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Crowdy et al. (2023 Phys. Rev. Fluids, vol. 8, 094201), recently showed that liquid
suspended in the Cassie state over an asymmetrically spaced periodic array of alternating
cold and hot ridges such that the menisci spanning the ridges are of unequal length will
be pumped in the direction of the thermocapillary stress along the longer menisci. Their
solution, applicable in the Stokes flow limit for a vanishingly small thermal Péclet number,
provides the steady-state temperature and velocity fields in a semi-infinite domain above
the superhydrophobic surface, including the uniform far-field velocity, i.e. pumping speed,
the key engineering parameter. Here, a related problem in a finite domain is considered
where, opposing the superhydrophobic surface, a flow of liquid through a microchannel
is bounded by a horizontally mobile smooth wall of finite mass subjected to an external
load. A key assumption underlying the analysis is that, on a unit area basis, the mass
of the liquid is small compared with that of the wall. Thus, as shown, rather than the
heat equation and the transient Stokes equations governing the temperature and flow
fields, respectively, they are quasi-steady and, as a result, governed by the Laplace and
Stokes equations, respectively. Under the further assumption that the ridge period is
small compared with the height of the microchannel, these equations are resolved using
matched asymptotic expansions which yield solutions with exponentially small asymptotic
errors. Consequently, the transient problem of determining the velocity of the smooth
wall is reduced to an ordinary differential equation. This approach is used to provide a
theoretical demonstration of the conversion of thermal energy to mechanical work via the
thermocapillary stresses along the menisci.
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1. Introduction
Recently, Crowdy, Mayer & Hodes (2023) introduced a concept for a thermocapillary-
driven microfluidic pump that leverages asymmetries in the spacing of periodic pairs of
alternating hot and cold ridges beneath a liquid suspended in the Cassie state to produce
non-negligible flow rates (>1 mm/s far-field velocity) from only small differences in ridge
temperatures (<1◦C). This work was motivated by Ajdari (2000), who, in a theoretical
investigation, demonstrated that fluids in a locally asymmetric geometry, driven by local
physical actions, exhibit a net flow. In the case of his electroosmotic pump, Ajdari showed
that modulation of the surface capacitance can induce far-field pumping under a space
and time periodic external electric field. In the thermocapillary pump posited by Crowdy
et al. (2023), since surface tension is reduced on both sides of a hot ridge, liquid is driven
along menisci towards the adjacent cold ones, thereby inducing flow in both directions.
However, the longer meniscus, as determined by the imposed asymmetry in ridge spacing
in a period window, induces a higher flow rate than the shorter one, dictating the direction
of the net flow. Physically, this results in regions of recirculating (all either clockwise or
anticlockwise) fluid confined close to the boundary, with a net flow far from the surface.
Distinctly, when the ridges are equispaced, a pair of identical counter-rotating vortices is
generated and there is zero flow in the far field. We note that vortices also form in the liquid
flowing over exclusively heated superhydrophobic surfaces with ridges textured parallel
(rather than transverse) to the flow (Hodes et al. 2017); however, the vortices generated
in this configuration are orientated in a plane perpendicular to the flow direction and
have been shown to negatively affect flow rates (Tomlinson et al. 2024). Further studies
on the effects of thermocapillarity on flows over heated superhydrophobic surfaces are
summarised by Crowdy et al. (2023).

The thermocapillary-driven pump has several advantages. First, it has no moving parts.
Secondly, since the pressure field only has a modest periodic component, the Cassie
state is robust. Third, there is only a periodic component of the temperature field.
Previous embodiments of thermocapillary pumps required imposing a monotonic rather
than periodic temperature gradient (Baier, Steffes & Hardt 2010a,b; Amador et al. 2019),
which limits the length of the microchannel to a few centimetres due to freezing/boiling
issues. The present thermocapillary pump does not suffer from these problems.

With these advantages in mind, one potential application for this thermocapillary
pump is the direct conversion of thermal energy to mechanical work. We quantify this
phenomenon by changing the semi-infinite domain considered by Crowdy et al. (2023)
to a microchannel configuration bounded by a smooth horizontally mobile upper wall
coupled to an external load. Although the following analysis is somewhat abstract, it can be
readily interpreted as a simplification of a realistic configuration, i.e. the annular-geometry
thermal energy-to-mechanical power converter shown in figure 1(a). As shown, an annulus
of working liquid is trapped between a circular-perimeter superhydrophobic surface and a
central, cylindrical, rotationally mobile, smooth-wall mass. The superhydrophobic surface
consists of nested hot and cold ridges (fins). The hot fins are thermally coupled to an
annular base (not visible in this cross-sectional view) with vertically oriented fins which
penetrate gas cavities in the device. The cold fins comprise an outer surface and protrude
radially inwards. One side of the working liquid is suspended in the Cassie state on the
hot and cold fins and the other one contacts the smooth, inner cylindrical mass. The fin
spacing is asymmetric so that a thermocapillary flow is generated, causing a shear flow
to develop in the liquid, thereby imparting a torque upon the inner cylindrical mass. This
torque can resist or even overcome an external torque applied to an inner axle, imparting
mechanical power. (Other arrangements, such as the mass being on the outside and the
superhydrophobic surface on the inside, follow.) A simplification of this geometry can be
1009 A33-2
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Figure 1. (a) Top view (cross-section) of a design configuration to convert thermal energy to mechanical work
via thermocapillary stress along menisci. A liquid annulus resides between a smooth, solid cylinder and a
superhydrophobic surface consisting of alternating hot and cold ridges (fins). (The hot fins would extend out of
the page where they connect to a heat source.) Due to the counter-clockwise direction of the thermocapillary
stresses along the longer menisci, the net flow is also counter-clockwise. This flow imparts a torque on the
inner cylinder which can resist or overcome an external torque on it thereby imparting mechanical power;
(b) an idealised two-dimensional Cartesian version of the device depicted in (a) when the inner radius of the
liquid approaches the outer one, showing a periodic window denoted by C .

made by assuming the ratio of the radii of the inner and outer cylinders to be close to 1.
Then, the liquid can be modelled as an infinitely periodic array of identical cells (length
2D∗) consisting of a single pair of hot and cold ridges with accompanying menisci. The
curvature is negligible so this geometry takes the form of a Cartesian microchannel of
height H∗ and is depicted in figure 1(b), with forces replacing torques and the motion of
the wall being horizontal. A domain consisting of a single periodic cell is denoted by C .

Conveniently, a simple ordinary differential equation (ODE) couples the movement of
the wall to the velocity field in the liquid. Additionally, when the mass of the wall per
unit area is significantly larger than that of the liquid, the flow and temperature fields
appear quasi-steady. An asymptotic solution that exhibits an exponentially small error is
determined for this problem. Moreover, a simple coupling between the wall ODE and the
flow problem results in exact solutions for the wall velocity and power generation. Notably,
an exponentially small asymptotic error enables accurate predictions, as compared with
numerical calculations, of relevant flow parameters, even when our small parameter (ratio
of period of the superhydrophobic surface as per domain C in figure 1b to channel height)
is as high as unity.

2. Problem description

2.1. Dimensional formulation
We consider a two-dimensional flow of a liquid of constant density ρ, viscosity μ and
thermal diffusivity α in a microchannel where the top wall is smooth and horizontally
mobile, has a time-dependent horizontal (parallel to the x∗ coordinate) velocity U∗(t∗)
(and zero velocity parallel to the y∗ coordinate) and is separated from the (fixed) bottom
ridged (superhydrophobic) surface by a distance H∗, as per figure 2. (An asterisk indicates
a dimensional variable.) The bottom surface is asymmetrically textured with alternating
cold and hot ridges of length L∗ at temperatures T ∗

c and T ∗
h , respectively, separated by

(flat) menisci. Due to the periodic nature of the problem, we focus on a 2D∗-long period
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Figure 2. Schematic of a period window of the domain for (a) the dimensional problem, and (b) the
dimensionless problem.

window consisting of a single pair of ridges. The cold ridge begins at x∗ = −D∗ and the
length of the meniscus between the cold and hot ridges is S∗.

In general, the fluid pressure and velocity fields are governed by mass conservation and
the Navier-Stokes equations and its temperature field by the thermal energy equation (see
§ 2.3). We define u∗ = (u∗, v∗) as the velocity vector with components in the x∗ and y∗
directions, p∗ as pressure and T ∗ as temperature. As shown below, the flow problem is
one-way coupled to the temperature problem by stress balances along menisci.

The top wall is a no-slip, adiabatic surface whose velocity is coupled to the velocity
field in the liquid per Newton’s second law via the following ODE:

m∗ dU∗

dt∗
= − 1

2D∗

∫ D∗

−D∗
μ
∂u∗

∂y∗

∣∣∣∣
y∗=H∗

dx∗ − F∗
load , (2.1)

where m∗ is the mass (per unit area) of the top wall and F∗
load is the external load (per unit

area) on the top wall. Two flat and adiabatic menisci span between the hot and cold ridges.
A Marangoni stress balance along them equates the (spatial) gradient of surface tension to
the viscous shear stress as per

μ
∂u∗

∂y∗

∣∣∣∣
y∗=H∗

= β
∂T ∗

∂x∗ , (2.2)

where β = −dσ/dT ∗ is a positive constant that captures the temperature dependence of the
liquid’s surface tension σ , i.e. σ = σ0 − β(T ∗ − T ∗

0 ), where σ0 and T ∗
0 are inconsequential

reference values. The final conditions are that the velocity, pressure and temperature fields
are periodic in the streamwise direction.
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It is useful to define three engineering quantities that can be calculated from the solution
to the model problem. First, the output power per unit wall area is

P
∗ = 1

2D∗

∫ D∗

−D∗
μ
∂u∗

∂y∗ U∗ dx, (2.3)

i.e. the period-averaged product of the hydrodynamic friction force and wall speed.
Secondly, the input power per unit wall area Q

∗
is determined by integrating the heat

flux through the hot ridge and dividing by the period length as per

Q
∗ = − 1

2D∗

∫
hot ridge

k
∂T ∗

∂y∗ dx, (2.4)

where k is the thermal conductivity of the liquid. Finally, the device efficiency is defined
as

E = P
∗
/Q

∗
. (2.5)

2.2. Discussion of forces and flow direction
With the geometry and flow-temperature problem defined, we return to discussion of the
flow direction physics and forces in figure 2. First, it is useful to consider the physics when
the load force F∗

load is absent. The hot and cold parts of the boundary at the bottom of the
domain result in thermocapillary stresses that induce fluid motion. Because of the negative
relationship between surface tension and increasing temperature, thermocapillary stresses
cause the cold and hot ridges to attract and repel the liquid, respectively. Therefore, a rather
complicated flow develops where liquid moves to the left along the meniscus of length S∗
and to the right along the other meniscus (of length 2D∗ − 2L∗ − S∗). These flows interact
locally, generally forming 1 or 2 vortices near the bottom (superhydrophobic) surface, but,
globally, a net velocity is observed approximately 1 pitch away from this surface. In turn,
due to no slip and no load, the top wall moves with constant velocity. The direction of this
velocity is determined by the longer meniscus so that if 2D∗ − 2L∗ − S∗ > S∗ or L∗ +
S∗ < D∗, as seen in figure 2(a), flow moves left-to-right and when 2D∗ − 2L∗ − S∗ < S∗
flow moves right-to-left.

Inclusion of the load further complicates the physics. Of course, arbitrary assignment
of F∗

load yields a valid physical solution, but in the context of energy conversion we are
particularly interested in situations where the external load is driven only by the flow
generated by thermocapillary stresses. For this to be true (for a given geometry and
temperature difference) two requirements of F∗

load are needed. The first is that the drag
generated by the thermocapillary stresses and the external load must have opposite signs
to work against each other. The second is that F∗

load must be less than or equal to in
magnitude the largest possible drag force generated by the thermocapillary stresses, a
quantity that can be determined exactly from solutions discussed later. This is because, if
the applied external load exceeds this maximum force, the wall will move in the direction
of the applied external load. In this case, the wall can be viewed as driving the liquid flow
instead of the flow driving the wall. Then thermocapillary stresses may help to resist wall
motion; however, the system can no longer be considered capable of providing power to
external devices.

2.3. Non-dimensional formulation
It is natural to non-dimensionlise lengths with H∗, velocities with a characteristic velocity
scaling U∗

c =�T ∗β/μ, where �T ∗ = T ∗
h − T ∗

c , according to the shear stress balances

1009 A33-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

18
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.188


M.D. Mayer, T.L. Kirk, M. Hodes and D. Crowdy

along the menisci, and pressure with μU∗
c /H∗. Since this problem is in a microfluidic

configuration, the limiting temporal behaviour (i.e. the slowest time scale) is expected
to be that of the upper wall. Therefore, time is rescaled with m∗H∗/μ, as follows from
(2.1). The governing equations in the fluid (conservation of mass, momentum and thermal
energy) become

∇ · u = 0, (2.6)

M
∂u
∂t

+ Re (u · ∇u)= −∇ p + ∇2u, (2.7)

MPr
∂T

∂t
+ PrRe (u · ∇T )= ∇2T, (2.8)

where Re = ρ�T ∗βH∗/μ2 is the Reynolds number, Pr =μ/(αρ) is the Prandtl number
and M = (ρH∗)/m∗ is a parameter that compares the mass of the liquid with that of the
wall (per unit area in the x and z (out of plane) directions). The boundary conditions on
the top wall are

u = U (t),
∂T

∂y
= 0 at y = 1. (2.9)

In the ODE governing the wall velocity (2.1) the load force (per unit area) is non-
dimensionalised using μU∗

c /H∗, yielding

dU

dt
= − 1

2ε

∫ ε

−ε
∂u

∂y

∣∣∣∣
y=1

dx − Fload , (2.10)

where ε = D∗/H∗ is the aspect ratio of the domain. On the bottom superhydrophobic
surface the boundary conditions are

u = 0, T = 0 for y = 0, −ε < x <−ε(1 − δ), (2.11)
u = 0, T = 1 for y = 0, −ε(1 − δ − η) < x <−ε(1 − 2δ − η), (2.12)
∂u

∂y
= ∂T

∂x
,
∂T

∂y
= 0 for y = 0, −ε(1 − δ) < x <−ε(1 − δ − η), (2.13)

∂u

∂y
= ∂T

∂x
,
∂T

∂y
= 0 for y = 0, −ε(1 − 2δ − η) < x < ε, (2.14)

where δ = L∗/D∗ is the solid fraction of the hot or cold ridges and η= S∗/D∗ is the
fraction of a half-period attributable to the leftmost meniscus. In addition, periodicity is
enforced for the velocity, pressure and temperature fields at x = ±ε.

Finally, P
∗

is rescaled using μU∗2
c /H∗ and Q∗ using k�T ∗/H∗ so that

P = 1
2ε

∫ ε

−ε
∂u

∂y
U dx, (2.15)

and

Q = − 1
2ε

∫
hot ridge

∂T

∂y
dx . (2.16)

The efficiency can be written in terms of the dimensionless quantities as

E =Ω
P

Q
, (2.17)

where Ω = β2�T ∗/(μk).
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Figure 3. Problem to solve after low Reynolds number and large mass assumptions. The fluid and temperature
fields are quasi-steady; therefore, the solution needed is simplified to that of a flow with a prescribed wall
velocity at the top of the domain.

3. Theoretical analysis
Our purpose is to gain theoretical insight into the transfer of thermal energy into
mechanical power. To proceed, the Reynolds number is assumed to be vanishingly small,
as is common in microfluidic devices. Furthermore, the assumption that M � 1 is invoked,
meaning that the mass of the liquid is small compared with that of the wall. Taking the
limits M, Re → 0 in (2.6)–(2.8) leads to the equations

∂2T

∂x2 + ∂2T

∂y2 = 0 and
∂4ψ

∂x4 + ∂4ψ

∂x2∂y2 + ∂4ψ

∂y4 = 0, (3.1)

where ψ =ψ∗/(U∗
c H∗) is a streamfunction defined such that

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (3.2)

This stream function is coupled to the wall velocity governed by (2.10) via the no-slip
condition. The large mass assumption enables a significant simplification of our analysis,
as the thermal energy and flow equations appear quasi-static. Furthermore, the assumption
of small Re (and thus also small Péclet number Pe = RePr) removes the two-way coupling
of the velocity and temperature fields, instead allowing the (now steady) Laplacian thermal
problem to be resolved first, followed by the (quasi-steady) Stokes problem. The quasi-
steady nature of the flow problem means that we need only resolve the flow for a given
upper wall velocity U , as depicted in figure 3. This can be done in closed form, and the
consequent shear stress on the upper wall simply inserted into the ODE governing the
wall’s motion.
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3.1. Small period limit
A further assumption is needed to facilitate the analysis: that the period length is much
smaller than the channel height, an oft-valid assumption for microchannels textured with
superhydrophobic surfaces. This limit, corresponding to ε→ 0, is the same one recently
considered by Hodes et al. (2023) for the conventional transverse ridge problem, in the
absence of thermocapillary stress, when the ridges are no-slip, diabatic (isoflux) and
equally spaced, and the microchannel is symmetrically textured. To make the location of
boundary conditions (2.11)–(2.14) independent of ε, we rescale x according to X = x/ε.
The governing equations transform to

1
ε2
∂2T

∂X2 + ∂2T

∂y2 = 0 and
1
ε4
∂4ψ

∂X4 + 2
ε2

∂4ψ

∂X2∂y2 + ∂4ψ

∂y4 = 0. (3.3)

3.1.1. Outer problem
In the limit as ε→ 0, the outer region corresponds to fixing our location in the channel and
keeping X, y = O(1). It is typical at this point to expand the streamfunction in the small
parameter ε and determine a unique solution at each order of this parameter. However,
solutions of the Laplace and biharmonic equations that exhibit small-scale periodicity
(that is, not simply uniform) in X will exhibit exponential variation in y. To match with an
inner solution near y = 0 would necessitate this variation be exponentially small. As we
are not concerned with these exponentially small orders, we only consider the solutions
constant in X , and posit the streamfunction expansion

ψ =ψout (y, ε)+ e.s.t., (3.4)

where e.s.t. refers to exponentially small terms. Substituting (3.4) into (3.3) this satisfies

d4ψout

dy4 = 0. (3.5)

Furthermore, if we integrate the x-momentum equation and apply periodicity of pressure
(i.e. there is no linear component), then d3ψout/dy3 = 0. Thus integrating this, applying
the no-slip condition at the top (dψout/dy = U at y = 1), and choosing ψout = 0 at y = 0,
we find that

ψout = C(ε)

2
(2y − y2)+ U y, (3.6)

where C(ε) is an ε-dependent constant. A similar assumption for the temperature,
T = Tout (y, ε)+ e.s.t., leads to an outer solution independent of y, that is,
T = D(ε)+ e.s.t, where D(ε) is, again an ε-dependent constant.

3.1.2. Inner problem
Near the bottom superhydrophobic surface, the flow and thermal problems are two-
dimensional and require a different solution. Here, x, y ∼ ε and all the terms in the Stokes
equation balance. It is therefore natural to use inner variables X = x/ε and Y = y/ε =
O(1). Writing ψ =Ψ (X, Y, ε)+ e.s.t and T =Θ(X, Y, ε)+ e.s.t, the inner problem for
the temperature Θ is given by
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∂2Θ

∂X2 + ∂2Θ

∂Y 2 = 0, Y > 0, −1< X < 1, (3.7)

∂Θ

∂Y
= 0, Y = 0, on menisci, (3.8)

Θ = 1, Y = 0, on hot ridge, (3.9)
Θ = 0, Y = 0, on cold ridge, (3.10)

with periodicity at X = ±1, and the matching condition with the constant solution in the
outer region, or, alternatively, the adiabatic matching condition

∂Θ

∂Y
→ 0, Y → ∞. (3.11)

Given Θ , then the inner problem for Ψ becomes

∂4Ψ

∂X4 + 2
∂4Ψ

∂X2Y 2 + ∂4Ψ

∂Y 4 = 0, Y > 0, −1< X < 1, (3.12)

∂2Ψ

∂Y 2 = ε
∂Θ

∂X
, Y = 0, on interfaces (3.13)

∂Ψ

∂Y
= 0, Y = 0, on ridges (3.14)

Ψ = 0, Y = 0, −1< X < 1 (3.15)

with periodic conditions at X = ±1. The final condition on Ψ comes from matching, as
Y → ∞, with the outer solution as y → 0 as per

∂Ψ

∂Y
∼ εU + ε(1 − εY )C(ε), Y → ∞. (3.16)

This problem has two inhomogeneous boundary conditions, the forcing due to temperature
gradients along the interface and the matching condition as Y → ∞. Since it is linear in
Ψ , the solution can be decomposed into two parts

Ψ = ε (Ψ1 +Ψ2) , (3.17)

where Ψ1 satisfies

∂4Ψ1

∂X4 + 2
∂4Ψ1

∂X2Y 2 + ∂4Ψ1

∂Y 4 = 0, Y > 0, −1< X < 1, (3.18)

∂2Ψ1

∂Y 2 = ∂Θ

∂X
Y = 0, on interfaces, (3.19)

∂Ψ1

∂Y
= 0, Y = 0, on ridges, (3.20)

Ψ1 = 0, Y = 0, −1< X < 1, (3.21)
∂Ψ1

∂Y
∼ Upump, Y → ∞, (3.22)
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ρ
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Figure 4. Conformal mapping from an upper half-annulus ρ < |ζ |< 1, Im[ζ ]> 0 in a parametric ζ plane to a
single period window of the inner problem.

where Upump is a constant to be found, and Ψ2 satisfies

∂4Ψ2

∂X4 + 2
∂4Ψ2

∂X2Y 2 + ∂4Ψ2

∂Y 4 = 0, −1< X < 1, 0< Y (3.23)

∂2Ψ2

∂Y 2 = 0, on interfaces, Y = 0 (3.24)

∂Ψ2

∂Y
= 0, on ridges, Y = 0 (3.25)

Ψ2 = 0, −1< X < 1, Y = 0 (3.26)
∂Ψ2

∂Y
∼ (U − Upump)+ (1 − εY )C(ε), Y → ∞, (3.27)

both with periodic conditions at X = ±1. We remark that Upump can be interpreted
physically as the far-field pump velocity when the upper wall is infinitely far away (see
Crowdy et al. 2023).

The problem for Ψ1 turns out to be exactly that already considered by Crowdy et al.
(2023), meaning that the results there can be imported for reuse here. Defining a complex
variable Z = X + iY , then Θ and Ψ1 can be written in terms of a parametric conformal
mapping variable ζ taking values in an upper half-annulus ρ < |ζ |< 1, Im[ζ ]> 0. A
correspondence between ζ and the physical variable Z , as depicted in figure 4 using
colour coding to reflect correspondences, is furnished by the following conformal
mapping function:

Z =Z(ζ )= − i
π

log
[

R
P(ζ/α, ρ)P(αζ, ρ)

P(ζ/α, ρ)P(αζ, ρ)

]
, (3.28)

where

R = exp(−iπ)
P(−1/α, ρ)P(−α, ρ)
P(−1/α, ρ)P(−α, ρ) . (3.29)

This differs from that of Crowdy et al. (2023) only in the choice of the constant R, which
is chosen here to impose that Z(−1)= −1. The special function P(ζ, ρ) is defined by
the infinite product
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P(ζ, ρ)≡ (1 − ζ )

∞∏
n=1

(1 − ρ2nζ )(1 − ρ2n/ζ ), (3.30)

which is convergent for 0 � ρ < 1; this function is closely related to the so-called prime
function of the annulus ρ < |ζ |< 1 (Crowdy 2020). The point α = ir lies on the imaginary
axis, this being necessary to ensure that the two ridges are of the same length. The upper
half-unit circle, denoted by C+

0 , and the upper half-circle |ζ | = ρ, denoted by C+
1 , are

mapped to the two menisci. The above formulae depend on two real parameters, ρ and r ,
which are determined by the geometry of the ridge–menisci arrangement in each period
window. Indeed, two nonlinear algebraic expressions enable the calculation of ρ and r for
specified values of δ and η as per

Z(−ρ)= −1 + δ, Z(ρ)= −1 + δ + η. (3.31)

These are easily solved using Newton’s method.
With this correspondence in place, Crowdy et al. (2023) determined that the temperature

field is given in terms of the parametric variable ζ by

Θ = 1 − arg [ζ ]
π

, (3.32)

and the associated streamfunction by

Ψ1 = Im
[
(Z − Z) f1(ζ )

]
, (3.33)

where

f1(ζ )= i
4

[
1
2

+
∞∑

n=1

2
1 + ρn

(
1 − (−1)n

(πn)2

) (
ζ n + ρn

ζ n

)]
. (3.34)

Moreover, from a far-field analysis as Y → ∞ of ∂Ψ1/∂Y , the pumping speed is found to
be

Upump = 2
π2

[ ∞∑
m=1

(−1)m+1

(2m − 1)2(1 + ρ2m−1)

(
r2m−1−

(ρ
r

)2m−1
)]

. (3.35)

Conveniently, the solution for Ψ2 can also be found in terms of the same parametric
variable ζ . The boundary value problem determining Ψ2 is similar to that of a linear shear
flow over a superhydrophobic surface as resolved in a separate study by Crowdy (2011),
who generalised solutions due to Philip (1972a) for transverse shear flow over a periodic
superhydrophobic surfaces with a single meniscus per period. The analysis of Crowdy
(2011) allows for any finite number of menisci per period of the surface, including the case
of two unequal menisci which is precisely the geometry relevant in the present problem.
To cast it into a form whereby the results of Crowdy (2011) can be imported for use here,
we define Ψ2 = −εC(ε)Ψ̃2 so that

∂Ψ̃2

∂Y
∼ Y − 1

ε

(
1 + U − Upump

C(ε)

)
. (3.36)

From Crowdy (2011), the solution for Ψ̃2 can be found with the same machinery as used for
Ψ1 and, in particular, the solution can also be written as a function of the same parametric
variable ζ . It is

Ψ̃2 = Im
[
(Z − Z)g(ζ )

]
, where g(ζ )= 1

4π
log

[
P(ζ/α, ρ)P(ζα, ρ)

P(ζ/α, ρ)P(ζα, ρ)

]
, (3.37)
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and, as Y → ∞
∂Ψ̃2

∂Y
∼ Y + λ⊥ where λ⊥ = 1

π
log

∣∣∣∣ P(α2, ρ)

P(|α|2, ρ)
∣∣∣∣ , (3.38)

has an interpretation as the hydrodynamic slip length of the superhydrophobic surface
(Crowdy 2011). Equating the two far-field conditions, (3.36) and (3.38), necessitates that

λ⊥ = −1
ε

(
1 + U − Upump

C(ε)

)
. (3.39)

Therefore C(ε)= (Upump − U )/(1 + ελ⊥) and

Ψ ∼ εΨ1 + (U − Upump)
ε2

1 + ελ⊥
Ψ̃2. (3.40)

3.1.3. Shear stress and a composite solution
With C(ε) known, the outer solution (3.4) becomes

ψout = Upump − U

1 + ελ⊥

(
y − 1

2
y2

)
, (3.41)

which directly yields the shear stress at the top wall (y = 1) as

∂u

∂y
= ∂2ψout

∂y2 = U − Upump

1 + ελ⊥
. (3.42)

A composite solution is constructed by adding the outer and inner solutions and
subtracting that in the overlap region. Fortunately, the outer solution is a power series in
ε and Y (λ⊥ is at most O(1)), so it retains its form through the overlap region if all orders
are included, meaning it is precisely the overlap solution. Thus, the composite solution is
simply the inner solution, written in terms of outer variables,

ψcomp =Ψ (x/ε, y/ε, ε). (3.43)

3.2. Wall dynamics and power
Inserting the outer asymptotic solution for ∂u/∂y = ∂2ψ/∂y2 into the ODE governing the
wall motion (2.10) yields

dU

dt
= Upump − U

1 + ελ⊥
− Fload . (3.44)

Until now, Fload has been deliberately left ambiguous to highlight the generality of this
ODE. However, we now focus on the case when Fload is a constant.

When the initial condition is U (0)= Upump (the steady solution without load), then the
solution applying constant load Fload for t > 0 is

U = Upump − Fload (1 + ελ⊥)
[

1 − exp
(

− t

1 + ελ⊥

)]
. (3.45)

This results corresponds to the application of a load when the top wall is already moving
at velocity Upump and leads to some relevant physical parameters. First, we define a
maximum load that can be supported by the thermocapillary pump by constraining Fload .
In particular, we impose that Fload is in the opposite direction of the thermocapillary-
induced pumping velocity Upump (thus acting as a resistance) and |Fload |� |Upump|/
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(1 + ελ⊥) so that U > 0 in all cases. If there is equality, then |Fload | = |Upump|/(1 +
ελ⊥), and (3.45) tends to the steady-state U = 0 as t → ∞. Hence, we refer to this as the
maximum load that can be supported – if it is any larger, the wall will move against the
pumping flow at steady state. Alternatively, |Upump|/(1 + ελ⊥) can be interpreted as the
fluid force on an immobile (or pinned) wall.

We now consider power generation. Denoting the average shear stress from the fluid on
the wall as F f luid and multiplying (3.44) by U , conservation of energy for the wall takes
the form

d
dt

(
1
2

U 2
)

= F f luidU − FloadU = P − Pload . (3.46)

The term P is the (average) power from the thermocapillary flow delivered to the wall
(defined earlier in (2.15)), and Pload is the mechanical power output from the wall to the
load. (Note that no averaging of the asymptotic solution is actually needed, since the outer
solution is uniform in x .) During the transient, P and Pload will not be equal in general,
as some energy is going to/coming from the changes in kinetic energy of the wall. But
at steady state the powers must balance; therefore, P = Pload = FloadU . Thus, P is the
“steady output power”.

Inserting the asymptotic approximation for shear stress into the definition (2.15) of
(instantaneous) fluid power gives

P ∼ U (Upump − U )

1 + ελ⊥
, ε� 1. (3.47)

Notably, this implies that the maximum fluid power will always occur when U = Upump/2,
taking the value

Pmax ∼ U 2
pump

4(1 + ελ⊥)
, ε� 1. (3.48)

If at steady state (set (3.44) to zero and substitute U = Upump/2), this requires that Fload =
Upump/[2(1 + ελ⊥)]. Alternatively, since P = Pload at steady state, one can substitute this
Fload expression into FloadU and derive the same maximum power.

From an expression for the heat rate through the hot ridge from Crowdy et al. (2023) the
thermal power input to the fluid from the hot ridge is given by

Q = 1
2πε

log ρ, (3.49)

where ρ is a geometric parameter related to δ and η (but not ε). It is notable that P is
only weakly dependent on ε, but Q scales with 1/ε. The second observation can be easily
explained because, for a fixed channel height, making ε smaller is akin to making the
period smaller. This brings the cold and hot ridges closer together; therefore, more heat is
required to maintain the imposed temperature difference between the hot and cold ridges.
Power only weakly depending on ε stems from the fact that thermocapillary pumping also
depends weakly on ε. This is not the case for calculated slip lengths for shear flows over
a mixed no-slip/no-shear surface, where the far-field velocity increment scales linearly
with ε (Philip 1972b). The difference here is the inclusion of thermocapillary stress which
itself scales like 1/ε, growing as ε gets smaller and the ridges approach each other. This,
combined with the fact that the menisci lengths scale with ε, yields an O(1) quantity and
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Figure 5. (a) Asymptotic streamlines for a flow with a stationary upper wall, ε = 0.25, η= 0.1 and δ = 0.1.
(b) Dimensionless (upper) wall shear stress (3.42) versus (half) period width (ε) when upper wall is stationary
(U = 0) and the solid fraction (δ) is 0.1. Dashed curves are the full asymptotic results and symbols the numerical
results.

a power output with only a weak dependence on ε. Finally, an expression for efficiency
can be derived as

E ∼ 2πεΩ
U (Upump − U )

(1 + ελ⊥) log ρ
. (3.50)

4. Results

4.1. Fixed wall
First, we look at the flow when the upper wall is stationary. Figure 5(a) plots streamlines
from (3.43) when ε = 0.25, η= 0.1 and δ = 0.1. This set-up generates a flow from left-to-
right which rolls over a vortex centred above the shorter meniscus. The flow is fastest near
the superhydrophobic surface at the bottom and then tapers out to a linear shear flow that
approaches zero velocity as y → 1. The shear stress at the top wall can be estimated using
the outer solution (3.42) and this is plotted in figure 5(b) as a function of ε for δ = 0.1
and discrete values of η. The asymptotic results for ∂u/∂y at y = 1 are represented by the
dashed curves and the symbols are (exact) numerical results. For the numerical analysis
we used a pseudospectral method (Trefethen 2000) which closely followed work by Game,
Hodes & Papageorgiou (2019) and Mayer, Kadoko & Hodes (2021) that is outlined in
the supplemental information. The numerical method solves Laplace’s equation for the
temperature field and the biharmonic equation for the velocity, relaxing the assumption
that ε� 1. There is remarkable agreement up to at least ε = 0.5 where the domain is
square. Notably, as ε increases the shear stress decreases due to the increasing impact of
the inner problem. This is because this limit corresponds to the period length growing for
fixed channel height. In such a scenario, the fluid does not have the space to fully develop
into a one-dimensional flow and some of the wall stress acts normal to the upper wall. In
Stokes flow with no pressure gradient a global force balance requires the total shear stress
around the boundary integrates to zero. This means the normal stress results in a loss of
beneficial tangential shear stress. Essentially some of the stress is being used to push into
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Figure 6. (a) Dimensionless wall velocity versus time for δ = 0.1 and η= 0.1. (b) Instantaneous dimensionless
fluid power per unit wall area over time for δ = 0.1 and η= 0.1. Solid lines are numerical solutions for arbitrary
ε. The numerical method solves (2.10) with the fluid shear stress determined by solutions of the biharmonic
equation.

the wall vertically rather than drag it horizontally, leading to a loss in efficiency. Finally,
the magnitude of the shear stress increases with |0.5 − δ − η| because the deleterious
impact of the shorter meniscus is minimised.

4.2. Transient behaviour
Next, the wall is allowed to move according to the ODE defined in (2.10). Figure 6(a)
shows the wall velocity versus time for ε = 0.1, 0.25, 0.5 and 1 and figure 6(b) the
corresponding average dimensionless power per wall area. In all cases Fload = Upump/2,
the force (per unit area) yields the highest steady-state power output when ε = 0. Since this
value also gives the maximal steady power for any choice of ε, it serves as a good datum
for performance. Additionally, by keeping the dimensionless force constant, the effect of
ε on the power (per unit area) can be more easily visualised. In figure 6 the solid lines
are numerical solutions, and the black dashed lines are the asymptotic solutions given by
(3.45) and (3.47). The numerical method still maintains that M � 1 and therefore solves
(2.10); however, the shear stress is calculated by solving the biharmonic equation for a
given wall velocity, which is outlined in detail in the supplemental information. They show
remarkable agreement for ε � 0.5 and even adequate agreement for ε = 1. In figure 6(a)
it is clear that increasing ε leads to a more rapid deceleration and smaller steady-state
velocity for the wall, consistent with the decrease in dimensionless shear stress as ε grows
observed in figure 5. In figure 6(b) the effect of ε is again to decrease the dimensionless
output, with larger values displaying less dimensionless power. For ε = 1, the wall velocity
is slowed enough to drop significantly below Upump/2 and therefore cause the power to
cross its peak value and tend to a lower value as t → ∞.

4.3. Steady-state power: effect of δ and η
Now the effects of δ and η are examined: recall that δ is the width of the ridges and
η is the width the menisci to the right of the cold ridge (see figure 2), normalised by
half a period. As mentioned earlier and inferred from (3.47), for a given geometric set-
up the maximum power will always occur when U = Upump/2, which can be ensured at
steady state if Fload = Upump/[2(1 + ελ⊥)]. We focus on this case to examine the effects
of δ and η in figure 7, which displays contour plots of the asymptotic solutions for three
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Figure 7. (a) Contour of asymptotic solutions to leading-order steady power output as a function of δ and
η when Fload = Upump/[2(1 + ελ⊥)]. This value of external load is chosen to maximise the power output;
(b) corresponding contour plot of the asymptotic solution to total heat rate. This is singular as η→ 0, reflected
by the sharp gradient in shading.; (c) corresponding contour plot of the asymptotic solution to normalised
efficiency.

relevant quantities. Figure 7(a) shows P(1 + ελ⊥), which is the power output per unit
wall area normalised such that it only depends on δ and η. It is exactly the leading-order
power output for small ε. One observation is that, for a fixed δ, higher power is achieved
for smaller values of η, increasing monotonically. This is because, in this limit, the small
meniscus (deleterious to the flow) is shrinking and the longer meniscus (driving the flow)
is growing, leading to enhanced thermocapillary pumping.

For a fixed η, however, the behaviour as δ gets smaller is more interesting: the power
output increases as δ decreases when δ � η, but then decreases when δ � η. This has to do
in part with the relative changes to the length of the longer meniscus, which is 2 − 2δ −
η. When δ� η, then 2 − 2δ − η≈ 2 − 2δ, which is sensitive to changes in δ. Therefore,
as δ gets smaller and δ� η, power grows because the longer meniscus is lengthened,
increasing thermocapillary pumping. However, when η� δ, then the length of the long
meniscus becomes 2 − 2δ − η≈ 2 − η, which is insensitive now to changes in δ, and the
length approaches an upper bound. As the benefit of lengthening the long meniscus is lost,
a secondary disadvantageous effect becomes important concerning interfacial temperature
gradients.

As δ gets smaller the local heat fluxes near the triple contact points get larger. Since the
average temperature gradient is fixed by the (prescribed) temperature drop, this means that
the magnitude of temperature gradients at the centre of the menisci decrease. Crucially,
stresses at the centre of menisci are the most important for generating flows, leading to
decreases in the flow contributions from both the longer and shorter menisci. However,
because the smaller menisci are less impactful than the larger, the net effect is that overall
pumping rates are decreased. This degradation can be fairly significant when δ < η. As a
consequence, for maximum power the advice would be to choose η� δ� 1.

Figure 7(b) depicts the dimensionless heat load through the hot ridge, per unit depth. It
is singular as η→ 0 because two isothermal regions of different temperatures are forced to
approach each other. Conversely, as δ→ 0, the heat load tends towards zero as the overall
area for heat to enter the domain vanishes.

Finally, figure 7(c) depicts the efficiency (2.17) normalised such that it only depends on
η and δ, not ε. Interestingly, the high power values near η= 0 in figure 7(a) are neutralised
by the larger heat load required to maintain this state in figure 7(b). Also, the lower heat
requirements near δ = 0 in figure 7(b) correspond to weaker regions of power generation
in figure 7(a). Consequently, to achieve the best efficiency the advice would be to set δ ≈ η

and make them as small as possible. This is conveniently also bordering the high power
regime in figure 7(a) and therefore advantageous for two reasons.
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5. Concluding remarks
One consequence of the above discussion is the importance of the parameter Ω =
β2�T ∗/(kμ) on the efficiency of the device, E . Recall,Ω is a parameter that first appears
in (2.17) as a coefficient of proportionality for the efficiency. Therefore, to maximise
efficiency it is of benefit to choose a liquid with a surface tension that varies considerably
with temperature (high β) and has a low thermal conductivity and viscosity. The role
of the low thermal conductivity is to reduce the heat load required to maintain the
desired temperature difference between ridges, while a large β and small µ lead to larger
thermocapillary stresses and pumping velocities, respectively.

For an illustrative calculation, we assume that the liquid is water and the average
background temperature is 20 ◦C. For this combination, the surface tensions coefficient
β ≈ 1.5 × 10−4 N K−1, the viscosity μ≈ 0.9 × 10−3 kg m−1s−1 and the thermal
conductivity k = 0.606 W m−1K−1 (Linstorm 1998). Now, if we choose our device
parameters to be �T ∗ = 1 K, H∗ = 50 µm, ε = 1, η= 0.025 and δ = 0.025, we predict
the maximum output power per wall area to be 0.13 × 10−6 W cm−2. This was calculated
by evaluating P∗ and converting into a per square centimetre value. Similarly, the total
thermal power required to set up the temperature field can be determined from Q∗,
which for the situation considered above, is 0.47 W cm−2 resulting in an efficiency
E = 2.87 × 10−7. Irrespective of this low value of efficiency, the magnitude of thermal
power required is not large and this mechanism could reasonably use waste heat to provide
useful mechanical power to small-scale electromechanical systems, e.g. storing energy
in some form, such as a spring, for use at a later time. In the future, devices could be
designed that utilise the small microfluidic length scales to pack numerous devices into a
compact, composite device that provides more power conversion. However, the present
work has demonstrated the possibility to convert thermal power to mechanical power
through thermocapillary stresses at fluid interfaces.

The device set-up considered here, with the various simplifications required for
theoretical analysis, is not without its practical limitations. On the modelling side the
assumption of small Re and Pe will break down at large pumping velocities. Even in the
example above, Re ≈ 9 and Pe ≈ 50. However, although the effect of non-zero Re has not
been studied, Crowdy et al. (2023) investigated the effect of Pe on Upump and found that,
for Pe ≈ 50, the pumping velocity Upump was still around 70 % of the value when Pe = 0.
And finally, among other challenges, there may be practical issues in the design of such a
device due to difficulties in microfluidic fabrication; however, the annular set-up depicted
in figure 1(a) could be accomplished via a design like a cup-and-bob rotational viscometer,
which may simplify fabrication.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.188.
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