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ON THE NON-EXISTENCE OF CONJUGATE POINTS 
BY 

G. J. BUTLER, L. H. ERBE AND R. M. MATHSEN0 

In this paper we consider the types of pairs of multiple zeros which a solution to 
the differential equation 

Dnjfi» = M y9/9...,?*-») 

can possess on an interval I of the real line. The results obtained generalize those in 
[2] and (for » = 3) in [3]. 

I. Let/satisfy the condition 

(1.1) u0f(t9 w0, ul9..., wn-i) > 0 

for all t e J, u0^09 and all ul9..., un.±. 

DEFINITION. The points a<b in I are said to form a (/*, v) conjugate pair (with 
respect to solutions of Dn on I) in case there exists a non-trivial solution y of Dn on 
[a9 b] with 

y(a) = y'(a) = • • • = f»-»(a) = 0 ^ f»\a) 

and 

y(b) = y\b) = • • • = f-*>(b) = 0 # y™(b). 

THEOREM 1.1. Let f satisfy (1.1)9 letn=2k+l where k is a positive integer, and let 
H, v be positive integers. Then there do not exist any (fi, v) conjugate pairs in I if 

(a) k is odd, p > k+l9 andv > k, 

or 

(b) k is even, [i> k, andv > k+l. 

Proof. Let y be a non-trivial solution to Dn on [a9b], with a<b9 satisfying 
y(t)=y'(t)= • • • =yfc-1>(/)=0 for t=a and t=b. Define 

v(t) = *2 (--iyy2te-^(oy/)«+(--i)fc(yfc)(0)72. 
i = o 

Then v'(t)=/2k+1\t)y(t)>0 if y(t)^0 by (1.1). Now !#) = ( - l)k(yik)(t))2/2 for t=a 
and t=b. If k is odd and j>(fc)(tf)=05 then v(d)=0 and ^(6)<0 which implies y(t) = 0 
in [a, 6]. Likewise, if k is even and y{k)(b)=0, then i;(è) = 0 and v(a) > 0 so that again 
we conclude y(t)=0 on [a9 b]. This proves (a) and (6). 
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Note that in the above proof to get v(a) = 0 (or v(b) = 0), it would suffice to have 

yM-»(t)yW(t) = 0 fovj=0,1, 2 , . . . , k and for t=a (or t = b). Hence we have the 
following corollary to the proof of Theorem 1.1. 

COROLLARY 1.2. Let f satisfy (1.1) and let n = 2k+l. Then there do not exist 
points a<b in I and a non-trivial solution y of Dn on [a, b] satisfying 

yw-»(a)/»(a) = 0 = y(2k-j\b)/j\b) for y = 0, 1 , . . . , k-1 

and either y{k\a) = 0ifk is odd, or y{k)(b) = 0ifk is even. 

THEOREM 1.3. Let f satisfy (LI) and let n = 2k, where k is an odd positive integer. 
Then there are no (/x, v) conjugate pairs in I where n>>k and v>k. 

Proof. Let K0 = 2y-o1(- l)V a f c""1" i )(0^ )(0, n o t e that v'(t)=y<2k)(t)y(t) + 
(y{k)(t))2, and proceed as in the proof of Theorem 1.1. 

As a corollary to the proof of Theorem 1.3 we have 

COROLLARY 1.4. Let f satisfy (LI) andletn = 2k where k is an odd positive integer. 
Then there do not exist points a<b in I and a non-trivial solution y of Dn on [a, b] 
satisfying 

ywc-i-»(a)y(jXa) = 0 = y^'1-^)/^) forj = 0, 1 , . . . , Jfc-1. 

If condition (1.1) is replaced by 

(1.2) u0f(t, u0, ul9..., wn_i) < 0 

for all /e/jMo^O, and all ul9 w2> • • • ? wn_l5 then results similar to those given above 
are valid. We here state only the results analogous to Theorems 1.1 and 1.3. 

THEOREM 1.5. Let f satisfy (1.2), letn = 2k+l where k is a positive integer, and let 
fji, v be positive integers. Then there do not exist any (p, v) conjugate pairs in I if 

(a) k is odd, \i>k, andv > k+1. 

or 

(b) k is even, ^ > k+1, andv > k. 

THEOREM 1.6. Let f satisfy (1.2) and let n=2k where k is an even positive integer. 
Then there are no (/x, v) conjugate pairs in I where ti>k,v>k. 

We shall give examples in Section 2 to show that one may not allow k to be even 
in Theorem 1.3 or odd in Theorem 1.6. 

II. In this section we will show that Theorem 1.1 can be generalized to a much 
larger class of conjugate pairs, provided an additional assumption is made regarding 
solutions of Dn. Examples are also given to show that the theorem is not true for the 
remaining conjugate pairs. The proof will not make use of any auxiliary function 
vit). 

THEOREM 2.1. Let f satisfy (1.1) and assume that no solution of Dn has more than a 
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finite number of zeros on any interval [a, b]^L Let the positive integers p, v satisfy 
fji+v>n with v odd in case equality holds. Then there are no (/x, v) conjugate pairs in L 

Proof. We shall first assume that ^+v=n and that /x< v. If the theorem is false, 
let y be a non-trivial solution of Dn satisfying 

y(a) = y'(a) = • • = y^Xa) = 0 # ^ ( A ) 

X*) = J ' © = • • • = yv~l\b) = 0 # /v>(6). 

Let a=a1<a2< • • • <am = b be the ra(>2) zeros of j> on [a, 6]. I f /z=l , the Mean-
Value Theorem implies that / has at least m zeros on [a, b]. If /x> 1, then, for 
l<j<fji— 1, the Mean-Value Theorem implies that j>(/)(0 will have at least m+j 
zeros on [a, Z>] at the points 

(2.2) a = 0(1,7) < 0(2,7) < . . . < a(m+jj) = Z>. 

It follows also that a(i—\J—\)<a(iJ)<a(i,j—\) for 2<i<m+j-l, l<j<fi-l. 
Now if/x<^, then j ; 0 0 will have at least m + fi — 1 zeros at the points 

(2.3) 0(1, /x) < «(2, jii) < • . . < a(m+n-l, /x) = b. 

Inductively, for n<j<v—l, yu) will have at least m + fi—l zeros at the points 

0(1,7) < 0(2,7) < • • • < a(m + [t-l9j) = Z> 

where 

0(1,7-1) < 0(1,7) < 0(2,7-1) < . . . < 0(m + / x - 2 , y - l ) < a(rn + n-2,j) 
(2.4) <0(m + i tx - l ,y - l ) 

= a(m + fi—l9j) = è. 

Therefore, / v ) will have at least m + /x —2 zeros at the points 

(2.5) 0(1, v) < 0(2, v) < • • • < 0(m + jLt-2, v) 

where 

(2.6) 0 < 0(1, v-\) < 0(1, v) < 0(2, v -1 ) < - • • < a(m+fi-2, v) < b. 

In case i^=v, we may use (2.2) to see that that / v ) will have at least ra+/x—2 zeros 
satisfying (2.5) and (2.6). Now for j=v+l, v + 2,..., n— 1, applying the Mean-
Value Theorem successively we conclude that yu) will have at least m+n—j—2 
zeros at the points 

0(1,7) < 0(2,7) < < a(m + n-j-2J) 

where 

0 < 0(1,7-1) < a(l,j) < 0(2,7-1) < < a(m+n-j-3,j-l) 

(2.7) < a(rn+n-j-2,j) 

< a(m+n-j-2,j-l) < b. 
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Hence, y{n ~X) will have at least m - 1 zeros in (a, b). If m > 3 and if two of the zeros of 
yn-1) j j e j n s o m e interval [aj9 aj+1], then y(n) will have a zero at a point a,, cij <aj< 
aj+1 which contradicts (1.1). 

Therefore, we must have 

(2.8) a = ax < a(l9 n—\)<a2<'-'< tfm-i < a(m — l, n—\)<b 

Moreover, by our observations (2.4), (2.6) and (2.7) we see that 

(2.9) ax < a(l,ix) < «(1,^+1) < < a(l,n-l) < a2. 

Now let y> 1 be such that (— l)Yy(u)(a)>0. It follows that there is an al9 a<a±< 
a(\9 fx) with 

(_ l )yy^ i ) ( a i ) < o 

and hence, ( — l)y+1y{u + 1)(a1)>0. Proceeding inductively, we conclude the existence 
of a point ak, a < ak < a{\, (JL + k — 1), with 

(-l)y +V"+ k >(a f c) > 0. 

Hence, for k = n-[i = v, (-l)v + vy(n)(av)>0. But since (-l)vy(il)(a)>0, it follows 
that ( - l)Yy(t) > 0 on (a, a2). Thus 

(_l)2y + v y n ) ( a v ) X a v ) > 0 ? 

a contradiction to (1.1). 
For the case \i-\-v=n and /x>y, a similar proof holds. One can show that y n _ 1 ) 

has at least m — 1 zeros in (a, Z>) and hence (2.8) will hold. In addition, (2.9) will 
hold and then the remainder of the proof is the same. 

It is also clear that if fi+v>n, then one can show that yn_:L) has at least m zeros 
in (a, b) and hence two of them must lie in some interval [aj9 aJ + 1]. This implies that 
y(n) has a zero in (aj9 aj+1), contradicting (1.1). 

From the proof of Theorem 2.1 we have 

COROLLARY 2.2. Let f satisfy (1.2) and assume that no non-trivial solution of Dn 

has more than a finite number of zeros on any interval [a, b]^I. Let the positive 
integers fi,v satisfy [x + v>n with v even in case equality holds. Then there are no 
(fjL, v) conjugate pairs in I. 

Remark 2.3. Consider now a pair of integers /x, v> 1 where [x + v = n and v is even. 
Defining the function f(t, u0, ul9..., wn_i) by 

f = / n\, u0>0, all*, ul9..., wn_i 
\—n\, u0 < 0, all t, ul9..., wn_! 

we see that (1.1) holds. Moreover, on the interval [0, 1] the function 

is a solution of Dn which has a (/x, v) conjugate pair. 
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If one requires that the function/be continuous, then examples can still be given 
to show that Theorem 2.1 cannot, in general, be extended to include additional 
conjugate pairs. To see this, consider the simple linear differential equation 

(2.10) y n ) = y. 

For 72 = 3 one can show that there is a non-trivial solution of (2.10) with a simple 
zero at r, — V3 TT< T < 0 , and a double zero at the origin. Also, for n = 4, there is a 
non-trivial solution of (2.10) having a double zero at the origin and another double 
zero at r, where 37r/2 < T < 2TT. 

In conjunction with this, it is interesting to compare our results with those 
obtained by Sherman ([4]) for the linear differential equation 

(2.11) y(n)=p(t)y, tel. 

where/?(/) is continuous and satisfies 

(2.12) |/7(0I > 0 o n / . 

For any a e I let rj^a), the first conjugate point of a, be the smallest b > a such that 
there is a non-trivial solution of (2.11) with n zeros on [a, b] (counting multi­
plicities). Suppose now that y{i) is a non-trivial solution of (2.11) with n simple 
zeros on [a, ^ ( f l ) ]^ / . Then by Theorem 5 of [4], there exist solutions yl9 j2>• • -, 
yn„± of (2.11), not necessarily distinct, such that yk has a zero at a of order at least 
n — k and a zero at rj^a) of order at least k. This contradicts Theorem 2.1 or 
Corollary 2.2. Thus, if ^1(a)< +oo, any solution of (2.11) with n zeros on [a, rj^a)] 
has at least one multiple zero. However, in [5] is it shown that for any e>0 there 
is a solution of (2.11) with n simple zeros on [a, r)i(a) + e). 

Remark 2.4. Results analogous to Theorem 2.1 and Corollary 2.2 can be ob­
tained if one assumes instead of (1.1) that the following condition holds for some 

j9 1 < / < / i - 1 : 

(2.13)j Ujf(t, w0, ul9..., wn_i) > 0 if U, ^ 0. 

As an example of what is true here, we state 

THEOREM 2.5. Let /satisfy (2.13)j and also assume that no solution y of Dn is such 
thatyU) has an infinite number of zeros on some interval [a, b]^IandyU)^0 on [a, b]. 
Let the positive integers p, v satisfy fi + v>n—j with v odd in case equality holds. Then 
all solutions y of Dn which are such that y01 has a (/x, v) conjugate pair belong to the 
class of polynomials in t of degree <j—l. 

Remark 2.5. We note also that Theorem 1.1, Corollary 1.2, Theorem 1.3, 
Corollary 1.4 and Theorem 2.1 are true, as stated, for solutions of the differential 
inequality 

(2.13) /n) >f(t,y,y',.-.,y"1-1'). 
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Likewise, Theorems 1.5 and 1.6 and Corollary 2.2 are valid for solutions of the 
differential inequality 

(2.14) y^/fc*/,.-.,/"-1*). 

III. In this section we shall show that several results obtained in [3] for the case 
n — 2> can be generalized to arbitrary n>2. We assume / satisfies the following 
conditions: 

(3.1) fis continuous onIxRn where n > 2 with / ( / , 0, w l 5 . . . , wn_3, 0, 0) = 0; 

/ ( / , w0, w1 ? . . . , wn_i) > f{t9 0, w l 5 . . . , ttn_i) if w0 > 0 and 

f(U w0, ul9..., wn-i) < AU 0, ul9..., wn_i) if w0 < 0, 

the inequality holding for all t e I and all ul9..., wn_x. 

(3.3) / ( / , 0, w l 5 . . . , wn_i) is non-decreasing in wn_2 for fixed r, 0, w2 , . . . , wn_j 
and satisfies a Lipschitz condition with respect to wn_x on compact subsets 
of /xi* n . 

THEOREM 3.1. Assume conditions (3 J), (3.2) and (3.3) hold, let y be a non-trivial 
solution of Dn which has a zero of order n—l at the point ae I, and assume a is not an 
accumulation point of zeros ofy. Then y has no zeros to the right of a in L 

Proof. We shall be quite brief in this proof since it is a straightforward generaliz­
ation of the proof of Theorem 2 in [3]. In addition, we shall assume n> 3 since the 
proof for n—2 will be obvious. Let y satisfy 

y(a) = y'(a) = • • • = fn-2\a) = y(b) = 0 with a < b. 

By repeated application of Rolle's theorem there is a point c in (a, b) with 
yn-2>(c)=0. Define 

G(t, w, w') = /(*, 0, y'(t\ . . . , /"-3>(0, u, u'). 

Assume, to be specific, that y>0 on (a, c). Then by (3.2) we have 

( j(n-2>(0 r = f{U y(tl / ( 0 j . . ., yn-3) ( 0 ? ^n-2^ y»-l)(0) 

>G(U/»-»(t),(y*-2Xt)n 

so that j ( n~2 )(0 is a subfunction with respect to solutions of u" = G(t, w, u') on (a, c) 
(see [1] p. 1056). Since u=0 is a solution of uf, = G(t, w, w'), / n - 2 ) ( t f )=/ n - 2 ) (c) = 0 
implies y(n~2)(t)<0 on (a, c). Since a is a zero of order n—l of y, it follows that 
y(t)<0 on (a, c), contrary to our assumption. A similar proof works in case 
y(t)<0 on (a, b) by showing that y(n~2)(t) is a superfunction with respect to 
solutions ofu" = G(t, u, w'). 

We note that y(b) = 0 was used only to get the point c>a where y n _ 2 ) vanished. 
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Therefore, as a corollary to the proof of Theorem 3.1 we have 

COROLLARY 3.2. Under the assumptions in Theorem 3.1, y(n~2)(t)>0 for t>a if 
y(t)>0for t>a andy(n~2)(t)<0for t>a ify(t)<0for t>a. 

For the case «=4we have the following corollary of the proof of Theorem 3.1: 

COROLLARY 3.3. Let a and b be successive zeros of a non-trivial solution y of Dé 

and assume f satisfies (3.1), (3.2) and (3.3) for n = 4. Then y does not have two strict 
extrema in (a, b). 

Proof. If the corollary is false, let y(d)=y(b) = 0 and suppose y>0 on (a, b). 
If the extrema occur at /=c and t=d with c < d then we have y"(c) < 0 and y "(d) < 0. 
Hence, by the proof of Theorem 3.1, y"(t)<0 on (c, d) so that y'(t) = 0 on [c, d], 
contrary to assumption. If y<0 on (a, b), a similar argument works. 

REFERENCES 

1. J. W. Bebernes, A subfunction approach to a boundary value problem for ordinary differential 
equations, Pacific J. Math. 13, No. 4 (1963), 1053-1066. 

2. S. B. Eliason, Nonperiodicity of solutions of an Nth-order equation, Amer. Math. Monthly (to 
appear). 

3. R. M. Mathsen, A note on solutions of third-order ordinary differential equations, SIAM Rev. 
(to appear). 

4. T. L. Sherman, On solutions of Nth-order linear differential equations with N zeros, Bull. Am. 
Math. Soc. 74, No. 5 (1968), 923-925. 

5. , Conjugate points and simple zeros for ordinary linear differential equations (submitted 
for publication). 

UNIVERSITY OF ALBERTA, 

EDMONTON, ALBERTA 

https://doi.org/10.4153/CMB-1970-006-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1970-006-x

