for a continuous version of the argument satisfying
the requirement that arg x(z) = 7 for z € (—o0, 0); thus the function y does not
generally map the upper half-plane into itself.

With these preparations out of the way, we can state the main result of this section.
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Theorem 1.1 Consider a sequence of positive numbers (c,);2,, and array {ji,;
n>1,1<j<k,} of probability measures on (0, c0) such that

li i (1—e1+e) =1
ninéolg}?kn“”f(( g,1+¢))

forevery e > 0. If the measures 0., X fuy X pryp B - - - X pur, have a weak limit p which

is a probability measure, then y is X-infinitely divisible.

Proof Consider small positive numbers €, < 1, and the compact set
Ks={z€C:6<|e] < },argz > 6}

For any probability measure v on R we have

z t—1

we - T =1 [ o,
0

z 1—z 1—zt

and the inequalities |1 — z¢t| > 1/sin §, valid for z € Kj,t > 0,and |t — 1|/|1 —zt| <
1/|z|, valid for ¢ > 0 and arbitrary z, show that

wu (Z) -

‘€V((1—6,1+6))+ 1=v((—-¢1+¢)

z 1 z 1

| <3
11—z 0l1—z |1 — 2]
for all z € Kj. This inequality shows that the functions 1, converge uniformly
in jand z € K; to z/(1 — z). We conclude that 7, converge uniformly in j and
z € Kj to z. It follows that there exists N such that for every n > Nj; and every
j = 1,2,...,ky, the function 1, is one-to-one on Kj, and 7, (Ks) D K. For
such values of n, j, the inverse 77;]1 is defined on K,; and arg 77;]1 (z) < argz, z € Kys.
Therefore we can find analytic functions v,; defined in the interior of Kj; such that
Svuj(2) < 0 for Iz > 0, v,j(2) is real for z < 0, and 17;]1 (z) = ze"'9. Let us now
define

Ky
Vu(z) = —logc, + Zvnj(z), z € intKy;.

=1
If we set p1, = 0¢, X iy X -+ - B i, , we see that X, is continued analytically to
the interior of Ky5 by the function e", provided that n > Njs. We know that there is
some open set V, which we may assume is contained in K5 and intersects the neg-
ative real axis, such that ¥, converges to X, uniformly on V. On the other hand,
the sequence v,, can, upon replacement by a sequence, be assumed to converge uni-
formly on the compact subsets of int K,5 to an analytic function v, or to infinity. This
is true because the range of v, on the intersection of Ky5 with the upper half-plane
is contained in the upper half-plane, which is conformally a disk; therefore we can
apply the Vitali-Montel theorem. Note now that the case of an infinite limit can be
excluded, because v,,(z) = logX,, (z) for z € intK,5 N (—00,0), and this sequence
converges to log ¥,,(z) for such values of z. The limit function v will satisfy the condi-
tion ¥,,(z) = ¢"? forz € V, and clearly Sv(z) < 0 for 3z > 0. We conclude that 3,
has an analytic continuation with the desired properties to the interior of K,5. The
theorem now follows by the characterization of infinite divisibility, because €2 is the
union of these open sets. u
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2 Measures on the Circle

We turn now to probability measures 1 defined on the circle T. The functions v,and
7, are defined by the same formulas given in the preceding section, but their domain
of definition is now the open unit diskID = {z : |z| < 1}. The characteristic property
of the function 7), is then |n,(2)| < |z, z € D ; see [2]. The function 7, will have
an inverse in a neighborhood of zero provided that 77[1(0) = fwr Cdu(¢) # 0. In this
case one defines, as in the preceding section, X,(z) = %77;1 (z) in a neighborhood of
zero, and the fundamental equation ¥z, = X, %, holds in a neighborhood of zero,
provided that ¥, and ¥, can be defined. Let us also note for further use the equality

1 1
n,(0) [ ¢duQ)’

Eu(o) =

Weak convergence of probability measures to a measure y can again be translated
into uniform convergence of the corresponding functions ¥ in a neighborhood of
zero, provided that the first moment of f is not zero, so that ¥, can be defined.
Finally, infinite divisibility was characterized [4] as follows. A measure p on T is
X-infinitely divisible if and only if it is either Haar measure on T (i.e., normalized
arclength measure), or the function ¥, can be represented as ¥,(z) = ¢"? | where
v: D — Cis an analytic function such that Rv(z) > 0 for z € D. In other words,
is M-infinitely divisible if and only if the function 7, ! has an analytic continuation x
to ID satisfying the condition |x(z)| > |z| for z € D.
We can now prove the analogue of Hin¢in’s theorem in this context.

Theorem 2.1 Consider a sequence of numbers ¢, € T, and an array {p,j : n > 1,
1 < j < k,} of probability measures on T such that

Jim, g bl e =1 <) =1

for every € > 0. If the measures
56,, gﬂnl glflﬁﬂ&"'&ﬂnh
have a weak limit p, then p is X-infinitely divisible.

Proof This time we will consider the compact sets K5 = {z : |z| < 1 —4}. Itis then
easily verified that for every probability measure v on T we have
z

z z

wl,(z)—1 Sé‘ ‘eu{z:|z—1|<€}+§‘ ‘y{z:|z—l|25}

—z‘ 1—2z 1—2z

for z € K;. This implies, as before, that 7,,,(z) converges to z uniformly in j and
z € K;. In particular, it follows that for » sufficiently large, say n > Nj, the function
Mu,; 1S one-to-one on Kj, and its range contains Ky5. For such n, the function 77”_]1 is

defined on K35, and clearly |77;M1 (2)| > |2| for z € Kp5. We deduce the existence of an
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analytic function v,; with nonnegative real part, defined in the interior of K35, such
that 33, (z) = " for z €intKys. Observe that the imaginary part of the function
vyj is only determined up to an additive constant which is an integral multiple of 2.
Define now functions

Ky
vn(z) = —logc, + Zvnj(z), z € int Ky,
=1

where the (purely imaginary) logc, is chosen in such a way that 0 < Sv,(0) < 27
for all n > Njs. Passing, if necessary, to a subsequence, we may assume now that the
functions v, converge uniformly on compacts to an analytic function v with nonneg-
ative real part, or to infinity. In the first case, one concludes that 3J,, is continued by
¢” to the interior of Ky, and therefore p is infinitely divisible as & > 0 is arbitrary. We
will conclude the proof by showing that, in case the limit is infinite, ;¢ is normalized
arclength measure. Observe that in this case, we must have lim,_, ., Rv,(0) = oo
because $v,,(z) remains bounded. Now observe that

ky K 1
du, i (O] = = R,
]Hl‘/ﬁ 0] = I g =

so that this product has limit zero. We can then choose ¢, with the property that both
products

0, "
]Hl‘/TCdunj(O 7 j_lé_[m’/?rgdunj(g)’

converge to zero as n — 00. By passing, if necessary, to subsequences, we may also
assume that the sequences 6, X e, Ko - -Rypayy 5 o, +1X- - By, converge weakly
to probability measures v/, p on . Clearly these measures will satisfy the conditions

p=vBp [ a0 [cano-o
T T
These conditions imply that u is normalized arclength measure on T. ]
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